mirror of
https://github.com/ZDoom/ZDRay.git
synced 2025-01-30 03:20:46 +00:00
947 lines
25 KiB
C++
947 lines
25 KiB
C++
/*
|
||
** ZDRay collision
|
||
** Copyright (c) 2018 Magnus Norddahl
|
||
**
|
||
** This software is provided 'as-is', without any express or implied
|
||
** warranty. In no event will the authors be held liable for any damages
|
||
** arising from the use of this software.
|
||
**
|
||
** Permission is granted to anyone to use this software for any purpose,
|
||
** including commercial applications, and to alter it and redistribute it
|
||
** freely, subject to the following restrictions:
|
||
**
|
||
** 1. The origin of this software must not be misrepresented; you must not
|
||
** claim that you wrote the original software. If you use this software
|
||
** in a product, an acknowledgment in the product documentation would be
|
||
** appreciated but is not required.
|
||
** 2. Altered source versions must be plainly marked as such, and must not be
|
||
** misrepresented as being the original software.
|
||
** 3. This notice may not be removed or altered from any source distribution.
|
||
**
|
||
*/
|
||
|
||
#include "collision.h"
|
||
#include <algorithm>
|
||
#include <functional>
|
||
#include <cfloat>
|
||
#ifndef NO_SSE
|
||
#include <immintrin.h>
|
||
#endif
|
||
|
||
TriangleMeshShape::TriangleMeshShape(const vec3 *vertices, int num_vertices, const unsigned int *elements, int num_elements)
|
||
: vertices(vertices), num_vertices(num_vertices), elements(elements), num_elements(num_elements)
|
||
{
|
||
int num_triangles = num_elements / 3;
|
||
if (num_triangles <= 0)
|
||
return;
|
||
|
||
std::vector<int> triangles;
|
||
std::vector<vec3> centroids;
|
||
triangles.reserve(num_triangles);
|
||
centroids.reserve(num_triangles);
|
||
for (int i = 0; i < num_triangles; i++)
|
||
{
|
||
triangles.push_back(i);
|
||
|
||
int element_index = i * 3;
|
||
vec3 centroid = (vertices[elements[element_index + 0]] + vertices[elements[element_index + 1]] + vertices[elements[element_index + 2]]) * (1.0f / 3.0f);
|
||
centroids.push_back(centroid);
|
||
}
|
||
|
||
std::vector<int> work_buffer(num_triangles * 2);
|
||
|
||
root = subdivide(&triangles[0], (int)triangles.size(), ¢roids[0], &work_buffer[0]);
|
||
}
|
||
|
||
float TriangleMeshShape::sweep(TriangleMeshShape *shape1, SphereShape *shape2, const vec3 &target)
|
||
{
|
||
return sweep(shape1, shape2, shape1->root, target);
|
||
}
|
||
|
||
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape1, TriangleMeshShape *shape2)
|
||
{
|
||
return find_any_hit(shape1, shape2, shape1->root, shape2->root);
|
||
}
|
||
|
||
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape1, SphereShape *shape2)
|
||
{
|
||
return find_any_hit(shape1, shape2, shape1->root);
|
||
}
|
||
|
||
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape, const vec3 &ray_start, const vec3 &ray_end)
|
||
{
|
||
return find_any_hit(shape, RayBBox(ray_start, ray_end), shape->root);
|
||
}
|
||
|
||
TraceHit TriangleMeshShape::find_first_hit(TriangleMeshShape *shape, const vec3 &ray_start, const vec3 &ray_end)
|
||
{
|
||
TraceHit hit;
|
||
|
||
// Perform segmented tracing to keep the ray AABB box smaller
|
||
|
||
vec3 ray_dir = ray_end - ray_start;
|
||
float tracedist = length(ray_dir);
|
||
float segmentlen = std::max(100.0f, tracedist / 20.0f);
|
||
for (float t = 0.0f; t < tracedist; t += segmentlen)
|
||
{
|
||
float segstart = t / tracedist;
|
||
float segend = std::min(t + segmentlen, tracedist) / tracedist;
|
||
|
||
find_first_hit(shape, RayBBox(ray_start + ray_dir * segstart, ray_start + ray_dir * segend), shape->root, &hit);
|
||
if (hit.fraction < 1.0f)
|
||
{
|
||
hit.fraction = segstart * (1.0f - hit.fraction) + segend * hit.fraction;
|
||
break;
|
||
}
|
||
}
|
||
|
||
return hit;
|
||
}
|
||
|
||
float TriangleMeshShape::sweep(TriangleMeshShape *shape1, SphereShape *shape2, int a, const vec3 &target)
|
||
{
|
||
if (sweep_overlap_bv_sphere(shape1, shape2, a, target))
|
||
{
|
||
if (shape1->is_leaf(a))
|
||
{
|
||
return sweep_intersect_triangle_sphere(shape1, shape2, a, target);
|
||
}
|
||
else
|
||
{
|
||
return std::min(sweep(shape1, shape2, shape1->nodes[a].left, target), sweep(shape1, shape2, shape1->nodes[a].right, target));
|
||
}
|
||
}
|
||
return 1.0f;
|
||
}
|
||
|
||
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape1, SphereShape *shape2, int a)
|
||
{
|
||
if (overlap_bv_sphere(shape1, shape2, a))
|
||
{
|
||
if (shape1->is_leaf(a))
|
||
{
|
||
return overlap_triangle_sphere(shape1, shape2, a);
|
||
}
|
||
else
|
||
{
|
||
if (find_any_hit(shape1, shape2, shape1->nodes[a].left))
|
||
return true;
|
||
else
|
||
return find_any_hit(shape1, shape2, shape1->nodes[a].right);
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b)
|
||
{
|
||
bool leaf_a = shape1->is_leaf(a);
|
||
bool leaf_b = shape2->is_leaf(b);
|
||
if (leaf_a && leaf_b)
|
||
{
|
||
return overlap_triangle_triangle(shape1, shape2, a, b);
|
||
}
|
||
else if (!leaf_a && !leaf_b)
|
||
{
|
||
if (overlap_bv(shape1, shape2, a, b))
|
||
{
|
||
if (shape1->volume(a) > shape2->volume(b))
|
||
{
|
||
if (find_any_hit(shape1, shape2, shape1->nodes[a].left, b))
|
||
return true;
|
||
else
|
||
return find_any_hit(shape1, shape2, shape1->nodes[a].right, b);
|
||
}
|
||
else
|
||
{
|
||
if (find_any_hit(shape1, shape2, a, shape2->nodes[b].left))
|
||
return true;
|
||
else
|
||
return find_any_hit(shape1, shape2, a, shape2->nodes[b].right);
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
else if (leaf_a)
|
||
{
|
||
if (overlap_bv_triangle(shape2, shape1, b, a))
|
||
{
|
||
if (find_any_hit(shape1, shape2, a, shape2->nodes[b].left))
|
||
return true;
|
||
else
|
||
return find_any_hit(shape1, shape2, a, shape2->nodes[b].right);
|
||
}
|
||
return false;
|
||
}
|
||
else
|
||
{
|
||
if (overlap_bv_triangle(shape1, shape2, a, b))
|
||
{
|
||
if (find_any_hit(shape1, shape2, shape1->nodes[a].left, b))
|
||
return true;
|
||
else
|
||
return find_any_hit(shape1, shape2, shape1->nodes[a].right, b);
|
||
}
|
||
return false;
|
||
}
|
||
}
|
||
|
||
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape, const RayBBox &ray, int a)
|
||
{
|
||
if (overlap_bv_ray(shape, ray, a))
|
||
{
|
||
if (shape->is_leaf(a))
|
||
{
|
||
float baryB, baryC;
|
||
return intersect_triangle_ray(shape, ray, a, baryB, baryC) < 1.0f;
|
||
}
|
||
else
|
||
{
|
||
if (find_any_hit(shape, ray, shape->nodes[a].left))
|
||
return true;
|
||
else
|
||
return find_any_hit(shape, ray, shape->nodes[a].right);
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
void TriangleMeshShape::find_first_hit(TriangleMeshShape *shape, const RayBBox &ray, int a, TraceHit *hit)
|
||
{
|
||
if (overlap_bv_ray(shape, ray, a))
|
||
{
|
||
if (shape->is_leaf(a))
|
||
{
|
||
float baryB, baryC;
|
||
float t = intersect_triangle_ray(shape, ray, a, baryB, baryC);
|
||
if (t < hit->fraction)
|
||
{
|
||
hit->fraction = t;
|
||
hit->triangle = shape->nodes[a].element_index / 3;
|
||
hit->b = baryB;
|
||
hit->c = baryC;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
find_first_hit(shape, ray, shape->nodes[a].left, hit);
|
||
find_first_hit(shape, ray, shape->nodes[a].right, hit);
|
||
}
|
||
}
|
||
}
|
||
|
||
bool TriangleMeshShape::overlap_bv_ray(TriangleMeshShape *shape, const RayBBox &ray, int a)
|
||
{
|
||
return IntersectionTest::ray_aabb(ray, shape->nodes[a].aabb) == IntersectionTest::overlap;
|
||
}
|
||
|
||
float TriangleMeshShape::intersect_triangle_ray(TriangleMeshShape *shape, const RayBBox &ray, int a, float &barycentricB, float &barycentricC)
|
||
{
|
||
const int start_element = shape->nodes[a].element_index;
|
||
|
||
vec3 p[3] =
|
||
{
|
||
shape->vertices[shape->elements[start_element]],
|
||
shape->vertices[shape->elements[start_element + 1]],
|
||
shape->vertices[shape->elements[start_element + 2]]
|
||
};
|
||
|
||
// Moeller<65>Trumbore ray-triangle intersection algorithm:
|
||
|
||
vec3 D = ray.end - ray.start;
|
||
|
||
// Find vectors for two edges sharing p[0]
|
||
vec3 e1 = p[1] - p[0];
|
||
vec3 e2 = p[2] - p[0];
|
||
|
||
// Begin calculating determinant - also used to calculate u parameter
|
||
vec3 P = cross(D, e2);
|
||
float det = dot(e1, P);
|
||
|
||
// Backface check
|
||
//if (det < 0.0f)
|
||
// return 1.0f;
|
||
|
||
// If determinant is near zero, ray lies in plane of triangle
|
||
if (det > -FLT_EPSILON && det < FLT_EPSILON)
|
||
return 1.0f;
|
||
|
||
float inv_det = 1.0f / det;
|
||
|
||
// Calculate distance from p[0] to ray origin
|
||
vec3 T = ray.start - p[0];
|
||
|
||
// Calculate u parameter and test bound
|
||
float u = dot(T, P) * inv_det;
|
||
|
||
// Check if the intersection lies outside of the triangle
|
||
if (u < 0.f || u > 1.f)
|
||
return 1.0f;
|
||
|
||
// Prepare to test v parameter
|
||
vec3 Q = cross(T, e1);
|
||
|
||
// Calculate V parameter and test bound
|
||
float v = dot(D, Q) * inv_det;
|
||
|
||
// The intersection lies outside of the triangle
|
||
if (v < 0.f || u + v > 1.f)
|
||
return 1.0f;
|
||
|
||
float t = dot(e2, Q) * inv_det;
|
||
if (t <= FLT_EPSILON)
|
||
return 1.0f;
|
||
|
||
// Return hit location on triangle in barycentric coordinates
|
||
barycentricB = u;
|
||
barycentricC = v;
|
||
|
||
return t;
|
||
}
|
||
|
||
bool TriangleMeshShape::sweep_overlap_bv_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int a, const vec3 &target)
|
||
{
|
||
// Convert to ray test by expanding the AABB:
|
||
|
||
CollisionBBox aabb = shape1->nodes[a].aabb;
|
||
aabb.Extents += shape2->radius;
|
||
|
||
return IntersectionTest::ray_aabb(RayBBox(shape2->center, target), aabb) == IntersectionTest::overlap;
|
||
}
|
||
|
||
float TriangleMeshShape::sweep_intersect_triangle_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int a, const vec3 &target)
|
||
{
|
||
const int start_element = shape1->nodes[a].element_index;
|
||
|
||
vec3 p[3] =
|
||
{
|
||
shape1->vertices[shape1->elements[start_element]],
|
||
shape1->vertices[shape1->elements[start_element + 1]],
|
||
shape1->vertices[shape1->elements[start_element + 2]]
|
||
};
|
||
|
||
vec3 c = shape2->center;
|
||
vec3 e = target;
|
||
float r = shape2->radius;
|
||
|
||
// Dynamic intersection test between a ray and the minkowski sum of the sphere and polygon:
|
||
|
||
vec3 n = normalize(cross(p[1] - p[0], p[2] - p[0]));
|
||
vec4 plane(n, -dot(n, p[0]));
|
||
|
||
// Step 1: Plane intersect test
|
||
|
||
float sc = dot(plane, vec4(c, 1.0f));
|
||
float se = dot(plane, vec4(e, 1.0f));
|
||
bool same_side = sc * se > 0.0f;
|
||
|
||
if (same_side && std::abs(sc) > r && std::abs(se) > r)
|
||
return 1.0f;
|
||
|
||
// Step 1a: Check if point is in polygon (using crossing ray test in 2d)
|
||
{
|
||
float t = (sc - r) / (sc - se);
|
||
|
||
vec3 vt = c + (e - c) * t;
|
||
|
||
vec3 u0 = p[1] - p[0];
|
||
vec3 u1 = p[2] - p[0];
|
||
|
||
vec2 v_2d[3] =
|
||
{
|
||
vec2(0.0f, 0.0f),
|
||
vec2(dot(u0, u0), 0.0f),
|
||
vec2(0.0f, dot(u1, u1))
|
||
};
|
||
|
||
vec2 point(dot(u0, vt), dot(u1, vt));
|
||
|
||
bool inside = false;
|
||
vec2 e0 = v_2d[2];
|
||
bool y0 = e0.y >= point.y;
|
||
for (int i = 0; i < 3; i++)
|
||
{
|
||
vec2 e1 = v_2d[i];
|
||
bool y1 = e1.y >= point.y;
|
||
|
||
if (y0 != y1 && ((e1.y - point.y) * (e0.x - e1.x) >= (e1.x - point.x) * (e0.y - e1.y)) == y1)
|
||
inside = !inside;
|
||
|
||
y0 = y1;
|
||
e0 = e1;
|
||
}
|
||
|
||
if (inside)
|
||
return t;
|
||
}
|
||
|
||
// Step 2: Edge intersect test
|
||
|
||
vec3 ke[3] =
|
||
{
|
||
p[1] - p[0],
|
||
p[2] - p[1],
|
||
p[0] - p[2],
|
||
};
|
||
|
||
vec3 kg[3] =
|
||
{
|
||
p[0] - c,
|
||
p[1] - c,
|
||
p[2] - c,
|
||
};
|
||
|
||
vec3 ks = e - c;
|
||
|
||
float kgg[3];
|
||
float kgs[3];
|
||
float kss[3];
|
||
|
||
for (int i = 0; i < 3; i++)
|
||
{
|
||
float kee = dot(ke[i], ke[i]);
|
||
float keg = dot(ke[i], kg[i]);
|
||
float kes = dot(ke[i], ks);
|
||
kgg[i] = dot(kg[i], kg[i]);
|
||
kgs[i] = dot(kg[i], ks);
|
||
kss[i] = dot(ks, ks);
|
||
|
||
float aa = kee * kss[i] - kes * kes;
|
||
float bb = 2 * (keg * kes - kee * kgs[i]);
|
||
float cc = kee * (kgg[i] - r * r) - keg * keg;
|
||
|
||
float sign = (bb >= 0.0f) ? 1.0f : -1.0f;
|
||
float q = -0.5f * (bb + sign * std::sqrt(bb * bb - 4 * aa * cc));
|
||
float t0 = q / aa;
|
||
float t1 = cc / q;
|
||
|
||
float t;
|
||
if (t0 < 0.0f || t0 > 1.0f)
|
||
t = t1;
|
||
else if (t1 < 0.0f || t1 > 1.0f)
|
||
t = t0;
|
||
else
|
||
t = std::min(t0, t1);
|
||
|
||
if (t >= 0.0f && t <= 1.0f)
|
||
{
|
||
vec3 ct = c + ks * t;
|
||
float d = dot(ct - p[i], ke[i]);
|
||
if (d >= 0.0f && d <= kee)
|
||
return t;
|
||
}
|
||
}
|
||
|
||
// Step 3: Point intersect test
|
||
|
||
for (int i = 0; i < 3; i++)
|
||
{
|
||
float aa = kss[i];
|
||
float bb = -2.0f * kgs[i];
|
||
float cc = kgg[i] - r * r;
|
||
|
||
float sign = (bb >= 0.0f) ? 1.0f : -1.0f;
|
||
float q = -0.5f * (bb + sign * std::sqrt(bb * bb - 4 * aa * cc));
|
||
float t0 = q / aa;
|
||
float t1 = cc / q;
|
||
|
||
float t;
|
||
if (t0 < 0.0f || t0 > 1.0f)
|
||
t = t1;
|
||
else if (t1 < 0.0f || t1 > 1.0f)
|
||
t = t0;
|
||
else
|
||
t = std::min(t0, t1);
|
||
|
||
if (t >= 0.0f && t <= 1.0f)
|
||
return t;
|
||
}
|
||
|
||
return 1.0f;
|
||
}
|
||
|
||
bool TriangleMeshShape::overlap_bv(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b)
|
||
{
|
||
return IntersectionTest::aabb(shape1->nodes[a].aabb, shape2->nodes[b].aabb) == IntersectionTest::overlap;
|
||
}
|
||
|
||
bool TriangleMeshShape::overlap_bv_triangle(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b)
|
||
{
|
||
return false;
|
||
}
|
||
|
||
bool TriangleMeshShape::overlap_bv_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int a)
|
||
{
|
||
return IntersectionTest::sphere_aabb(shape2->center, shape2->radius, shape1->nodes[a].aabb) == IntersectionTest::overlap;
|
||
}
|
||
|
||
bool TriangleMeshShape::overlap_triangle_triangle(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b)
|
||
{
|
||
return false;
|
||
}
|
||
|
||
bool TriangleMeshShape::overlap_triangle_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int shape1_node_index)
|
||
{
|
||
// http://realtimecollisiondetection.net/blog/?p=103
|
||
|
||
int element_index = shape1->nodes[shape1_node_index].element_index;
|
||
|
||
vec3 P = shape2->center;
|
||
vec3 A = shape1->vertices[shape1->elements[element_index]] - P;
|
||
vec3 B = shape1->vertices[shape1->elements[element_index + 1]] - P;
|
||
vec3 C = shape1->vertices[shape1->elements[element_index + 2]] - P;
|
||
float r = shape2->radius;
|
||
float rr = r * r;
|
||
|
||
// Testing if sphere lies outside the triangle plane
|
||
vec3 V = cross(B - A, C - A);
|
||
float d = dot(A, V);
|
||
float e = dot(V, V);
|
||
bool sep1 = d * d > rr * e;
|
||
|
||
// Testing if sphere lies outside a triangle vertex
|
||
float aa = dot(A, A);
|
||
float ab = dot(A, B);
|
||
float ac = dot(A, C);
|
||
float bb = dot(B, B);
|
||
float bc = dot(B, C);
|
||
float cc = dot(C, C);
|
||
bool sep2 = (aa > rr) && (ab > aa) && (ac > aa);
|
||
bool sep3 = (bb > rr) && (ab > bb) && (bc > bb);
|
||
bool sep4 = (cc > rr) && (ac > cc) && (bc > cc);
|
||
|
||
// Testing if sphere lies outside a triangle edge
|
||
vec3 AB = B - A;
|
||
vec3 BC = C - B;
|
||
vec3 CA = A - C;
|
||
float d1 = ab - aa;
|
||
float d2 = bc - bb;
|
||
float d3 = ac - cc;
|
||
float e1 = dot(AB, AB);
|
||
float e2 = dot(BC, BC);
|
||
float e3 = dot(CA, CA);
|
||
vec3 Q1 = A * e1 - AB * d1;
|
||
vec3 Q2 = B * e2 - BC * d2;
|
||
vec3 Q3 = C * e3 - CA * d3;
|
||
vec3 QC = C * e1 - Q1;
|
||
vec3 QA = A * e2 - Q2;
|
||
vec3 QB = B * e3 - Q3;
|
||
bool sep5 = (dot(Q1, Q1) > rr * e1 * e1) && (dot(Q1, QC) > 0.0f);
|
||
bool sep6 = (dot(Q2, Q2) > rr * e2 * e2) && (dot(Q2, QA) > 0.0f);
|
||
bool sep7 = (dot(Q3, Q3) > rr * e3 * e3) && (dot(Q3, QB) > 0.0f);
|
||
|
||
bool separated = sep1 || sep2 || sep3 || sep4 || sep5 || sep6 || sep7;
|
||
return (!separated);
|
||
}
|
||
|
||
bool TriangleMeshShape::is_leaf(int node_index)
|
||
{
|
||
return nodes[node_index].element_index != -1;
|
||
}
|
||
|
||
float TriangleMeshShape::volume(int node_index)
|
||
{
|
||
const vec3 &extents = nodes[node_index].aabb.Extents;
|
||
return extents.x * extents.y * extents.z;
|
||
}
|
||
|
||
int TriangleMeshShape::get_min_depth() const
|
||
{
|
||
std::function<int(int, int)> visit;
|
||
visit = [&](int level, int node_index) -> int {
|
||
const Node &node = nodes[node_index];
|
||
if (node.element_index == -1)
|
||
return std::min(visit(level + 1, node.left), visit(level + 1, node.right));
|
||
else
|
||
return level;
|
||
};
|
||
return visit(1, root);
|
||
}
|
||
|
||
int TriangleMeshShape::get_max_depth() const
|
||
{
|
||
std::function<int(int, int)> visit;
|
||
visit = [&](int level, int node_index) -> int {
|
||
const Node &node = nodes[node_index];
|
||
if (node.element_index == -1)
|
||
return std::max(visit(level + 1, node.left), visit(level + 1, node.right));
|
||
else
|
||
return level;
|
||
};
|
||
return visit(1, root);
|
||
}
|
||
|
||
float TriangleMeshShape::get_average_depth() const
|
||
{
|
||
std::function<float(int, int)> visit;
|
||
visit = [&](int level, int node_index) -> float {
|
||
const Node &node = nodes[node_index];
|
||
if (node.element_index == -1)
|
||
return visit(level + 1, node.left) + visit(level + 1, node.right);
|
||
else
|
||
return (float)level;
|
||
};
|
||
float depth_sum = visit(1, root);
|
||
int leaf_count = (num_elements / 3);
|
||
return depth_sum / leaf_count;
|
||
}
|
||
|
||
float TriangleMeshShape::get_balanced_depth() const
|
||
{
|
||
return std::log2((float)(num_elements / 3));
|
||
}
|
||
|
||
int TriangleMeshShape::subdivide(int *triangles, int num_triangles, const vec3 *centroids, int *work_buffer)
|
||
{
|
||
if (num_triangles == 0)
|
||
return -1;
|
||
|
||
// Find bounding box and median of the triangle centroids
|
||
vec3 median;
|
||
vec3 min, max;
|
||
min = vertices[elements[triangles[0] * 3]];
|
||
max = min;
|
||
for (int i = 0; i < num_triangles; i++)
|
||
{
|
||
int element_index = triangles[i] * 3;
|
||
for (int j = 0; j < 3; j++)
|
||
{
|
||
const vec3 &vertex = vertices[elements[element_index + j]];
|
||
|
||
min.x = std::min(min.x, vertex.x);
|
||
min.y = std::min(min.y, vertex.y);
|
||
min.z = std::min(min.z, vertex.z);
|
||
|
||
max.x = std::max(max.x, vertex.x);
|
||
max.y = std::max(max.y, vertex.y);
|
||
max.z = std::max(max.z, vertex.z);
|
||
}
|
||
|
||
median += centroids[triangles[i]];
|
||
}
|
||
median /= (float)num_triangles;
|
||
|
||
if (num_triangles == 1) // Leaf node
|
||
{
|
||
nodes.push_back(Node(min, max, triangles[0] * 3));
|
||
return (int)nodes.size() - 1;
|
||
}
|
||
|
||
// Find the longest axis
|
||
float axis_lengths[3] =
|
||
{
|
||
max.x - min.x,
|
||
max.y - min.y,
|
||
max.z - min.z
|
||
};
|
||
|
||
int axis_order[3] = { 0, 1, 2 };
|
||
std::sort(axis_order, axis_order + 3, [&](int a, int b) { return axis_lengths[a] > axis_lengths[b]; });
|
||
|
||
// Try split at longest axis, then if that fails the next longest, and then the remaining one
|
||
int left_count, right_count;
|
||
vec3 axis;
|
||
for (int attempt = 0; attempt < 3; attempt++)
|
||
{
|
||
// Find the split plane for axis
|
||
switch (axis_order[attempt])
|
||
{
|
||
default:
|
||
case 0: axis = vec3(1.0f, 0.0f, 0.0f); break;
|
||
case 1: axis = vec3(0.0f, 1.0f, 0.0f); break;
|
||
case 2: axis = vec3(0.0f, 0.0f, 1.0f); break;
|
||
}
|
||
vec4 plane(axis, -dot(median, axis));
|
||
|
||
// Split triangles into two
|
||
left_count = 0;
|
||
right_count = 0;
|
||
for (int i = 0; i < num_triangles; i++)
|
||
{
|
||
int triangle = triangles[i];
|
||
int element_index = triangle * 3;
|
||
|
||
float side = dot(vec4(centroids[triangles[i]], 1.0f), plane);
|
||
if (side >= 0.0f)
|
||
{
|
||
work_buffer[left_count] = triangle;
|
||
left_count++;
|
||
}
|
||
else
|
||
{
|
||
work_buffer[num_triangles + right_count] = triangle;
|
||
right_count++;
|
||
}
|
||
}
|
||
|
||
if (left_count != 0 && right_count != 0)
|
||
break;
|
||
}
|
||
|
||
// Check if something went wrong when splitting and do a random split instead
|
||
if (left_count == 0 || right_count == 0)
|
||
{
|
||
left_count = num_triangles / 2;
|
||
right_count = num_triangles - left_count;
|
||
}
|
||
else
|
||
{
|
||
// Move result back into triangles list:
|
||
for (int i = 0; i < left_count; i++)
|
||
triangles[i] = work_buffer[i];
|
||
for (int i = 0; i < right_count; i++)
|
||
triangles[i + left_count] = work_buffer[num_triangles + i];
|
||
}
|
||
|
||
// Create child nodes:
|
||
int left_index = -1;
|
||
int right_index = -1;
|
||
if (left_count > 0)
|
||
left_index = subdivide(triangles, left_count, centroids, work_buffer);
|
||
if (right_count > 0)
|
||
right_index = subdivide(triangles + left_count, right_count, centroids, work_buffer);
|
||
|
||
nodes.push_back(Node(min, max, left_index, right_index));
|
||
return (int)nodes.size() - 1;
|
||
}
|
||
|
||
/////////////////////////////////////////////////////////////////////////////
|
||
|
||
IntersectionTest::Result IntersectionTest::plane_aabb(const vec4 &plane, const BBox &aabb)
|
||
{
|
||
vec3 center = aabb.Center();
|
||
vec3 extents = aabb.Extents();
|
||
float e = extents.x * std::abs(plane.x) + extents.y * std::abs(plane.y) + extents.z * std::abs(plane.z);
|
||
float s = center.x * plane.x + center.y * plane.y + center.z * plane.z + plane.w;
|
||
if (s - e > 0)
|
||
return inside;
|
||
else if (s + e < 0)
|
||
return outside;
|
||
else
|
||
return intersecting;
|
||
}
|
||
|
||
IntersectionTest::Result IntersectionTest::plane_obb(const vec4 &plane, const OrientedBBox &obb)
|
||
{
|
||
vec3 n = plane.xyz();
|
||
float d = plane.w;
|
||
float e = obb.Extents.x * std::abs(dot(obb.axis_x, n)) + obb.Extents.y * std::abs(dot(obb.axis_y, n)) + obb.Extents.z * std::abs(dot(obb.axis_z, n));
|
||
float s = dot(obb.Center, n) + d;
|
||
if (s - e > 0)
|
||
return inside;
|
||
else if (s + e < 0)
|
||
return outside;
|
||
else
|
||
return intersecting;
|
||
}
|
||
|
||
IntersectionTest::OverlapResult IntersectionTest::sphere(const vec3 ¢er1, float radius1, const vec3 ¢er2, float radius2)
|
||
{
|
||
vec3 h = center1 - center2;
|
||
float square_distance = dot(h, h);
|
||
float radius_sum = radius1 + radius2;
|
||
if (square_distance > radius_sum * radius_sum)
|
||
return disjoint;
|
||
else
|
||
return overlap;
|
||
}
|
||
|
||
IntersectionTest::OverlapResult IntersectionTest::sphere_aabb(const vec3 ¢er, float radius, const BBox &aabb)
|
||
{
|
||
vec3 a = aabb.min - center;
|
||
vec3 b = center - aabb.max;
|
||
a.x = std::max(a.x, 0.0f);
|
||
a.y = std::max(a.y, 0.0f);
|
||
a.z = std::max(a.z, 0.0f);
|
||
b.x = std::max(b.x, 0.0f);
|
||
b.y = std::max(b.y, 0.0f);
|
||
b.z = std::max(b.z, 0.0f);
|
||
vec3 e = a + b;
|
||
float d = dot(e, e);
|
||
if (d > radius * radius)
|
||
return disjoint;
|
||
else
|
||
return overlap;
|
||
}
|
||
|
||
IntersectionTest::OverlapResult IntersectionTest::aabb(const BBox &a, const BBox &b)
|
||
{
|
||
if (a.min.x > b.max.x || b.min.x > a.max.x ||
|
||
a.min.y > b.max.y || b.min.y > a.max.y ||
|
||
a.min.z > b.max.z || b.min.z > a.max.z)
|
||
{
|
||
return disjoint;
|
||
}
|
||
else
|
||
{
|
||
return overlap;
|
||
}
|
||
}
|
||
|
||
IntersectionTest::Result IntersectionTest::frustum_aabb(const FrustumPlanes &frustum, const BBox &box)
|
||
{
|
||
bool is_intersecting = false;
|
||
for (int i = 0; i < 6; i++)
|
||
{
|
||
Result result = plane_aabb(frustum.planes[i], box);
|
||
if (result == outside)
|
||
return outside;
|
||
else if (result == intersecting)
|
||
is_intersecting = true;
|
||
break;
|
||
}
|
||
if (is_intersecting)
|
||
return intersecting;
|
||
else
|
||
return inside;
|
||
}
|
||
|
||
IntersectionTest::Result IntersectionTest::frustum_obb(const FrustumPlanes &frustum, const OrientedBBox &box)
|
||
{
|
||
bool is_intersecting = false;
|
||
for (int i = 0; i < 6; i++)
|
||
{
|
||
Result result = plane_obb(frustum.planes[i], box);
|
||
if (result == outside)
|
||
return outside;
|
||
else if (result == intersecting)
|
||
is_intersecting = true;
|
||
}
|
||
if (is_intersecting)
|
||
return intersecting;
|
||
else
|
||
return inside;
|
||
}
|
||
|
||
static const uint32_t clearsignbitmask[] = { 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff };
|
||
|
||
IntersectionTest::OverlapResult IntersectionTest::ray_aabb(const RayBBox &ray, const CollisionBBox &aabb)
|
||
{
|
||
#ifndef NO_SSE
|
||
|
||
__m128 v = _mm_loadu_ps(&ray.v.x);
|
||
__m128 w = _mm_loadu_ps(&ray.w.x);
|
||
__m128 h = _mm_loadu_ps(&aabb.Extents.x);
|
||
__m128 c = _mm_sub_ps(_mm_loadu_ps(&ray.c.x), _mm_loadu_ps(&aabb.Center.x));
|
||
|
||
__m128 clearsignbit = _mm_loadu_ps(reinterpret_cast<const float*>(clearsignbitmask));
|
||
|
||
__m128 abs_c = _mm_and_ps(c, clearsignbit);
|
||
int mask = _mm_movemask_ps(_mm_cmpgt_ps(abs_c, _mm_add_ps(v, h)));
|
||
if (mask & 7)
|
||
return disjoint;
|
||
|
||
__m128 c1 = _mm_shuffle_ps(c, c, _MM_SHUFFLE(3, 0, 0, 1)); // c.y, c.x, c.x
|
||
__m128 c2 = _mm_shuffle_ps(c, c, _MM_SHUFFLE(3, 1, 2, 2)); // c.z, c.z, c.y
|
||
__m128 w1 = _mm_shuffle_ps(w, w, _MM_SHUFFLE(3, 1, 2, 2)); // w.z, w.z, w.y
|
||
__m128 w2 = _mm_shuffle_ps(w, w, _MM_SHUFFLE(3, 0, 0, 1)); // w.y, w.x, w.x
|
||
__m128 lhs = _mm_and_ps(_mm_sub_ps(_mm_mul_ps(c1, w1), _mm_mul_ps(c2, w2)), clearsignbit);
|
||
|
||
__m128 h1 = _mm_shuffle_ps(h, h, _MM_SHUFFLE(3, 0, 0, 1)); // h.y, h.x, h.x
|
||
__m128 h2 = _mm_shuffle_ps(h, h, _MM_SHUFFLE(3, 1, 2, 2)); // h.z, h.z, h.y
|
||
__m128 v1 = _mm_shuffle_ps(v, v, _MM_SHUFFLE(3, 1, 2, 2)); // v.z, v.z, v.y
|
||
__m128 v2 = _mm_shuffle_ps(v, v, _MM_SHUFFLE(3, 0, 0, 1)); // v.y, v.x, v.x
|
||
__m128 rhs = _mm_add_ps(_mm_mul_ps(h1, v1), _mm_mul_ps(h2, v2));
|
||
|
||
mask = _mm_movemask_ps(_mm_cmpgt_ps(lhs, rhs));
|
||
return (mask & 7) ? disjoint : overlap;
|
||
|
||
#else
|
||
const vec3 &v = ray.v;
|
||
const vec3 &w = ray.w;
|
||
const vec3 &h = aabb.Extents;
|
||
auto c = ray.c - aabb.Center;
|
||
|
||
if (std::abs(c.x) > v.x + h.x || std::abs(c.y) > v.y + h.y || std::abs(c.z) > v.z + h.z)
|
||
return disjoint;
|
||
|
||
if (std::abs(c.y * w.z - c.z * w.y) > h.y * v.z + h.z * v.y ||
|
||
std::abs(c.x * w.z - c.z * w.x) > h.x * v.z + h.z * v.x ||
|
||
std::abs(c.x * w.y - c.y * w.x) > h.x * v.y + h.y * v.x)
|
||
return disjoint;
|
||
|
||
return overlap;
|
||
#endif
|
||
}
|
||
|
||
/////////////////////////////////////////////////////////////////////////////
|
||
|
||
FrustumPlanes::FrustumPlanes()
|
||
{
|
||
}
|
||
|
||
FrustumPlanes::FrustumPlanes(const mat4 &world_to_projection)
|
||
{
|
||
planes[0] = near_frustum_plane(world_to_projection);
|
||
planes[1] = far_frustum_plane(world_to_projection);
|
||
planes[2] = left_frustum_plane(world_to_projection);
|
||
planes[3] = right_frustum_plane(world_to_projection);
|
||
planes[4] = top_frustum_plane(world_to_projection);
|
||
planes[5] = bottom_frustum_plane(world_to_projection);
|
||
}
|
||
|
||
vec4 FrustumPlanes::left_frustum_plane(const mat4 &matrix)
|
||
{
|
||
vec4 plane(
|
||
matrix[3 + 0 * 4] + matrix[0 + 0 * 4],
|
||
matrix[3 + 1 * 4] + matrix[0 + 1 * 4],
|
||
matrix[3 + 2 * 4] + matrix[0 + 2 * 4],
|
||
matrix[3 + 3 * 4] + matrix[0 + 3 * 4]);
|
||
plane /= length(plane.xyz());
|
||
return plane;
|
||
}
|
||
|
||
vec4 FrustumPlanes::right_frustum_plane(const mat4 &matrix)
|
||
{
|
||
vec4 plane(
|
||
matrix[3 + 0 * 4] - matrix[0 + 0 * 4],
|
||
matrix[3 + 1 * 4] - matrix[0 + 1 * 4],
|
||
matrix[3 + 2 * 4] - matrix[0 + 2 * 4],
|
||
matrix[3 + 3 * 4] - matrix[0 + 3 * 4]);
|
||
plane /= length(plane.xyz());
|
||
return plane;
|
||
}
|
||
|
||
vec4 FrustumPlanes::top_frustum_plane(const mat4 &matrix)
|
||
{
|
||
vec4 plane(
|
||
matrix[3 + 0 * 4] - matrix[1 + 0 * 4],
|
||
matrix[3 + 1 * 4] - matrix[1 + 1 * 4],
|
||
matrix[3 + 2 * 4] - matrix[1 + 2 * 4],
|
||
matrix[3 + 3 * 4] - matrix[1 + 3 * 4]);
|
||
plane /= length(plane.xyz());
|
||
return plane;
|
||
}
|
||
|
||
vec4 FrustumPlanes::bottom_frustum_plane(const mat4 &matrix)
|
||
{
|
||
vec4 plane(
|
||
matrix[3 + 0 * 4] + matrix[1 + 0 * 4],
|
||
matrix[3 + 1 * 4] + matrix[1 + 1 * 4],
|
||
matrix[3 + 2 * 4] + matrix[1 + 2 * 4],
|
||
matrix[3 + 3 * 4] + matrix[1 + 3 * 4]);
|
||
plane /= length(plane.xyz());
|
||
return plane;
|
||
}
|
||
|
||
vec4 FrustumPlanes::near_frustum_plane(const mat4 &matrix)
|
||
{
|
||
vec4 plane(
|
||
matrix[3 + 0 * 4] + matrix[2 + 0 * 4],
|
||
matrix[3 + 1 * 4] + matrix[2 + 1 * 4],
|
||
matrix[3 + 2 * 4] + matrix[2 + 2 * 4],
|
||
matrix[3 + 3 * 4] + matrix[2 + 3 * 4]);
|
||
plane /= length(plane.xyz());
|
||
return plane;
|
||
}
|
||
|
||
vec4 FrustumPlanes::far_frustum_plane(const mat4 &matrix)
|
||
{
|
||
vec4 plane(
|
||
matrix[3 + 0 * 4] - matrix[2 + 0 * 4],
|
||
matrix[3 + 1 * 4] - matrix[2 + 1 * 4],
|
||
matrix[3 + 2 * 4] - matrix[2 + 2 * 4],
|
||
matrix[3 + 3 * 4] - matrix[2 + 3 * 4]);
|
||
plane /= length(plane.xyz());
|
||
return plane;
|
||
}
|