zdray/src/lightmap/collision.cpp

947 lines
25 KiB
C++
Raw Blame History

/*
** ZDRay collision
** Copyright (c) 2018 Magnus Norddahl
**
** This software is provided 'as-is', without any express or implied
** warranty. In no event will the authors be held liable for any damages
** arising from the use of this software.
**
** Permission is granted to anyone to use this software for any purpose,
** including commercial applications, and to alter it and redistribute it
** freely, subject to the following restrictions:
**
** 1. The origin of this software must not be misrepresented; you must not
** claim that you wrote the original software. If you use this software
** in a product, an acknowledgment in the product documentation would be
** appreciated but is not required.
** 2. Altered source versions must be plainly marked as such, and must not be
** misrepresented as being the original software.
** 3. This notice may not be removed or altered from any source distribution.
**
*/
#include "collision.h"
#include <algorithm>
#include <functional>
#include <cfloat>
#ifndef NO_SSE
#include <immintrin.h>
#endif
TriangleMeshShape::TriangleMeshShape(const vec3 *vertices, int num_vertices, const unsigned int *elements, int num_elements)
: vertices(vertices), num_vertices(num_vertices), elements(elements), num_elements(num_elements)
{
int num_triangles = num_elements / 3;
if (num_triangles <= 0)
return;
std::vector<int> triangles;
std::vector<vec3> centroids;
triangles.reserve(num_triangles);
centroids.reserve(num_triangles);
for (int i = 0; i < num_triangles; i++)
{
triangles.push_back(i);
int element_index = i * 3;
vec3 centroid = (vertices[elements[element_index + 0]] + vertices[elements[element_index + 1]] + vertices[elements[element_index + 2]]) * (1.0f / 3.0f);
centroids.push_back(centroid);
}
std::vector<int> work_buffer(num_triangles * 2);
root = subdivide(&triangles[0], (int)triangles.size(), &centroids[0], &work_buffer[0]);
}
float TriangleMeshShape::sweep(TriangleMeshShape *shape1, SphereShape *shape2, const vec3 &target)
{
return sweep(shape1, shape2, shape1->root, target);
}
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape1, TriangleMeshShape *shape2)
{
return find_any_hit(shape1, shape2, shape1->root, shape2->root);
}
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape1, SphereShape *shape2)
{
return find_any_hit(shape1, shape2, shape1->root);
}
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape, const vec3 &ray_start, const vec3 &ray_end)
{
return find_any_hit(shape, RayBBox(ray_start, ray_end), shape->root);
}
TraceHit TriangleMeshShape::find_first_hit(TriangleMeshShape *shape, const vec3 &ray_start, const vec3 &ray_end)
{
TraceHit hit;
// Perform segmented tracing to keep the ray AABB box smaller
vec3 ray_dir = ray_end - ray_start;
float tracedist = length(ray_dir);
float segmentlen = std::max(100.0f, tracedist / 20.0f);
for (float t = 0.0f; t < tracedist; t += segmentlen)
{
float segstart = t / tracedist;
float segend = std::min(t + segmentlen, tracedist) / tracedist;
find_first_hit(shape, RayBBox(ray_start + ray_dir * segstart, ray_start + ray_dir * segend), shape->root, &hit);
if (hit.fraction < 1.0f)
{
hit.fraction = segstart * (1.0f - hit.fraction) + segend * hit.fraction;
break;
}
}
return hit;
}
float TriangleMeshShape::sweep(TriangleMeshShape *shape1, SphereShape *shape2, int a, const vec3 &target)
{
if (sweep_overlap_bv_sphere(shape1, shape2, a, target))
{
if (shape1->is_leaf(a))
{
return sweep_intersect_triangle_sphere(shape1, shape2, a, target);
}
else
{
return std::min(sweep(shape1, shape2, shape1->nodes[a].left, target), sweep(shape1, shape2, shape1->nodes[a].right, target));
}
}
return 1.0f;
}
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape1, SphereShape *shape2, int a)
{
if (overlap_bv_sphere(shape1, shape2, a))
{
if (shape1->is_leaf(a))
{
return overlap_triangle_sphere(shape1, shape2, a);
}
else
{
if (find_any_hit(shape1, shape2, shape1->nodes[a].left))
return true;
else
return find_any_hit(shape1, shape2, shape1->nodes[a].right);
}
}
return false;
}
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b)
{
bool leaf_a = shape1->is_leaf(a);
bool leaf_b = shape2->is_leaf(b);
if (leaf_a && leaf_b)
{
return overlap_triangle_triangle(shape1, shape2, a, b);
}
else if (!leaf_a && !leaf_b)
{
if (overlap_bv(shape1, shape2, a, b))
{
if (shape1->volume(a) > shape2->volume(b))
{
if (find_any_hit(shape1, shape2, shape1->nodes[a].left, b))
return true;
else
return find_any_hit(shape1, shape2, shape1->nodes[a].right, b);
}
else
{
if (find_any_hit(shape1, shape2, a, shape2->nodes[b].left))
return true;
else
return find_any_hit(shape1, shape2, a, shape2->nodes[b].right);
}
}
return false;
}
else if (leaf_a)
{
if (overlap_bv_triangle(shape2, shape1, b, a))
{
if (find_any_hit(shape1, shape2, a, shape2->nodes[b].left))
return true;
else
return find_any_hit(shape1, shape2, a, shape2->nodes[b].right);
}
return false;
}
else
{
if (overlap_bv_triangle(shape1, shape2, a, b))
{
if (find_any_hit(shape1, shape2, shape1->nodes[a].left, b))
return true;
else
return find_any_hit(shape1, shape2, shape1->nodes[a].right, b);
}
return false;
}
}
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape, const RayBBox &ray, int a)
{
if (overlap_bv_ray(shape, ray, a))
{
if (shape->is_leaf(a))
{
float baryB, baryC;
return intersect_triangle_ray(shape, ray, a, baryB, baryC) < 1.0f;
}
else
{
if (find_any_hit(shape, ray, shape->nodes[a].left))
return true;
else
return find_any_hit(shape, ray, shape->nodes[a].right);
}
}
return false;
}
void TriangleMeshShape::find_first_hit(TriangleMeshShape *shape, const RayBBox &ray, int a, TraceHit *hit)
{
if (overlap_bv_ray(shape, ray, a))
{
if (shape->is_leaf(a))
{
float baryB, baryC;
float t = intersect_triangle_ray(shape, ray, a, baryB, baryC);
if (t < hit->fraction)
{
hit->fraction = t;
hit->triangle = shape->nodes[a].element_index / 3;
hit->b = baryB;
hit->c = baryC;
}
}
else
{
find_first_hit(shape, ray, shape->nodes[a].left, hit);
find_first_hit(shape, ray, shape->nodes[a].right, hit);
}
}
}
bool TriangleMeshShape::overlap_bv_ray(TriangleMeshShape *shape, const RayBBox &ray, int a)
{
return IntersectionTest::ray_aabb(ray, shape->nodes[a].aabb) == IntersectionTest::overlap;
}
float TriangleMeshShape::intersect_triangle_ray(TriangleMeshShape *shape, const RayBBox &ray, int a, float &barycentricB, float &barycentricC)
{
const int start_element = shape->nodes[a].element_index;
vec3 p[3] =
{
shape->vertices[shape->elements[start_element]],
shape->vertices[shape->elements[start_element + 1]],
shape->vertices[shape->elements[start_element + 2]]
};
// Moeller<65>Trumbore ray-triangle intersection algorithm:
vec3 D = ray.end - ray.start;
// Find vectors for two edges sharing p[0]
vec3 e1 = p[1] - p[0];
vec3 e2 = p[2] - p[0];
// Begin calculating determinant - also used to calculate u parameter
vec3 P = cross(D, e2);
float det = dot(e1, P);
// Backface check
//if (det < 0.0f)
// return 1.0f;
// If determinant is near zero, ray lies in plane of triangle
if (det > -FLT_EPSILON && det < FLT_EPSILON)
return 1.0f;
float inv_det = 1.0f / det;
// Calculate distance from p[0] to ray origin
vec3 T = ray.start - p[0];
// Calculate u parameter and test bound
float u = dot(T, P) * inv_det;
// Check if the intersection lies outside of the triangle
if (u < 0.f || u > 1.f)
return 1.0f;
// Prepare to test v parameter
vec3 Q = cross(T, e1);
// Calculate V parameter and test bound
float v = dot(D, Q) * inv_det;
// The intersection lies outside of the triangle
if (v < 0.f || u + v > 1.f)
return 1.0f;
float t = dot(e2, Q) * inv_det;
if (t <= FLT_EPSILON)
return 1.0f;
// Return hit location on triangle in barycentric coordinates
barycentricB = u;
barycentricC = v;
return t;
}
bool TriangleMeshShape::sweep_overlap_bv_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int a, const vec3 &target)
{
// Convert to ray test by expanding the AABB:
CollisionBBox aabb = shape1->nodes[a].aabb;
aabb.Extents += shape2->radius;
return IntersectionTest::ray_aabb(RayBBox(shape2->center, target), aabb) == IntersectionTest::overlap;
}
float TriangleMeshShape::sweep_intersect_triangle_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int a, const vec3 &target)
{
const int start_element = shape1->nodes[a].element_index;
vec3 p[3] =
{
shape1->vertices[shape1->elements[start_element]],
shape1->vertices[shape1->elements[start_element + 1]],
shape1->vertices[shape1->elements[start_element + 2]]
};
vec3 c = shape2->center;
vec3 e = target;
float r = shape2->radius;
// Dynamic intersection test between a ray and the minkowski sum of the sphere and polygon:
vec3 n = normalize(cross(p[1] - p[0], p[2] - p[0]));
vec4 plane(n, -dot(n, p[0]));
// Step 1: Plane intersect test
float sc = dot(plane, vec4(c, 1.0f));
float se = dot(plane, vec4(e, 1.0f));
bool same_side = sc * se > 0.0f;
if (same_side && std::abs(sc) > r && std::abs(se) > r)
return 1.0f;
// Step 1a: Check if point is in polygon (using crossing ray test in 2d)
{
float t = (sc - r) / (sc - se);
vec3 vt = c + (e - c) * t;
vec3 u0 = p[1] - p[0];
vec3 u1 = p[2] - p[0];
vec2 v_2d[3] =
{
vec2(0.0f, 0.0f),
vec2(dot(u0, u0), 0.0f),
vec2(0.0f, dot(u1, u1))
};
vec2 point(dot(u0, vt), dot(u1, vt));
bool inside = false;
vec2 e0 = v_2d[2];
bool y0 = e0.y >= point.y;
for (int i = 0; i < 3; i++)
{
vec2 e1 = v_2d[i];
bool y1 = e1.y >= point.y;
if (y0 != y1 && ((e1.y - point.y) * (e0.x - e1.x) >= (e1.x - point.x) * (e0.y - e1.y)) == y1)
inside = !inside;
y0 = y1;
e0 = e1;
}
if (inside)
return t;
}
// Step 2: Edge intersect test
vec3 ke[3] =
{
p[1] - p[0],
p[2] - p[1],
p[0] - p[2],
};
vec3 kg[3] =
{
p[0] - c,
p[1] - c,
p[2] - c,
};
vec3 ks = e - c;
float kgg[3];
float kgs[3];
float kss[3];
for (int i = 0; i < 3; i++)
{
float kee = dot(ke[i], ke[i]);
float keg = dot(ke[i], kg[i]);
float kes = dot(ke[i], ks);
kgg[i] = dot(kg[i], kg[i]);
kgs[i] = dot(kg[i], ks);
kss[i] = dot(ks, ks);
float aa = kee * kss[i] - kes * kes;
float bb = 2 * (keg * kes - kee * kgs[i]);
float cc = kee * (kgg[i] - r * r) - keg * keg;
float sign = (bb >= 0.0f) ? 1.0f : -1.0f;
float q = -0.5f * (bb + sign * std::sqrt(bb * bb - 4 * aa * cc));
float t0 = q / aa;
float t1 = cc / q;
float t;
if (t0 < 0.0f || t0 > 1.0f)
t = t1;
else if (t1 < 0.0f || t1 > 1.0f)
t = t0;
else
t = std::min(t0, t1);
if (t >= 0.0f && t <= 1.0f)
{
vec3 ct = c + ks * t;
float d = dot(ct - p[i], ke[i]);
if (d >= 0.0f && d <= kee)
return t;
}
}
// Step 3: Point intersect test
for (int i = 0; i < 3; i++)
{
float aa = kss[i];
float bb = -2.0f * kgs[i];
float cc = kgg[i] - r * r;
float sign = (bb >= 0.0f) ? 1.0f : -1.0f;
float q = -0.5f * (bb + sign * std::sqrt(bb * bb - 4 * aa * cc));
float t0 = q / aa;
float t1 = cc / q;
float t;
if (t0 < 0.0f || t0 > 1.0f)
t = t1;
else if (t1 < 0.0f || t1 > 1.0f)
t = t0;
else
t = std::min(t0, t1);
if (t >= 0.0f && t <= 1.0f)
return t;
}
return 1.0f;
}
bool TriangleMeshShape::overlap_bv(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b)
{
return IntersectionTest::aabb(shape1->nodes[a].aabb, shape2->nodes[b].aabb) == IntersectionTest::overlap;
}
bool TriangleMeshShape::overlap_bv_triangle(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b)
{
return false;
}
bool TriangleMeshShape::overlap_bv_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int a)
{
return IntersectionTest::sphere_aabb(shape2->center, shape2->radius, shape1->nodes[a].aabb) == IntersectionTest::overlap;
}
bool TriangleMeshShape::overlap_triangle_triangle(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b)
{
return false;
}
bool TriangleMeshShape::overlap_triangle_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int shape1_node_index)
{
// http://realtimecollisiondetection.net/blog/?p=103
int element_index = shape1->nodes[shape1_node_index].element_index;
vec3 P = shape2->center;
vec3 A = shape1->vertices[shape1->elements[element_index]] - P;
vec3 B = shape1->vertices[shape1->elements[element_index + 1]] - P;
vec3 C = shape1->vertices[shape1->elements[element_index + 2]] - P;
float r = shape2->radius;
float rr = r * r;
// Testing if sphere lies outside the triangle plane
vec3 V = cross(B - A, C - A);
float d = dot(A, V);
float e = dot(V, V);
bool sep1 = d * d > rr * e;
// Testing if sphere lies outside a triangle vertex
float aa = dot(A, A);
float ab = dot(A, B);
float ac = dot(A, C);
float bb = dot(B, B);
float bc = dot(B, C);
float cc = dot(C, C);
bool sep2 = (aa > rr) && (ab > aa) && (ac > aa);
bool sep3 = (bb > rr) && (ab > bb) && (bc > bb);
bool sep4 = (cc > rr) && (ac > cc) && (bc > cc);
// Testing if sphere lies outside a triangle edge
vec3 AB = B - A;
vec3 BC = C - B;
vec3 CA = A - C;
float d1 = ab - aa;
float d2 = bc - bb;
float d3 = ac - cc;
float e1 = dot(AB, AB);
float e2 = dot(BC, BC);
float e3 = dot(CA, CA);
vec3 Q1 = A * e1 - AB * d1;
vec3 Q2 = B * e2 - BC * d2;
vec3 Q3 = C * e3 - CA * d3;
vec3 QC = C * e1 - Q1;
vec3 QA = A * e2 - Q2;
vec3 QB = B * e3 - Q3;
bool sep5 = (dot(Q1, Q1) > rr * e1 * e1) && (dot(Q1, QC) > 0.0f);
bool sep6 = (dot(Q2, Q2) > rr * e2 * e2) && (dot(Q2, QA) > 0.0f);
bool sep7 = (dot(Q3, Q3) > rr * e3 * e3) && (dot(Q3, QB) > 0.0f);
bool separated = sep1 || sep2 || sep3 || sep4 || sep5 || sep6 || sep7;
return (!separated);
}
bool TriangleMeshShape::is_leaf(int node_index)
{
return nodes[node_index].element_index != -1;
}
float TriangleMeshShape::volume(int node_index)
{
const vec3 &extents = nodes[node_index].aabb.Extents;
return extents.x * extents.y * extents.z;
}
int TriangleMeshShape::get_min_depth() const
{
std::function<int(int, int)> visit;
visit = [&](int level, int node_index) -> int {
const Node &node = nodes[node_index];
if (node.element_index == -1)
return std::min(visit(level + 1, node.left), visit(level + 1, node.right));
else
return level;
};
return visit(1, root);
}
int TriangleMeshShape::get_max_depth() const
{
std::function<int(int, int)> visit;
visit = [&](int level, int node_index) -> int {
const Node &node = nodes[node_index];
if (node.element_index == -1)
return std::max(visit(level + 1, node.left), visit(level + 1, node.right));
else
return level;
};
return visit(1, root);
}
float TriangleMeshShape::get_average_depth() const
{
std::function<float(int, int)> visit;
visit = [&](int level, int node_index) -> float {
const Node &node = nodes[node_index];
if (node.element_index == -1)
return visit(level + 1, node.left) + visit(level + 1, node.right);
else
return (float)level;
};
float depth_sum = visit(1, root);
int leaf_count = (num_elements / 3);
return depth_sum / leaf_count;
}
float TriangleMeshShape::get_balanced_depth() const
{
return std::log2((float)(num_elements / 3));
}
int TriangleMeshShape::subdivide(int *triangles, int num_triangles, const vec3 *centroids, int *work_buffer)
{
if (num_triangles == 0)
return -1;
// Find bounding box and median of the triangle centroids
vec3 median;
vec3 min, max;
min = vertices[elements[triangles[0] * 3]];
max = min;
for (int i = 0; i < num_triangles; i++)
{
int element_index = triangles[i] * 3;
for (int j = 0; j < 3; j++)
{
const vec3 &vertex = vertices[elements[element_index + j]];
min.x = std::min(min.x, vertex.x);
min.y = std::min(min.y, vertex.y);
min.z = std::min(min.z, vertex.z);
max.x = std::max(max.x, vertex.x);
max.y = std::max(max.y, vertex.y);
max.z = std::max(max.z, vertex.z);
}
median += centroids[triangles[i]];
}
median /= (float)num_triangles;
if (num_triangles == 1) // Leaf node
{
nodes.push_back(Node(min, max, triangles[0] * 3));
return (int)nodes.size() - 1;
}
// Find the longest axis
float axis_lengths[3] =
{
max.x - min.x,
max.y - min.y,
max.z - min.z
};
int axis_order[3] = { 0, 1, 2 };
std::sort(axis_order, axis_order + 3, [&](int a, int b) { return axis_lengths[a] > axis_lengths[b]; });
// Try split at longest axis, then if that fails the next longest, and then the remaining one
int left_count, right_count;
vec3 axis;
for (int attempt = 0; attempt < 3; attempt++)
{
// Find the split plane for axis
switch (axis_order[attempt])
{
default:
case 0: axis = vec3(1.0f, 0.0f, 0.0f); break;
case 1: axis = vec3(0.0f, 1.0f, 0.0f); break;
case 2: axis = vec3(0.0f, 0.0f, 1.0f); break;
}
vec4 plane(axis, -dot(median, axis));
// Split triangles into two
left_count = 0;
right_count = 0;
for (int i = 0; i < num_triangles; i++)
{
int triangle = triangles[i];
int element_index = triangle * 3;
float side = dot(vec4(centroids[triangles[i]], 1.0f), plane);
if (side >= 0.0f)
{
work_buffer[left_count] = triangle;
left_count++;
}
else
{
work_buffer[num_triangles + right_count] = triangle;
right_count++;
}
}
if (left_count != 0 && right_count != 0)
break;
}
// Check if something went wrong when splitting and do a random split instead
if (left_count == 0 || right_count == 0)
{
left_count = num_triangles / 2;
right_count = num_triangles - left_count;
}
else
{
// Move result back into triangles list:
for (int i = 0; i < left_count; i++)
triangles[i] = work_buffer[i];
for (int i = 0; i < right_count; i++)
triangles[i + left_count] = work_buffer[num_triangles + i];
}
// Create child nodes:
int left_index = -1;
int right_index = -1;
if (left_count > 0)
left_index = subdivide(triangles, left_count, centroids, work_buffer);
if (right_count > 0)
right_index = subdivide(triangles + left_count, right_count, centroids, work_buffer);
nodes.push_back(Node(min, max, left_index, right_index));
return (int)nodes.size() - 1;
}
/////////////////////////////////////////////////////////////////////////////
IntersectionTest::Result IntersectionTest::plane_aabb(const vec4 &plane, const BBox &aabb)
{
vec3 center = aabb.Center();
vec3 extents = aabb.Extents();
float e = extents.x * std::abs(plane.x) + extents.y * std::abs(plane.y) + extents.z * std::abs(plane.z);
float s = center.x * plane.x + center.y * plane.y + center.z * plane.z + plane.w;
if (s - e > 0)
return inside;
else if (s + e < 0)
return outside;
else
return intersecting;
}
IntersectionTest::Result IntersectionTest::plane_obb(const vec4 &plane, const OrientedBBox &obb)
{
vec3 n = plane.xyz();
float d = plane.w;
float e = obb.Extents.x * std::abs(dot(obb.axis_x, n)) + obb.Extents.y * std::abs(dot(obb.axis_y, n)) + obb.Extents.z * std::abs(dot(obb.axis_z, n));
float s = dot(obb.Center, n) + d;
if (s - e > 0)
return inside;
else if (s + e < 0)
return outside;
else
return intersecting;
}
IntersectionTest::OverlapResult IntersectionTest::sphere(const vec3 &center1, float radius1, const vec3 &center2, float radius2)
{
vec3 h = center1 - center2;
float square_distance = dot(h, h);
float radius_sum = radius1 + radius2;
if (square_distance > radius_sum * radius_sum)
return disjoint;
else
return overlap;
}
IntersectionTest::OverlapResult IntersectionTest::sphere_aabb(const vec3 &center, float radius, const BBox &aabb)
{
vec3 a = aabb.min - center;
vec3 b = center - aabb.max;
a.x = std::max(a.x, 0.0f);
a.y = std::max(a.y, 0.0f);
a.z = std::max(a.z, 0.0f);
b.x = std::max(b.x, 0.0f);
b.y = std::max(b.y, 0.0f);
b.z = std::max(b.z, 0.0f);
vec3 e = a + b;
float d = dot(e, e);
if (d > radius * radius)
return disjoint;
else
return overlap;
}
IntersectionTest::OverlapResult IntersectionTest::aabb(const BBox &a, const BBox &b)
{
if (a.min.x > b.max.x || b.min.x > a.max.x ||
a.min.y > b.max.y || b.min.y > a.max.y ||
a.min.z > b.max.z || b.min.z > a.max.z)
{
return disjoint;
}
else
{
return overlap;
}
}
IntersectionTest::Result IntersectionTest::frustum_aabb(const FrustumPlanes &frustum, const BBox &box)
{
bool is_intersecting = false;
for (int i = 0; i < 6; i++)
{
Result result = plane_aabb(frustum.planes[i], box);
if (result == outside)
return outside;
else if (result == intersecting)
is_intersecting = true;
break;
}
if (is_intersecting)
return intersecting;
else
return inside;
}
IntersectionTest::Result IntersectionTest::frustum_obb(const FrustumPlanes &frustum, const OrientedBBox &box)
{
bool is_intersecting = false;
for (int i = 0; i < 6; i++)
{
Result result = plane_obb(frustum.planes[i], box);
if (result == outside)
return outside;
else if (result == intersecting)
is_intersecting = true;
}
if (is_intersecting)
return intersecting;
else
return inside;
}
static const uint32_t clearsignbitmask[] = { 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff };
IntersectionTest::OverlapResult IntersectionTest::ray_aabb(const RayBBox &ray, const CollisionBBox &aabb)
{
#ifndef NO_SSE
__m128 v = _mm_loadu_ps(&ray.v.x);
__m128 w = _mm_loadu_ps(&ray.w.x);
__m128 h = _mm_loadu_ps(&aabb.Extents.x);
__m128 c = _mm_sub_ps(_mm_loadu_ps(&ray.c.x), _mm_loadu_ps(&aabb.Center.x));
__m128 clearsignbit = _mm_loadu_ps(reinterpret_cast<const float*>(clearsignbitmask));
__m128 abs_c = _mm_and_ps(c, clearsignbit);
int mask = _mm_movemask_ps(_mm_cmpgt_ps(abs_c, _mm_add_ps(v, h)));
if (mask & 7)
return disjoint;
__m128 c1 = _mm_shuffle_ps(c, c, _MM_SHUFFLE(3, 0, 0, 1)); // c.y, c.x, c.x
__m128 c2 = _mm_shuffle_ps(c, c, _MM_SHUFFLE(3, 1, 2, 2)); // c.z, c.z, c.y
__m128 w1 = _mm_shuffle_ps(w, w, _MM_SHUFFLE(3, 1, 2, 2)); // w.z, w.z, w.y
__m128 w2 = _mm_shuffle_ps(w, w, _MM_SHUFFLE(3, 0, 0, 1)); // w.y, w.x, w.x
__m128 lhs = _mm_and_ps(_mm_sub_ps(_mm_mul_ps(c1, w1), _mm_mul_ps(c2, w2)), clearsignbit);
__m128 h1 = _mm_shuffle_ps(h, h, _MM_SHUFFLE(3, 0, 0, 1)); // h.y, h.x, h.x
__m128 h2 = _mm_shuffle_ps(h, h, _MM_SHUFFLE(3, 1, 2, 2)); // h.z, h.z, h.y
__m128 v1 = _mm_shuffle_ps(v, v, _MM_SHUFFLE(3, 1, 2, 2)); // v.z, v.z, v.y
__m128 v2 = _mm_shuffle_ps(v, v, _MM_SHUFFLE(3, 0, 0, 1)); // v.y, v.x, v.x
__m128 rhs = _mm_add_ps(_mm_mul_ps(h1, v1), _mm_mul_ps(h2, v2));
mask = _mm_movemask_ps(_mm_cmpgt_ps(lhs, rhs));
return (mask & 7) ? disjoint : overlap;
#else
const vec3 &v = ray.v;
const vec3 &w = ray.w;
const vec3 &h = aabb.Extents;
auto c = ray.c - aabb.Center;
if (std::abs(c.x) > v.x + h.x || std::abs(c.y) > v.y + h.y || std::abs(c.z) > v.z + h.z)
return disjoint;
if (std::abs(c.y * w.z - c.z * w.y) > h.y * v.z + h.z * v.y ||
std::abs(c.x * w.z - c.z * w.x) > h.x * v.z + h.z * v.x ||
std::abs(c.x * w.y - c.y * w.x) > h.x * v.y + h.y * v.x)
return disjoint;
return overlap;
#endif
}
/////////////////////////////////////////////////////////////////////////////
FrustumPlanes::FrustumPlanes()
{
}
FrustumPlanes::FrustumPlanes(const mat4 &world_to_projection)
{
planes[0] = near_frustum_plane(world_to_projection);
planes[1] = far_frustum_plane(world_to_projection);
planes[2] = left_frustum_plane(world_to_projection);
planes[3] = right_frustum_plane(world_to_projection);
planes[4] = top_frustum_plane(world_to_projection);
planes[5] = bottom_frustum_plane(world_to_projection);
}
vec4 FrustumPlanes::left_frustum_plane(const mat4 &matrix)
{
vec4 plane(
matrix[3 + 0 * 4] + matrix[0 + 0 * 4],
matrix[3 + 1 * 4] + matrix[0 + 1 * 4],
matrix[3 + 2 * 4] + matrix[0 + 2 * 4],
matrix[3 + 3 * 4] + matrix[0 + 3 * 4]);
plane /= length(plane.xyz());
return plane;
}
vec4 FrustumPlanes::right_frustum_plane(const mat4 &matrix)
{
vec4 plane(
matrix[3 + 0 * 4] - matrix[0 + 0 * 4],
matrix[3 + 1 * 4] - matrix[0 + 1 * 4],
matrix[3 + 2 * 4] - matrix[0 + 2 * 4],
matrix[3 + 3 * 4] - matrix[0 + 3 * 4]);
plane /= length(plane.xyz());
return plane;
}
vec4 FrustumPlanes::top_frustum_plane(const mat4 &matrix)
{
vec4 plane(
matrix[3 + 0 * 4] - matrix[1 + 0 * 4],
matrix[3 + 1 * 4] - matrix[1 + 1 * 4],
matrix[3 + 2 * 4] - matrix[1 + 2 * 4],
matrix[3 + 3 * 4] - matrix[1 + 3 * 4]);
plane /= length(plane.xyz());
return plane;
}
vec4 FrustumPlanes::bottom_frustum_plane(const mat4 &matrix)
{
vec4 plane(
matrix[3 + 0 * 4] + matrix[1 + 0 * 4],
matrix[3 + 1 * 4] + matrix[1 + 1 * 4],
matrix[3 + 2 * 4] + matrix[1 + 2 * 4],
matrix[3 + 3 * 4] + matrix[1 + 3 * 4]);
plane /= length(plane.xyz());
return plane;
}
vec4 FrustumPlanes::near_frustum_plane(const mat4 &matrix)
{
vec4 plane(
matrix[3 + 0 * 4] + matrix[2 + 0 * 4],
matrix[3 + 1 * 4] + matrix[2 + 1 * 4],
matrix[3 + 2 * 4] + matrix[2 + 2 * 4],
matrix[3 + 3 * 4] + matrix[2 + 3 * 4]);
plane /= length(plane.xyz());
return plane;
}
vec4 FrustumPlanes::far_frustum_plane(const mat4 &matrix)
{
vec4 plane(
matrix[3 + 0 * 4] - matrix[2 + 0 * 4],
matrix[3 + 1 * 4] - matrix[2 + 1 * 4],
matrix[3 + 2 * 4] - matrix[2 + 2 * 4],
matrix[3 + 3 * 4] - matrix[2 + 3 * 4]);
plane /= length(plane.xyz());
return plane;
}