Upgrade lightmapper to latest internal version

This commit is contained in:
Magnus Norddahl 2024-02-28 22:32:43 +01:00
parent a9da46d00d
commit a6d3958ad2
27 changed files with 1966 additions and 2288 deletions

View file

@ -69,8 +69,6 @@ set(ZDRAY_SOURCES
src/lightmapper/vk_lightmapper.h
src/lightmapper/doom_levelmesh.cpp
src/lightmapper/doom_levelmesh.h
src/lightmapper/doom_levelsubmesh.cpp
src/lightmapper/doom_levelsubmesh.h
src/lightmapper/gpuraytracer.cpp
src/lightmapper/gpuraytracer.h
src/lightmapper/stacktrace.cpp
@ -82,8 +80,10 @@ set(ZDRAY_SOURCES
src/lightmapper/glsl/frag_copy.glsl.h
src/lightmapper/glsl/frag_raytrace.glsl.h
src/lightmapper/glsl/frag_resolve.glsl.h
src/lightmapper/glsl/montecarlo.glsl.h
src/lightmapper/glsl/polyfill_rayquery.glsl.h
src/lightmapper/glsl/trace_ambient_occlusion.glsl.h
src/lightmapper/glsl/trace_bounce.glsl.h
src/lightmapper/glsl/trace_levelmesh.glsl.h
src/lightmapper/glsl/trace_light.glsl.h
src/lightmapper/glsl/trace_sunlight.glsl.h

View file

@ -414,6 +414,14 @@ struct ThingLight
IntSector *sector;
MapSubsectorEx *ssect;
// Locations in the level mesh light list. Ends with index = 0 or all entries used
enum { max_levelmesh_entries = 4 };
struct
{
int index = 0;
int portalgroup = 0;
} levelmesh[max_levelmesh_entries];
// Portal related functionality
std::optional<FVector3> relativePosition;
int sectorGroup = 0;

View file

@ -841,8 +841,11 @@ void FProcessor::BuildLightmaps()
printf(" Creating level mesh\n");
LightmapMesh = std::make_unique<DoomLevelMesh>(Level);
printf(" Surfaces: %d\n", LightmapMesh->StaticMesh->GetSurfaceCount());
printf(" Tiles: %d\n", (int)LightmapMesh->StaticMesh->LightmapTiles.Size());
LightmapMesh->SetupTileTransforms();
LightmapMesh->PackLightmapAtlas(0);
LightmapMesh->BeginFrame(Level);
printf(" Surfaces: %d\n", LightmapMesh->GetSurfaceCount());
printf(" Tiles: %d\n", (int)LightmapMesh->LightmapTiles.Size());
std::unique_ptr<GPURaytracer> gpuraytracer = std::make_unique<GPURaytracer>();
gpuraytracer->Raytrace(LightmapMesh.get());

File diff suppressed because it is too large Load diff

View file

@ -2,61 +2,20 @@
#include "framework/zstring.h"
#include "hw_levelmesh.h"
#include "hw_lightmaptile.h"
#include "level/doomdata.h"
#include <map>
struct FLevel;
class FWadWriter;
class DoomLevelMesh : public LevelMesh
{
public:
DoomLevelMesh(FLevel& doomMap);
int AddSurfaceLights(const LevelMeshSurface* surface, LevelMeshLight* list, int listMaxSize) override;
void BeginFrame(FLevel& doomMap);
bool TraceSky(const FVector3& start, FVector3 direction, float dist);
void DumpMesh(const FString& objFilename, const FString& mtlFilename) const;
void AddLightmapLump(FLevel& doomMap, FWadWriter& out);
void BuildSectorGroups(const FLevel& doomMap);
TArray<int> sectorGroup; // index is sector, value is sectorGroup
TArray<int> sectorPortals[2]; // index is sector+plane, value is index into the portal list
TArray<int> linePortals; // index is linedef, value is index into the portal list
private:
void CreatePortals(FLevel& doomMap);
void BuildLightLists(FLevel& doomMap);
void PropagateLight(FLevel& doomMap, ThingLight* light, int recursiveDepth = 0);
};
#if 0
class DoomLevelMesh : public LevelMesh
{
public:
DoomLevelMesh(FLevel& level, int samples, int lmdims);
int AddSurfaceLights(const LevelMeshSurface* surface, LevelMeshLight* list, int listMaxSize) override;
void DumpMesh(const FString& objFilename, const FString& mtlFilename) const;
void AddLightmapLump(FLevel& doomMap, FWadWriter& out);
private:
void BuildLightLists(FLevel& doomMap);
void PropagateLight(FLevel& doomMap, ThingLight* light, int recursiveDepth = 0);
// Portal to portals[] index
//std::map<Portal, int, IdenticalPortalComparator> portalCache;
// Portal lights
//std::vector<std::unique_ptr<ThingLight>> portalLights;
//std::set<Portal, RecursivePortalComparator> touchedPortals;
};
struct FPolyObj;
struct HWWallDispatcher;
class DoomLevelMesh;
class MeshBuilder;
enum DoomLevelMeshSurfaceType
{
ST_UNKNOWN,
ST_NONE,
ST_MIDDLESIDE,
ST_UPPERSIDE,
ST_LOWERSIDE,
@ -66,62 +25,99 @@ enum DoomLevelMeshSurfaceType
struct DoomLevelMeshSurface : public LevelMeshSurface
{
DoomLevelMeshSurfaceType Type = ST_UNKNOWN;
DoomLevelMeshSurfaceType Type = ST_NONE;
int TypeIndex = 0;
MapSubsectorEx* Subsector = nullptr;
IntSideDef* Side = nullptr;
IntSector* ControlSector = nullptr;
float* TexCoords = nullptr;
std::vector<ThingLight*> LightList;
int PipelineID = 0;
};
class DoomLevelSubmesh : public LevelSubmesh
struct SideSurfaceRange
{
int StartSurface = 0;
int SurfaceCount = 0;
};
struct FlatSurfaceRange
{
int StartSurface = 0;
int SurfaceCount = 0;
};
class DoomLevelMesh : public LevelMesh
{
public:
void CreateStatic(FLevel& doomMap);
DoomLevelMesh(FLevel& doomMap);
LevelMeshSurface* GetSurface(int index) override { return &Surfaces[index]; }
unsigned int GetSurfaceIndex(const LevelMeshSurface* surface) const override { return (unsigned int)(ptrdiff_t)(static_cast<const DoomLevelMeshSurface*>(surface) - Surfaces.Data()); }
int GetSurfaceCount() override { return Surfaces.Size(); }
void BeginFrame(FLevel& doomMap);
bool TraceSky(const FVector3& start, FVector3 direction, float dist);
void DumpMesh(const FString& objFilename, const FString& mtlFilename) const;
// Used by Maploader
void BindLightmapSurfacesToGeometry(FLevel& doomMap);
void PackLightmapAtlas(int lightmapStartIndex);
void CreatePortals(FLevel& doomMap);
TArray<DoomLevelMeshSurface> Surfaces;
TArray<FVector2> LightmapUvs;
TArray<int> sectorGroup; // index is sector, value is sectorGroup
private:
void BuildSectorGroups(const FLevel& doomMap);
void CreateSubsectorSurfaces(FLevel& doomMap);
void CreateCeilingSurface(FLevel& doomMap, MapSubsectorEx* sub, IntSector* sector, IntSector* controlSector, int typeIndex);
void CreateFloorSurface(FLevel& doomMap, MapSubsectorEx* sub, IntSector* sector, IntSector* controlSector, int typeIndex);
void AddLightmapLump(FLevel& doomMap, FWadWriter& wadFile);
TArray<DoomLevelMeshSurface> Surfaces;
TArray<int> sectorGroup; // index is sector, value is sectorGroup
TArray<int> sectorPortals[2]; // index is sector+plane, value is index into the portal list
TArray<int> linePortals; // index is linedef, value is index into the portal list
void CreateLights(FLevel& doomMap);
private:
void CreateSurfaces(FLevel& doomMap);
void CreateSideSurfaces(FLevel& doomMap, IntSideDef* side);
void CreateLinePortalSurface(FLevel& doomMap, IntSideDef* side);
void CreateLineHorizonSurface(FLevel& doomMap, IntSideDef* side);
void CreateFrontWallSurface(FLevel& doomMap, IntSideDef* side);
void CreateTopWallSurface(FLevel& doomMap, IntSideDef* side);
void CreateMidWallSurface(FLevel& doomMap, IntSideDef* side);
void CreateBottomWallSurface(FLevel& doomMap, IntSideDef* side);
void Create3DFloorWallSurfaces(FLevel& doomMap, IntSideDef* side);
void CreateTopWallSurface(FLevel& doomMap, IntSideDef* side);
void CreateBottomWallSurface(FLevel& doomMap, IntSideDef* side);
void AddWallVertices(DoomLevelMeshSurface& surf, FFlatVertex* verts);
void SetSideTextureUVs(DoomLevelMeshSurface& surface, IntSideDef* side, WallPart texpart, float v1TopZ, float v1BottomZ, float v2TopZ, float v2BottomZ);
void SetupLightmapUvs(FLevel& doomMap);
void CreateFloorSurface(FLevel& doomMap, MapSubsectorEx* sub, IntSector* sector, IntSector* controlSector, int typeIndex);
void CreateCeilingSurface(FLevel& doomMap, MapSubsectorEx* sub, IntSector* sector, IntSector* controlSector, int typeIndex);
void CreateIndexes();
void AddSurfaceToTile(DoomLevelMeshSurface& surf, FLevel& doomMap, uint16_t sampleDimension);
int GetSampleDimension(const DoomLevelMeshSurface& surf, uint16_t sampleDimension);
static bool IsTopSideSky(IntSector* frontsector, IntSector* backsector, IntSideDef* side);
static bool IsTopSideVisible(IntSideDef* side);
static bool IsBottomSideVisible(IntSideDef* side);
static bool IsSkySector(IntSector* sector, SecPlaneType plane);
static bool IsDegenerate(const FVector3& v0, const FVector3& v1, const FVector3& v2);
void SortIndexes();
BBox GetBoundsFromSurface(const LevelMeshSurface& surface) const;
int AddSurfaceToTile(const DoomLevelMeshSurface& surf);
int GetSampleDimension(const DoomLevelMeshSurface& surf);
void CreatePortals(FLevel& doomMap);
void PropagateLight(FLevel& doomMap, ThingLight* light, int recursiveDepth);
int GetLightIndex(ThingLight* light, int portalgroup);
static FVector4 ToPlane(const FFlatVertex& pt1, const FFlatVertex& pt2, const FFlatVertex& pt3)
{
return ToPlane(FVector3(pt1.x, pt1.y, pt1.z), FVector3(pt2.x, pt2.y, pt2.z), FVector3(pt3.x, pt3.y, pt3.z));
}
static FVector4 ToPlane(const FFlatVertex& pt1, const FFlatVertex& pt2, const FFlatVertex& pt3, const FFlatVertex& pt4)
{
return ToPlane(FVector3(pt1.x, pt1.y, pt1.z), FVector3(pt2.x, pt2.y, pt2.z), FVector3(pt3.x, pt3.y, pt3.z), FVector3(pt4.x, pt4.y, pt4.z));
}
static FVector4 ToPlane(const FVector3& pt1, const FVector3& pt2, const FVector3& pt3)
{
@ -144,27 +140,7 @@ private:
return ToPlane(pt1, pt2, pt3);
}
// Lightmapper
enum PlaneAxis
{
AXIS_YZ = 0,
AXIS_XZ,
AXIS_XY
};
static PlaneAxis BestAxis(const FVector4& p);
BBox GetBoundsFromSurface(const LevelMeshSurface& surface) const;
inline int AllocUvs(int amount) { return LightmapUvs.Reserve(amount); }
void BuildSurfaceParams(int lightMapTextureWidth, int lightMapTextureHeight, LevelMeshSurface& surface);
static bool IsDegenerate(const FVector3& v0, const FVector3& v1, const FVector3& v2);
static FVector2 ToFVector2(const DVector2& v) { return FVector2((float)v.X, (float)v.Y); }
static FVector3 ToFVector3(const DVector3& v) { return FVector3((float)v.X, (float)v.Y, (float)v.Z); }
static FVector4 ToFVector4(const DVector4& v) { return FVector4((float)v.X, (float)v.Y, (float)v.Z, (float)v.W); }
TArray<SideSurfaceRange> Sides;
TArray<FlatSurfaceRange> Flats;
std::map<LightmapTileBinding, int> bindings;
};
#endif

File diff suppressed because it is too large Load diff

View file

@ -1,136 +0,0 @@
#pragma once
#include "hw_levelmesh.h"
#include "framework/tarray.h"
#include "framework/vectors.h"
#include "framework/bounds.h"
#include "level/level.h"
#include <dp_rect_pack/dp_rect_pack.h>
#include <set>
#include <map>
typedef dp::rect_pack::RectPacker<int> RectPacker;
struct FLevel;
struct FPolyObj;
struct HWWallDispatcher;
class DoomLevelMesh;
class MeshBuilder;
enum DoomLevelMeshSurfaceType
{
ST_NONE,
ST_MIDDLESIDE,
ST_UPPERSIDE,
ST_LOWERSIDE,
ST_CEILING,
ST_FLOOR
};
struct DoomLevelMeshSurface : public LevelMeshSurface
{
DoomLevelMeshSurfaceType Type = ST_NONE;
int TypeIndex = 0;
MapSubsectorEx* Subsector = nullptr;
IntSideDef* Side = nullptr;
IntSector* ControlSector = nullptr;
int PipelineID = 0;
std::vector<ThingLight*> LightList;
};
class DoomLevelSubmesh : public LevelSubmesh
{
public:
DoomLevelSubmesh(DoomLevelMesh* mesh, FLevel& doomMap, bool staticMesh);
void Update(FLevel& doomMap, int lightmapStartIndex);
LevelMeshSurface* GetSurface(int index) override { return &Surfaces[index]; }
unsigned int GetSurfaceIndex(const LevelMeshSurface* surface) const override { return (unsigned int)(ptrdiff_t)(static_cast<const DoomLevelMeshSurface*>(surface) - Surfaces.Data()); }
int GetSurfaceCount() override { return Surfaces.Size(); }
TArray<DoomLevelMeshSurface> Surfaces;
private:
void Reset();
void CreateStaticSurfaces(FLevel& doomMap);
void CreateDynamicSurfaces(FLevel& doomMap);
void CreateSideSurfaces(std::map<LightmapTileBinding, int>& bindings, FLevel& doomMap, IntSideDef* side);
void CreateLineHorizonSurface(std::map<LightmapTileBinding, int>& bindings, FLevel& doomMap, IntSideDef* side);
void CreateFrontWallSurface(std::map<LightmapTileBinding, int>& bindings, FLevel& doomMap, IntSideDef* side);
void CreateMidWallSurface(std::map<LightmapTileBinding, int>& bindings, FLevel& doomMap, IntSideDef* side);
void Create3DFloorWallSurfaces(std::map<LightmapTileBinding, int>& bindings, FLevel& doomMap, IntSideDef* side);
void CreateTopWallSurface(std::map<LightmapTileBinding, int>& bindings, FLevel& doomMap, IntSideDef* side);
void CreateBottomWallSurface(std::map<LightmapTileBinding, int>& bindings, FLevel& doomMap, IntSideDef* side);
void SetSideTextureUVs(DoomLevelMeshSurface& surface, IntSideDef* side, WallPart texpart, float v1TopZ, float v1BottomZ, float v2TopZ, float v2BottomZ);
void CreateFloorSurface(std::map<LightmapTileBinding, int>& bindings, FLevel& doomMap, MapSubsectorEx* sub, IntSector* sector, IntSector* controlSector, int typeIndex);
void CreateCeilingSurface(std::map<LightmapTileBinding, int>& bindings, FLevel& doomMap, MapSubsectorEx* sub, IntSector* sector, IntSector* controlSector, int typeIndex);
void AddWallVertices(DoomLevelMeshSurface& surf, FFlatVertex* verts);
static bool IsTopSideSky(IntSector* frontsector, IntSector* backsector, IntSideDef* side);
static bool IsTopSideVisible(IntSideDef* side);
static bool IsBottomSideVisible(IntSideDef* side);
static bool IsSkySector(IntSector* sector, SecPlaneType plane);
static bool IsDegenerate(const FVector3& v0, const FVector3& v1, const FVector3& v2);
static FVector4 ToPlane(const FFlatVertex& pt1, const FFlatVertex& pt2, const FFlatVertex& pt3)
{
return ToPlane(FVector3(pt1.x, pt1.y, pt1.z), FVector3(pt2.x, pt2.y, pt2.z), FVector3(pt3.x, pt3.y, pt3.z));
}
static FVector4 ToPlane(const FFlatVertex& pt1, const FFlatVertex& pt2, const FFlatVertex& pt3, const FFlatVertex& pt4)
{
return ToPlane(FVector3(pt1.x, pt1.y, pt1.z), FVector3(pt2.x, pt2.y, pt2.z), FVector3(pt3.x, pt3.y, pt3.z), FVector3(pt4.x, pt4.y, pt4.z));
}
static FVector4 ToPlane(const FVector3& pt1, const FVector3& pt2, const FVector3& pt3)
{
FVector3 n = ((pt2 - pt1) ^ (pt3 - pt2)).Unit();
float d = pt1 | n;
return FVector4(n.X, n.Y, n.Z, d);
}
static FVector4 ToPlane(const FVector3& pt1, const FVector3& pt2, const FVector3& pt3, const FVector3& pt4)
{
if (pt1.ApproximatelyEquals(pt3))
{
return ToPlane(pt1, pt2, pt4);
}
else if (pt1.ApproximatelyEquals(pt2) || pt2.ApproximatelyEquals(pt3))
{
return ToPlane(pt1, pt3, pt4);
}
return ToPlane(pt1, pt2, pt3);
}
void SortIndexes();
void PackLightmapAtlas(FLevel& doomMap, int lightmapStartIndex);
enum PlaneAxis
{
AXIS_YZ = 0,
AXIS_XZ,
AXIS_XY
};
static PlaneAxis BestAxis(const FVector4& p);
BBox GetBoundsFromSurface(const LevelMeshSurface& surface) const;
void SetupTileTransform(int lightMapTextureWidth, int lightMapTextureHeight, LightmapTile& tile);
void AddSurfaceToTile(DoomLevelMeshSurface& surf, std::map<LightmapTileBinding, int>& bindings, FLevel& doomMap, uint16_t sampleDimension);
int GetSampleDimension(const DoomLevelMeshSurface& surf, uint16_t sampleDimension);
DoomLevelMesh* LevelMesh = nullptr;
bool StaticMesh = true;
};
static_assert(alignof(FVector2) == alignof(float[2]) && sizeof(FVector2) == sizeof(float) * 2);

View file

@ -15,7 +15,11 @@ struct SurfaceInfo
uint PortalIndex;
int TextureIndex;
float Alpha;
float Padding;
float Padding0;
uint LightStart;
uint LightEnd;
uint Padding1;
uint Padding2;
};
struct PortalInfo
@ -42,50 +46,27 @@ struct LightInfo
layout(set = 0, binding = 1) buffer SurfaceIndexBuffer { uint surfaceIndices[]; };
layout(set = 0, binding = 2) buffer SurfaceBuffer { SurfaceInfo surfaces[]; };
layout(set = 0, binding = 3) buffer LightBuffer { LightInfo lights[]; };
layout(set = 0, binding = 4) buffer PortalBuffer { PortalInfo portals[]; };
#if defined(USE_DRAWINDIRECT)
layout(set = 0, binding = 4) buffer LightIndexBuffer { int lightIndexes[]; };
layout(set = 0, binding = 5) buffer PortalBuffer { PortalInfo portals[]; };
struct LightmapRaytracePC
{
uint LightStart;
uint LightEnd;
int SurfaceIndex;
int PushPadding1;
int Padding0;
int Padding1;
int Padding2;
vec3 WorldToLocal;
float TextureSize;
vec3 ProjLocalToU;
float PushPadding2;
float Padding3;
vec3 ProjLocalToV;
float PushPadding3;
float Padding4;
float TileX;
float TileY;
float TileWidth;
float TileHeight;
};
layout(std430, set = 0, binding = 5) buffer ConstantsBuffer { LightmapRaytracePC constants[]; };
#else
layout(push_constant) uniform LightmapRaytracePC
{
uint LightStart;
uint LightEnd;
int SurfaceIndex;
int PushPadding1;
vec3 WorldToLocal;
float TextureSize;
vec3 ProjLocalToU;
float PushPadding2;
vec3 ProjLocalToV;
float PushPadding3;
float TileX;
float TileY;
float TileWidth;
float TileHeight;
};
#endif
layout(std430, set = 0, binding = 6) buffer ConstantsBuffer { LightmapRaytracePC constants[]; };
)glsl";

View file

@ -8,38 +8,37 @@ static const char* frag_raytrace_glsl = R"glsl(
#include <shaders/lightmap/trace_sunlight.glsl>
#include <shaders/lightmap/trace_light.glsl>
#include <shaders/lightmap/trace_ambient_occlusion.glsl>
#if defined(USE_DRAWINDIRECT)
layout(location = 1) in flat int InstanceIndex;
#endif
#include <shaders/lightmap/trace_bounce.glsl>
layout(location = 0) centroid in vec3 worldpos;
layout(location = 1) in flat int InstanceIndex;
layout(location = 0) out vec4 fragcolor;
void main()
{
#if defined(USE_DRAWINDIRECT)
uint LightStart = constants[InstanceIndex].LightStart;
uint LightEnd = constants[InstanceIndex].LightEnd;
int SurfaceIndex = constants[InstanceIndex].SurfaceIndex;
#endif
uint LightStart = surfaces[SurfaceIndex].LightStart;
uint LightEnd = surfaces[SurfaceIndex].LightEnd;
vec3 normal = surfaces[SurfaceIndex].Normal;
vec3 origin = worldpos + normal * 0.1;
vec3 origin = worldpos;
#if defined(USE_SUNLIGHT)
vec3 incoming = TraceSunLight(origin, normal, SurfaceIndex);
vec3 incoming = TraceSunLight(origin, normal);
#else
vec3 incoming = vec3(0.0);
#endif
for (uint j = LightStart; j < LightEnd; j++)
{
incoming += TraceLight(origin, normal, lights[j], SurfaceIndex);
incoming += TraceLight(origin, normal, lights[lightIndexes[j]], 0.0);
}
#if defined(USE_BOUNCE)
incoming += TraceBounceLight(origin, normal);
#endif
#if defined(USE_AO)
incoming.rgb *= TraceAmbientOcclusion(origin, normal);
#endif

View file

@ -0,0 +1,33 @@
static const char* montecarlo_glsl = R"glsl(
float RadicalInverse_VdC(uint bits)
{
bits = (bits << 16u) | (bits >> 16u);
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
return float(bits) * 2.3283064365386963e-10f; // / 0x100000000
}
vec2 Hammersley(uint i, uint N)
{
return vec2(float(i) / float(N), RadicalInverse_VdC(i));
}
vec2 getVogelDiskSample(int sampleIndex, int sampleCount, float phi)
{
const float goldenAngle = radians(180.0) * (3.0 - sqrt(5.0));
float sampleIndexF = float(sampleIndex);
float sampleCountF = float(sampleCount);
float r = sqrt((sampleIndexF + 0.5) / sampleCountF); // Assuming index and count are positive
float theta = sampleIndexF * goldenAngle + phi;
float sine = sin(theta);
float cosine = cos(theta);
return vec2(cosine, sine) * r;
}
)glsl";

View file

@ -1,9 +1,18 @@
static const char* polyfill_rayquery_glsl = R"glsl(
struct TraceResult
{
float t;
vec3 primitiveWeights;
int primitiveIndex;
};
#if defined(USE_RAYQUERY)
int TraceFirstHitTriangleNoPortal(vec3 origin, float tmin, vec3 dir, float tmax, out float t, out vec3 primitiveWeights)
TraceResult TraceFirstHit(vec3 origin, float tmin, vec3 dir, float tmax)
{
TraceResult result;
rayQueryEXT rayQuery;
rayQueryInitializeEXT(rayQuery, acc, gl_RayFlagsCullBackFacingTrianglesEXT, 0xFF, origin, tmin, dir, tmax);
@ -17,18 +26,20 @@ int TraceFirstHitTriangleNoPortal(vec3 origin, float tmin, vec3 dir, float tmax,
if (rayQueryGetIntersectionTypeEXT(rayQuery, true) == gl_RayQueryCommittedIntersectionTriangleEXT)
{
t = rayQueryGetIntersectionTEXT(rayQuery, true);
result.t = rayQueryGetIntersectionTEXT(rayQuery, true);
primitiveWeights.xy = rayQueryGetIntersectionBarycentricsEXT(rayQuery, true);
primitiveWeights.z = 1.0 - primitiveWeights.x - primitiveWeights.y;
result.primitiveWeights.xy = rayQueryGetIntersectionBarycentricsEXT(rayQuery, true);
result.primitiveWeights.z = 1.0 - result.primitiveWeights.x - result.primitiveWeights.y;
return rayQueryGetIntersectionPrimitiveIndexEXT(rayQuery, true);
result.primitiveIndex = rayQueryGetIntersectionPrimitiveIndexEXT(rayQuery, true);
}
else
{
t = tmax;
return -1;
result.t = tmax;
result.primitiveIndex = -1;
}
return result;
}
/*
@ -235,8 +246,10 @@ TraceHit find_first_hit(RayBBox ray)
return hit;
}
int TraceFirstHitTriangleNoPortal(vec3 origin, float tmin, vec3 dir, float tmax, out float tparam, out vec3 primitiveWeights)
TraceResult TraceFirstHit(vec3 origin, float tmin, vec3 dir, float tmax)
{
TraceResult result;
// Perform segmented tracing to keep the ray AABB box smaller
vec3 ray_start = origin;
vec3 ray_end = origin + dir * tmax;
@ -252,16 +265,18 @@ int TraceFirstHitTriangleNoPortal(vec3 origin, float tmin, vec3 dir, float tmax,
TraceHit hit = find_first_hit(ray);
if (hit.fraction < 1.0)
{
tparam = hit.fraction = segstart * (1.0 - hit.fraction) + segend * hit.fraction;
primitiveWeights.x = hit.b;
primitiveWeights.y = hit.c;
primitiveWeights.z = 1.0 - hit.b - hit.c;
return hit.triangle;
result.t = mix(segstart, segend, hit.fraction);
result.primitiveWeights.x = hit.b;
result.primitiveWeights.y = hit.c;
result.primitiveWeights.z = 1.0 - hit.b - hit.c;
result.primitiveIndex = hit.triangle;
return result;
}
}
tparam = tracedist;
return -1;
result.t = tracedist;
result.primitiveIndex = -1;
return result;
}
#endif

View file

@ -1,11 +1,12 @@
static const char* trace_ambient_occlusion_glsl = R"glsl(
vec2 Hammersley(uint i, uint N);
float RadicalInverse_VdC(uint bits);
#include <shaders/lightmap/montecarlo.glsl>
float TraceAORay(vec3 origin, float tmin, vec3 dir, float tmax);
float TraceAmbientOcclusion(vec3 origin, vec3 normal)
{
const float minDistance = 0.05;
const float minDistance = 0.01;
const float aoDistance = 100;
const int SampleCount = 128;
@ -20,38 +21,42 @@ float TraceAmbientOcclusion(vec3 origin, vec3 normal)
vec2 Xi = Hammersley(i, SampleCount);
vec3 H = normalize(vec3(Xi.x * 2.0f - 1.0f, Xi.y * 2.0f - 1.0f, 1.5 - length(Xi)));
vec3 L = H.x * tangent + H.y * bitangent + H.z * N;
float hitDistance;
int primitiveID = TraceFirstHitTriangleT(origin, minDistance, L, aoDistance, hitDistance);
if (primitiveID != -1)
{
SurfaceInfo surface = surfaces[surfaceIndices[primitiveID]];
if (surface.Sky == 0.0)
{
ambience += clamp(hitDistance / aoDistance, 0.0, 1.0);
}
}
else
{
ambience += 1.0;
}
ambience += clamp(TraceAORay(origin, minDistance, L, aoDistance) / aoDistance, 0.0, 1.0);
}
return ambience / float(SampleCount);
}
vec2 Hammersley(uint i, uint N)
float TraceAORay(vec3 origin, float tmin, vec3 dir, float tmax)
{
return vec2(float(i) / float(N), RadicalInverse_VdC(i));
}
float tcur = 0.0;
for (int i = 0; i < 3; i++)
{
TraceResult result = TraceFirstHit(origin, tmin, dir, tmax - tcur);
if (result.primitiveIndex == -1)
return tmax;
float RadicalInverse_VdC(uint bits)
{
bits = (bits << 16u) | (bits >> 16u);
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
return float(bits) * 2.3283064365386963e-10f; // / 0x100000000
SurfaceInfo surface = GetSurface(result.primitiveIndex);
// Stop if hit sky portal
if (surface.Sky > 0.0)
return tmax;
// Stop if opaque surface
if (surface.PortalIndex == 0 /*surface.TextureIndex == 0*/)
{
return tcur + result.t;
}
// Move to surface hit point
origin += dir * result.t;
tcur += result.t;
if (tcur >= tmax)
return tmax;
// Move through the portal, if any
TransformRay(surface.PortalIndex, origin, dir);
}
return tmax;
}
)glsl";

View file

@ -0,0 +1,48 @@
static const char* trace_bounce_glsl = R"glsl(
#include <shaders/lightmap/montecarlo.glsl>
vec3 TraceBounceLight(vec3 origin, vec3 normal)
{
const float minDistance = 0.01;
const float maxDistance = 1000.0;
const int SampleCount = 8;
vec3 N = normal;
vec3 up = abs(N.x) < abs(N.y) ? vec3(1.0, 0.0, 0.0) : vec3(0.0, 1.0, 0.0);
vec3 tangent = normalize(cross(up, N));
vec3 bitangent = cross(N, tangent);
vec3 incoming = vec3(0.0);
for (uint i = 0; i < SampleCount; i++)
{
vec2 Xi = Hammersley(i, SampleCount);
vec3 H = normalize(vec3(Xi.x * 2.0f - 1.0f, Xi.y * 2.0f - 1.0f, 1.5 - length(Xi)));
vec3 L = H.x * tangent + H.y * bitangent + H.z * N;
TraceResult result = TraceFirstHit(origin, minDistance, L, maxDistance);
// We hit nothing.
if (result.primitiveIndex == -1)
continue;
SurfaceInfo surface = GetSurface(result.primitiveIndex);
uint LightStart = surface.LightStart;
uint LightEnd = surface.LightEnd;
vec3 surfacepos = origin + L * result.t;
float angleAttenuation = max(dot(normal, L), 0.0);
#if defined(USE_SUNLIGHT)
incoming += TraceSunLight(surfacepos, surface.Normal) * angleAttenuation;
#endif
for (uint j = LightStart; j < LightEnd; j++)
{
incoming += TraceLight(surfacepos, surface.Normal, lights[lightIndexes[j]], result.t) * angleAttenuation;
}
}
return incoming / float(SampleCount);
}
)glsl";

View file

@ -1,127 +1,39 @@
static const char* trace_levelmesh_glsl = R"glsl(
vec4 rayColor;
vec4 alphaBlend(vec4 a, vec4 b);
vec4 BeerLambertSimple(vec4 medium, vec4 ray_color);
vec4 blend(vec4 a, vec4 b);
int TraceFirstHitTriangleT(vec3 origin, float tmin, vec3 dir, float tmax, out float t)
SurfaceInfo GetSurface(int primitiveIndex)
{
int primitiveID = -1;
vec3 primitiveWeights;
for (int i = 0; i < 4; i++)
return surfaces[surfaceIndices[primitiveIndex]];
}
vec2 GetSurfaceUV(int primitiveIndex, vec3 primitiveWeights)
{
int index = primitiveIndex * 3;
return
vertices[elements[index + 1]].uv * primitiveWeights.x +
vertices[elements[index + 2]].uv * primitiveWeights.y +
vertices[elements[index + 0]].uv * primitiveWeights.z;
}
vec4 BlendTexture(SurfaceInfo surface, vec2 uv, vec4 rayColor)
{
if (surface.TextureIndex == 0)
{
primitiveID = TraceFirstHitTriangleNoPortal(origin, tmin, dir, tmax, t, primitiveWeights);
if(primitiveID < 0)
{
break;
}
SurfaceInfo surface = surfaces[surfaceIndices[primitiveID]];
if(surface.PortalIndex == 0)
{
int index = primitiveID * 3;
vec2 uv = vertices[elements[index + 1]].uv * primitiveWeights.x + vertices[elements[index + 2]].uv * primitiveWeights.y + vertices[elements[index + 0]].uv * primitiveWeights.z;
if (surface.TextureIndex == 0)
{
break;
}
vec4 color = texture(textures[surface.TextureIndex], uv);
color.w *= surface.Alpha;
if (color.w > 0.999 || all(lessThan(rayColor.rgb, vec3(0.001))))
{
break;
}
rayColor = blend(color, rayColor);
}
// Portal was hit: Apply transformation onto the ray
mat4 transformationMatrix = portals[surface.PortalIndex].Transformation;
origin = (transformationMatrix * vec4(origin + dir * t, 1.0)).xyz;
dir = (transformationMatrix * vec4(dir, 0.0)).xyz;
tmax -= t;
return rayColor;
}
return primitiveID;
}
int TraceFirstHitTriangle(vec3 origin, float tmin, vec3 dir, float tmax)
{
float t;
return TraceFirstHitTriangleT(origin, tmin, dir, tmax, t);
}
bool TraceAnyHit(vec3 origin, float tmin, vec3 dir, float tmax)
{
return TraceFirstHitTriangle(origin, tmin, dir, tmax) >= 0;
}
bool TracePoint(vec3 origin, vec3 target, float tmin, vec3 dir, float tmax)
{
int primitiveID;
float t;
vec3 primitiveWeights;
for (int i = 0; i < 4; i++)
else
{
t = tmax;
primitiveID = TraceFirstHitTriangleNoPortal(origin, tmin, dir, tmax, t, primitiveWeights);
origin += dir * t;
tmax -= t;
if(primitiveID < 0)
{
// We didn't hit anything
break;
}
SurfaceInfo surface = surfaces[surfaceIndices[primitiveID]];
if (surface.PortalIndex == 0)
{
int index = primitiveID * 3;
vec2 uv = vertices[elements[index + 1]].uv * primitiveWeights.x + vertices[elements[index + 2]].uv * primitiveWeights.y + vertices[elements[index + 0]].uv * primitiveWeights.z;
if (surface.TextureIndex == 0)
{
break;
}
vec4 color = texture(textures[surface.TextureIndex], uv);
color.w *= surface.Alpha;
if (color.w > 0.999 || all(lessThan(rayColor.rgb, vec3(0.001))))
{
break;
}
rayColor = blend(color, rayColor);
}
if(dot(surface.Normal, dir) >= 0.0)
{
continue;
}
mat4 transformationMatrix = portals[surface.PortalIndex].Transformation;
origin = (transformationMatrix * vec4(origin, 1.0)).xyz;
dir = (transformationMatrix * vec4(dir, 0.0)).xyz;
vec4 color = texture(textures[surface.TextureIndex], uv);
return BeerLambertSimple(vec4(1.0 - color.rgb, color.a * surface.Alpha), rayColor);
}
return distance(origin, target) <= 1.0;
}
vec4 alphaBlend(vec4 a, vec4 b)
void TransformRay(uint portalIndex, inout vec3 origin, inout vec3 dir)
{
float na = a.w + b.w * (1.0 - a.w);
return vec4((a.xyz * a.w + b.xyz * b.w * (1.0 - a.w)) / na, max(0.001, na));
mat4 transformationMatrix = portals[portalIndex].Transformation;
origin = (transformationMatrix * vec4(origin, 1.0)).xyz;
dir = (transformationMatrix * vec4(dir, 0.0)).xyz;
}
vec4 BeerLambertSimple(vec4 medium, vec4 ray_color) // based on Beer-Lambert law
@ -131,9 +43,4 @@ vec4 BeerLambertSimple(vec4 medium, vec4 ray_color) // based on Beer-Lambert law
return ray_color;
}
vec4 blend(vec4 a, vec4 b)
{
return BeerLambertSimple(vec4(1.0 - a.rgb, a.w), b);
}
)glsl";

View file

@ -1,22 +1,20 @@
static const char* trace_light_glsl = R"glsl(
vec2 getVogelDiskSample(int sampleIndex, int sampleCount, float phi);
#include <shaders/lightmap/montecarlo.glsl>
vec3 TraceLight(vec3 origin, vec3 normal, LightInfo light, int surfaceIndex)
vec4 TracePointLightRay(vec3 origin, vec3 lightpos, float tmin, vec4 rayColor);
vec3 TraceLight(vec3 origin, vec3 normal, LightInfo light, float extraDistance)
{
const float minDistance = 0.01;
vec3 incoming = vec3(0.0);
float dist = distance(light.RelativeOrigin, origin);
float dist = distance(light.RelativeOrigin, origin) + extraDistance;
if (dist > minDistance && dist < light.Radius)
{
vec3 dir = normalize(light.RelativeOrigin - origin);
float distAttenuation = max(1.0 - (dist / light.Radius), 0.0);
float angleAttenuation = 1.0f;
if (surfaceIndex >= 0)
{
angleAttenuation = max(dot(normal, dir), 0.0);
}
float angleAttenuation = max(dot(normal, dir), 0.0);
float spotAttenuation = 1.0;
if (light.OuterAngleCos > -1.0)
{
@ -28,6 +26,8 @@ vec3 TraceLight(vec3 origin, vec3 normal, LightInfo light, int surfaceIndex)
float attenuation = distAttenuation * angleAttenuation * spotAttenuation;
if (attenuation > 0.0)
{
vec4 rayColor = vec4(light.Color.rgb * (attenuation * light.Intensity), 1.0);
#if defined(USE_SOFTSHADOWS)
vec3 v = (abs(dir.x) > abs(dir.y)) ? vec3(0.0, 1.0, 0.0) : vec3(1.0, 0.0, 0.0);
@ -41,19 +41,11 @@ vec3 TraceLight(vec3 origin, vec3 normal, LightInfo light, int surfaceIndex)
vec2 gridoffset = getVogelDiskSample(i, step_count, gl_FragCoord.x + gl_FragCoord.y * 13.37) * lightsize;
vec3 pos = light.Origin + xdir * gridoffset.x + ydir * gridoffset.y;
rayColor = vec4(light.Color.rgb, 1.0);
if (TracePoint(origin, pos, minDistance, normalize(pos - origin), distance(origin, pos)))
{
incoming.rgb += (rayColor.rgb * rayColor.w) * (attenuation * light.Intensity) / float(step_count);
}
incoming.rgb += TracePointLightRay(origin, pos, minDistance, rayColor).rgb / float(step_count);
}
#else
rayColor = vec4(light.Color.rgb, 1.0);
if(TracePoint(origin, light.Origin, minDistance, dir, dist))
{
incoming.rgb += (rayColor.rgb * rayColor.w) * (attenuation * light.Intensity);
}
incoming.rgb += TracePointLightRay(origin, light.Origin, minDistance, rayColor).rgb;
#endif
}
}
@ -61,19 +53,36 @@ vec3 TraceLight(vec3 origin, vec3 normal, LightInfo light, int surfaceIndex)
return incoming;
}
vec2 getVogelDiskSample(int sampleIndex, int sampleCount, float phi)
vec4 TracePointLightRay(vec3 origin, vec3 lightpos, float tmin, vec4 rayColor)
{
const float goldenAngle = radians(180.0) * (3.0 - sqrt(5.0));
float sampleIndexF = float(sampleIndex);
float sampleCountF = float(sampleCount);
float r = sqrt((sampleIndexF + 0.5) / sampleCountF); // Assuming index and count are positive
float theta = sampleIndexF * goldenAngle + phi;
float sine = sin(theta);
float cosine = cos(theta);
return vec2(cosine, sine) * r;
vec3 dir = normalize(lightpos - origin);
float tmax = distance(origin, lightpos);
for (int i = 0; i < 3; i++)
{
TraceResult result = TraceFirstHit(origin, tmin, dir, tmax);
// We hit nothing. Point light is visible.
if (result.primitiveIndex == -1)
return rayColor;
SurfaceInfo surface = GetSurface(result.primitiveIndex);
// Blend with surface texture
rayColor = BlendTexture(surface, GetSurfaceUV(result.primitiveIndex, result.primitiveWeights), rayColor);
// Stop if it isn't a portal, or there is no light left
if (surface.PortalIndex == 0 || rayColor.r + rayColor.g + rayColor.b <= 0.0)
return vec4(0.0);
// Move to surface hit point
origin += dir * result.t;
tmax -= result.t;
// Move through the portal, if any
TransformRay(surface.PortalIndex, origin, dir);
}
return vec4(0.0);
}
)glsl";

View file

@ -1,21 +1,21 @@
static const char* trace_sunlight_glsl = R"glsl(
vec2 getVogelDiskSample(int sampleIndex, int sampleCount, float phi);
#include <shaders/lightmap/montecarlo.glsl>
vec3 TraceSunLight(vec3 origin, vec3 normal, int surfaceIndex)
vec4 TraceSunRay(vec3 origin, float tmin, vec3 dir, float tmax, vec4 rayColor);
vec3 TraceSunLight(vec3 origin, vec3 normal)
{
float angleAttenuation = 1.0f;
if (surfaceIndex >= 0)
{
angleAttenuation = max(dot(normal, SunDir), 0.0);
if (angleAttenuation == 0.0)
return vec3(0.0);
}
float angleAttenuation = max(dot(normal, SunDir), 0.0);
if (angleAttenuation == 0.0)
return vec3(0.0);
const float minDistance = 0.01;
vec3 incoming = vec3(0.0);
const float dist = 65536.0;
vec4 rayColor = vec4(SunColor.rgb * SunIntensity, 1.0);
#if defined(USE_SOFTSHADOWS)
vec3 target = origin + SunDir * dist;
@ -30,31 +30,47 @@ vec3 TraceSunLight(vec3 origin, vec3 normal, int surfaceIndex)
{
vec2 gridoffset = getVogelDiskSample(i, step_count, gl_FragCoord.x + gl_FragCoord.y * 13.37) * lightsize;
vec3 pos = target + xdir * gridoffset.x + ydir * gridoffset.y;
rayColor = vec4(SunColor.rgb * SunIntensity, 1.0);
int primitiveID = TraceFirstHitTriangle(origin, minDistance, normalize(pos - origin), dist);
if (primitiveID != -1)
{
SurfaceInfo surface = surfaces[surfaceIndices[primitiveID]];
incoming.rgb += rayColor.rgb * rayColor.w * surface.Sky / float(step_count);
}
incoming.rgb += TraceSunRay(origin, minDistance, normalize(pos - origin), dist, rayColor).rgb / float(step_count);
}
#else
rayColor = vec4(SunColor.rgb * SunIntensity, 1.0);
int primitiveID = TraceFirstHitTriangle(origin, minDistance, SunDir, dist);
if (primitiveID != -1)
{
SurfaceInfo surface = surfaces[surfaceIndices[primitiveID]];
incoming.rgb = rayColor.rgb * rayColor.w * surface.Sky;
}
incoming.rgb = TraceSunRay(origin, minDistance, SunDir, dist, rayColor).rgb;
#endif
return incoming * angleAttenuation;
}
vec4 TraceSunRay(vec3 origin, float tmin, vec3 dir, float tmax, vec4 rayColor)
{
for (int i = 0; i < 3; i++)
{
TraceResult result = TraceFirstHit(origin, tmin, dir, tmax);
// We hit nothing. We have to hit a sky surface to hit the sky.
if (result.primitiveIndex == -1)
return vec4(0.0);
SurfaceInfo surface = GetSurface(result.primitiveIndex);
// Blend with surface texture
rayColor = BlendTexture(surface, GetSurfaceUV(result.primitiveIndex, result.primitiveWeights), rayColor);
// Stop if it isn't a portal, or there is no light left
if (surface.PortalIndex == 0 || rayColor.r + rayColor.g + rayColor.b <= 0.0)
return rayColor * surface.Sky;
// Move to surface hit point
origin += dir * result.t;
tmax -= result.t;
if (tmax <= tmin)
return vec4(0.0);
// Move through the portal, if any
TransformRay(surface.PortalIndex, origin, dir);
}
return vec4(0.0);
}
)glsl";

View file

@ -5,13 +5,10 @@ static const char* vert_raytrace_glsl = R"glsl(
layout(location = 0) in vec3 aPosition;
layout(location = 0) out vec3 worldpos;
#if defined(USE_DRAWINDIRECT)
layout(location = 1) out flat int InstanceIndex;
#endif
void main()
{
#if defined(USE_DRAWINDIRECT)
vec3 WorldToLocal = constants[gl_InstanceIndex].WorldToLocal;
float TextureSize = constants[gl_InstanceIndex].TextureSize;
vec3 ProjLocalToU = constants[gl_InstanceIndex].ProjLocalToU;
@ -21,7 +18,6 @@ void main()
float TileWidth = constants[gl_InstanceIndex].TileWidth;
float TileHeight = constants[gl_InstanceIndex].TileHeight;
InstanceIndex = gl_InstanceIndex;
#endif
worldpos = aPosition;
@ -34,11 +30,10 @@ void main()
gl_Position = vec4(vec2(TileX + x, TileY + y) / TextureSize * 2.0 - 1.0, 0.0, 1.0);
// Clip all surfaces to the edge of the tile (effectly we are applying a viewport/scissor to the tile)
// Note: the tile has a 1px border around it that we also draw into
gl_ClipDistance[0] = x + 1.0;
gl_ClipDistance[1] = y + 1.0;
gl_ClipDistance[2] = TileWidth + 1.0 - x;
gl_ClipDistance[3] = TileHeight + 1.0 - y;
gl_ClipDistance[0] = x;
gl_ClipDistance[1] = y;
gl_ClipDistance[2] = TileWidth - x;
gl_ClipDistance[3] = TileHeight - y;
}
)glsl";

View file

@ -36,11 +36,10 @@ void GPURaytracer::Raytrace(DoomLevelMesh* mesh)
{
auto levelmesh = mDevice->GetLevelMesh();
auto lightmapper = mDevice->GetLightmapper();
auto submesh = mesh->StaticMesh.get();
printf(" Map uses %u lightmap textures\n", submesh->LMTextureCount);
printf(" Map uses %u lightmap textures\n", mesh->LMTextureCount);
mDevice->GetTextureManager()->CreateLightmap(submesh->LMTextureSize, submesh->LMTextureCount);
mDevice->GetTextureManager()->CreateLightmap(mesh->LMTextureSize, mesh->LMTextureCount);
levelmesh->SetLevelMesh(mesh);
lightmapper->SetLevelMesh(mesh);
@ -52,9 +51,9 @@ void GPURaytracer::Raytrace(DoomLevelMesh* mesh)
lightmapper->BeginFrame();
TArray<LightmapTile*> tiles;
for (unsigned int i = 0, count = submesh->LightmapTiles.Size(); i < count; i++)
for (unsigned int i = 0, count = mesh->LightmapTiles.Size(); i < count; i++)
{
LightmapTile* tile = &submesh->LightmapTiles[i];
LightmapTile* tile = &mesh->LightmapTiles[i];
if (tile->NeedsUpdate)
{
tiles.Push(tile);
@ -64,19 +63,19 @@ void GPURaytracer::Raytrace(DoomLevelMesh* mesh)
if (tiles.Size() == 0)
break;
printf(" Ray tracing tiles: %u / %u\r", submesh->LightmapTiles.Size() - tiles.Size(), submesh->LightmapTiles.Size());
printf(" Ray tracing tiles: %u / %u\r", mesh->LightmapTiles.Size() - tiles.Size(), mesh->LightmapTiles.Size());
lightmapper->Raytrace(tiles);
mDevice->GetCommands()->SubmitAndWait();
}
printf(" Ray tracing tiles: %u / %u\n", submesh->LightmapTiles.Size(), submesh->LightmapTiles.Size());
printf(" Ray tracing tiles: %u / %u\n", mesh->LightmapTiles.Size(), mesh->LightmapTiles.Size());
submesh->LMTextureData.Resize(submesh->LMTextureSize * submesh->LMTextureSize * submesh->LMTextureCount * 4);
for (int arrayIndex = 0; arrayIndex < submesh->LMTextureCount; arrayIndex++)
mesh->LMTextureData.Resize(mesh->LMTextureSize * mesh->LMTextureSize * mesh->LMTextureCount * 4);
for (int arrayIndex = 0; arrayIndex < mesh->LMTextureCount; arrayIndex++)
{
mDevice->GetTextureManager()->DownloadLightmap(arrayIndex, submesh->LMTextureData.Data() + arrayIndex * submesh->LMTextureSize * submesh->LMTextureSize * 4);
mDevice->GetTextureManager()->DownloadLightmap(arrayIndex, mesh->LMTextureData.Data() + arrayIndex * mesh->LMTextureSize * mesh->LMTextureSize * 4);
}
}
catch (...)

View file

@ -6,6 +6,31 @@ LevelMesh::LevelMesh()
// Default portal
LevelMeshPortal portal;
Portals.Push(portal);
AddEmptyMesh();
UpdateCollision();
}
void LevelMesh::AddEmptyMesh()
{
// Default empty mesh (we can't make it completely empty since vulkan doesn't like that)
float minval = -100001.0f;
float maxval = -100000.0f;
Mesh.Vertices.Push({ minval, minval, minval });
Mesh.Vertices.Push({ maxval, minval, minval });
Mesh.Vertices.Push({ maxval, maxval, minval });
Mesh.Vertices.Push({ minval, minval, minval });
Mesh.Vertices.Push({ minval, maxval, minval });
Mesh.Vertices.Push({ maxval, maxval, minval });
Mesh.Vertices.Push({ minval, minval, maxval });
Mesh.Vertices.Push({ maxval, minval, maxval });
Mesh.Vertices.Push({ maxval, maxval, maxval });
Mesh.Vertices.Push({ minval, minval, maxval });
Mesh.Vertices.Push({ minval, maxval, maxval });
Mesh.Vertices.Push({ maxval, maxval, maxval });
for (int i = 0; i < 3 * 4; i++)
Mesh.Indexes.Push(i);
}
LevelMeshSurface* LevelMesh::Trace(const FVector3& start, FVector3 direction, float maxDist)
@ -20,18 +45,14 @@ LevelMeshSurface* LevelMesh::Trace(const FVector3& start, FVector3 direction, fl
{
FVector3 end = origin + direction * maxDist;
TraceHit hit0 = TriangleMeshShape::find_first_hit(StaticMesh->Collision.get(), origin, end);
TraceHit hit1 = TriangleMeshShape::find_first_hit(DynamicMesh->Collision.get(), origin, end);
LevelSubmesh* hitmesh = hit0.fraction < hit1.fraction ? StaticMesh.get() : DynamicMesh.get();
TraceHit hit = hit0.fraction < hit1.fraction ? hit0 : hit1;
TraceHit hit = TriangleMeshShape::find_first_hit(Collision.get(), origin, end);
if (hit.triangle < 0)
{
return nullptr;
}
hitSurface = hitmesh->GetSurface(hitmesh->Mesh.SurfaceIndexes[hit.triangle]);
hitSurface = GetSurface(Mesh.SurfaceIndexes[hit.triangle]);
int portal = hitSurface->PortalIndex;
if (!portal)
@ -58,44 +79,6 @@ LevelMeshSurface* LevelMesh::Trace(const FVector3& start, FVector3 direction, fl
LevelMeshTileStats LevelMesh::GatherTilePixelStats()
{
LevelMeshTileStats stats;
StaticMesh->GatherTilePixelStats(stats);
DynamicMesh->GatherTilePixelStats(stats);
return stats;
}
/////////////////////////////////////////////////////////////////////////////
LevelSubmesh::LevelSubmesh()
{
// Default empty mesh (we can't make it completely empty since vulkan doesn't like that)
float minval = -100001.0f;
float maxval = -100000.0f;
Mesh.Vertices.Push({ minval, minval, minval });
Mesh.Vertices.Push({ maxval, minval, minval });
Mesh.Vertices.Push({ maxval, maxval, minval });
Mesh.Vertices.Push({ minval, minval, minval });
Mesh.Vertices.Push({ minval, maxval, minval });
Mesh.Vertices.Push({ maxval, maxval, minval });
Mesh.Vertices.Push({ minval, minval, maxval });
Mesh.Vertices.Push({ maxval, minval, maxval });
Mesh.Vertices.Push({ maxval, maxval, maxval });
Mesh.Vertices.Push({ minval, minval, maxval });
Mesh.Vertices.Push({ minval, maxval, maxval });
Mesh.Vertices.Push({ maxval, maxval, maxval });
for (int i = 0; i < 3 * 4; i++)
Mesh.Indexes.Push(i);
UpdateCollision();
}
void LevelSubmesh::UpdateCollision()
{
Collision = std::make_unique<TriangleMeshShape>(Mesh.Vertices.Data(), Mesh.Vertices.Size(), Mesh.Indexes.Data(), Mesh.Indexes.Size());
}
void LevelSubmesh::GatherTilePixelStats(LevelMeshTileStats& stats)
{
int count = GetSurfaceCount();
for (const LightmapTile& tile : LightmapTiles)
{
@ -110,6 +93,12 @@ void LevelSubmesh::GatherTilePixelStats(LevelMeshTileStats& stats)
}
}
stats.tiles.total += LightmapTiles.Size();
return stats;
}
void LevelMesh::UpdateCollision()
{
Collision = std::make_unique<TriangleMeshShape>(Mesh.Vertices.Data(), Mesh.Vertices.Size(), Mesh.Indexes.Data(), Mesh.Indexes.Size());
}
struct LevelMeshPlaneGroup
@ -119,7 +108,7 @@ struct LevelMeshPlaneGroup
std::vector<LevelMeshSurface*> surfaces;
};
void LevelSubmesh::BuildTileSurfaceLists()
void LevelMesh::BuildTileSurfaceLists()
{
// Plane group surface is to be rendered with
TArray<LevelMeshPlaneGroup> PlaneGroups;
@ -137,13 +126,13 @@ void LevelSubmesh::BuildTileSurfaceLists()
if (surface->SectorGroup == PlaneGroups[j].sectorGroup)
{
float direction = PlaneGroups[j].plane.XYZ() | surface->Plane.XYZ();
if (direction >= 0.9999f && direction <= 1.001f)
if (direction >= 0.999f && direction <= 1.01f)
{
auto point = (surface->Plane.XYZ() * surface->Plane.W);
auto planeDistance = (PlaneGroups[j].plane.XYZ() | point) - PlaneGroups[j].plane.W;
float dist = std::abs(planeDistance);
if (dist <= 0.01f)
if (dist <= 0.1f)
{
planeGroupIndex = (int)j;
break;
@ -183,7 +172,105 @@ void LevelSubmesh::BuildTileSurfaceLists()
if (surface != targetSurface && (maxUV.X < 0.0f || maxUV.Y < 0.0f || minUV.X > 1.0f || minUV.Y > 1.0f))
continue; // Bounding box not visible
tile->Surfaces.Push(surface);
tile->Surfaces.Push(GetSurfaceIndex(surface));
}
}
}
void LevelMesh::SetupTileTransforms()
{
for (auto& tile : LightmapTiles)
{
tile.SetupTileTransform(LMTextureSize);
}
}
void LevelMesh::PackLightmapAtlas(int lightmapStartIndex)
{
std::vector<LightmapTile*> sortedTiles;
sortedTiles.reserve(LightmapTiles.Size());
for (auto& tile : LightmapTiles)
{
sortedTiles.push_back(&tile);
}
std::sort(sortedTiles.begin(), sortedTiles.end(), [](LightmapTile* a, LightmapTile* b) { return a->AtlasLocation.Height != b->AtlasLocation.Height ? a->AtlasLocation.Height > b->AtlasLocation.Height : a->AtlasLocation.Width > b->AtlasLocation.Width; });
// We do not need to add spacing here as this is already built into the tile size itself.
RectPacker packer(LMTextureSize, LMTextureSize, RectPacker::Spacing(0), RectPacker::Padding(0));
for (LightmapTile* tile : sortedTiles)
{
auto result = packer.insert(tile->AtlasLocation.Width, tile->AtlasLocation.Height);
tile->AtlasLocation.X = result.pos.x;
tile->AtlasLocation.Y = result.pos.y;
tile->AtlasLocation.ArrayIndex = lightmapStartIndex + (int)result.pageIndex;
}
LMTextureCount = (int)packer.getNumPages();
// Calculate final texture coordinates
for (int i = 0, count = GetSurfaceCount(); i < count; i++)
{
auto surface = GetSurface(i);
if (surface->LightmapTileIndex >= 0)
{
const LightmapTile& tile = LightmapTiles[surface->LightmapTileIndex];
for (int i = 0; i < surface->MeshLocation.NumVerts; i++)
{
auto& vertex = Mesh.Vertices[surface->MeshLocation.StartVertIndex + i];
FVector2 uv = tile.ToUV(vertex.fPos(), (float)LMTextureSize);
vertex.lu = uv.X;
vertex.lv = uv.Y;
vertex.lindex = (float)tile.AtlasLocation.ArrayIndex;
}
}
}
#if 0 // Debug atlas tile locations:
float colors[30] =
{
1.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f,
1.0f, 1.0f, 0.0f,
0.0f, 1.0f, 1.0f,
1.0f, 0.0f, 1.0f,
0.5f, 0.0f, 0.0f,
0.0f, 0.5f, 0.0f,
0.5f, 0.5f, 0.0f,
0.0f, 0.5f, 0.5f,
0.5f, 0.0f, 0.5f
};
LMTextureData.Resize(LMTextureSize * LMTextureSize * LMTextureCount * 3);
uint16_t* pixels = LMTextureData.Data();
for (LightmapTile& tile : LightmapTiles)
{
tile.NeedsUpdate = false;
int index = tile.Binding.TypeIndex;
float* color = colors + (index % 10) * 3;
int x = tile.AtlasLocation.X;
int y = tile.AtlasLocation.Y;
int w = tile.AtlasLocation.Width;
int h = tile.AtlasLocation.Height;
for (int yy = y; yy < y + h; yy++)
{
uint16_t* line = pixels + tile.AtlasLocation.ArrayIndex * LMTextureSize * LMTextureSize + yy * LMTextureSize * 3;
for (int xx = x; xx < x + w; xx++)
{
float gray = (yy - y) / (float)h;
line[xx * 3] = floatToHalf(color[0] * gray);
line[xx * 3 + 1] = floatToHalf(color[1] * gray);
line[xx * 3 + 2] = floatToHalf(color[2] * gray);
}
}
}
for (int i = 0, count = GetSurfaceCount(); i < count; i++)
{
auto surface = GetSurface(i);
surface->AlwaysUpdate = false;
}
#endif
}

View file

@ -13,6 +13,9 @@
#include "hw_surfaceuniforms.h"
#include <memory>
#include <dp_rect_pack/dp_rect_pack.h>
typedef dp::rect_pack::RectPacker<int> RectPacker;
struct LevelMeshTileStats;
struct LevelSubmeshDrawRange
@ -22,24 +25,54 @@ struct LevelSubmeshDrawRange
int Count;
};
class LevelSubmesh
class LevelMesh
{
public:
LevelSubmesh();
virtual ~LevelSubmesh() = default;
LevelMesh();
virtual ~LevelMesh() = default;
virtual LevelMeshSurface* GetSurface(int index) { return nullptr; }
virtual unsigned int GetSurfaceIndex(const LevelMeshSurface* surface) const { return 0xffffffff; }
virtual int GetSurfaceCount() { return 0; }
LevelMeshSurface* Trace(const FVector3& start, FVector3 direction, float maxDist);
LevelMeshTileStats GatherTilePixelStats();
// Map defaults
FVector3 SunDirection = FVector3(0.0f, 0.0f, -1.0f);
FVector3 SunColor = FVector3(0.0f, 0.0f, 0.0f);
TArray<LevelMeshPortal> Portals;
struct
{
// Vertex data
TArray<FFlatVertex> Vertices;
TArray<uint32_t> Indexes;
TArray<int> SurfaceIndexes;
TArray<int> UniformIndexes;
// Surface info
TArray<SurfaceUniforms> Uniforms;
TArray<FMaterialState> Materials;
TArray<int32_t> LightIndexes;
// Lights
TArray<LevelMeshLight> Lights;
// Index data
TArray<uint32_t> Indexes;
TArray<int> SurfaceIndexes;
int DynamicIndexStart = 0;
// Above data must not be resized beyond these limits as that's the size of the GPU buffers)
int MaxVertices = 0;
int MaxIndexes = 0;
int MaxSurfaces = 0;
int MaxUniforms = 0;
int MaxSurfaceIndexes = 0;
int MaxNodes = 0;
int MaxLights = 0;
int MaxLightIndexes = 0;
} Mesh;
std::unique_ptr<TriangleMeshShape> Collision;
@ -59,33 +92,11 @@ public:
uint32_t AtlasPixelCount() const { return uint32_t(LMTextureCount * LMTextureSize * LMTextureSize); }
void UpdateCollision();
void GatherTilePixelStats(LevelMeshTileStats& stats);
void BuildTileSurfaceLists();
void SetupTileTransforms();
void PackLightmapAtlas(int lightmapStartIndex);
private:
FVector2 ToUV(const FVector3& vert, const LightmapTile* tile);
};
class LevelMesh
{
public:
LevelMesh();
virtual ~LevelMesh() = default;
std::unique_ptr<LevelSubmesh> StaticMesh = std::make_unique<LevelSubmesh>();
std::unique_ptr<LevelSubmesh> DynamicMesh = std::make_unique<LevelSubmesh>();
virtual int AddSurfaceLights(const LevelMeshSurface* surface, LevelMeshLight* list, int listMaxSize) { return 0; }
LevelMeshSurface* Trace(const FVector3& start, FVector3 direction, float maxDist);
LevelMeshTileStats GatherTilePixelStats();
// Map defaults
FVector3 SunDirection = FVector3(0.0f, 0.0f, -1.0f);
FVector3 SunColor = FVector3(0.0f, 0.0f, 0.0f);
TArray<LevelMeshPortal> Portals;
void AddEmptyMesh();
};
struct LevelMeshTileStats

View file

@ -9,11 +9,10 @@
class LevelSubmesh;
struct LevelMeshSurface;
struct ThingLight;
struct LevelMeshSurface
{
LevelSubmesh* Submesh = nullptr;
struct
{
unsigned int StartVertIndex = 0;
@ -28,9 +27,9 @@ struct LevelMeshSurface
bool AlwaysUpdate = false;
FTextureID Texture = FNullTextureID();
FTextureID Texture = FNullTextureID(); // FGameTexture* Texture = nullptr;
float Alpha = 1.0;
bool IsSky = false;
int PortalIndex = 0;
int SectorGroup = 0;
@ -38,8 +37,9 @@ struct LevelMeshSurface
// Light list location in the lightmapper GPU buffers
struct
{
int Pos = -1;
int Pos = 0;
int Count = 0;
int ResetCounter = -1;
} LightList;
TArray<ThingLight*> Lights;
};

View file

@ -45,7 +45,7 @@ struct LightmapTile
LightmapTileBinding Binding;
// Surfaces that are visible within the lightmap tile
TArray<LevelMeshSurface*> Surfaces;
TArray<int> Surfaces;
BBox Bounds;
uint16_t SampleDimension = 0;
@ -57,16 +57,114 @@ struct LightmapTile
FVector2 ToUV(const FVector3& vert) const
{
FVector3 localPos = vert - Transform.TranslateWorldToLocal;
float u = (1.0f + (localPos | Transform.ProjLocalToU)) / (AtlasLocation.Width + 2);
float v = (1.0f + (localPos | Transform.ProjLocalToV)) / (AtlasLocation.Height + 2);
float u = (localPos | Transform.ProjLocalToU) / AtlasLocation.Width;
float v = (localPos | Transform.ProjLocalToV) / AtlasLocation.Height;
return FVector2(u, v);
}
FVector2 ToUV(const FVector3& vert, float textureSize) const
{
// Clamp in case the wall moved outside the tile (happens if a lift moves with a static lightmap on it)
FVector3 localPos = vert - Transform.TranslateWorldToLocal;
float u = (AtlasLocation.X + (localPos | Transform.ProjLocalToU)) / textureSize;
float v = (AtlasLocation.Y + (localPos | Transform.ProjLocalToV)) / textureSize;
float u = std::max(std::min(localPos | Transform.ProjLocalToU, (float)AtlasLocation.Width), 0.0f);
float v = std::max(std::min(localPos | Transform.ProjLocalToV, (float)AtlasLocation.Height), 0.0f);
u = (AtlasLocation.X + u) / textureSize;
v = (AtlasLocation.Y + v) / textureSize;
return FVector2(u, v);
}
enum PlaneAxis
{
AXIS_YZ = 0,
AXIS_XZ,
AXIS_XY
};
static PlaneAxis BestAxis(const FVector4& p)
{
float na = fabs(float(p.X));
float nb = fabs(float(p.Y));
float nc = fabs(float(p.Z));
// figure out what axis the plane lies on
if (na >= nb && na >= nc)
{
return AXIS_YZ;
}
else if (nb >= na && nb >= nc)
{
return AXIS_XZ;
}
return AXIS_XY;
}
void SetupTileTransform(int textureSize)
{
// These calculations align the tile so that there's a one texel border around the actual surface in the tile.
//
// This removes sampling artifacts as a linear sampler reads from a 2x2 area.
// The tile is also aligned to the grid to keep aliasing artifacts consistent.
FVector3 uvMin;
uvMin.X = std::floor(Bounds.min.X / SampleDimension) - 1.0f;
uvMin.Y = std::floor(Bounds.min.Y / SampleDimension) - 1.0f;
uvMin.Z = std::floor(Bounds.min.Z / SampleDimension) - 1.0f;
FVector3 uvMax;
uvMax.X = std::floor(Bounds.max.X / SampleDimension) + 2.0f;
uvMax.Y = std::floor(Bounds.max.Y / SampleDimension) + 2.0f;
uvMax.Z = std::floor(Bounds.max.Z / SampleDimension) + 2.0f;
FVector3 tCoords[2] = { FVector3(0.0f, 0.0f, 0.0f), FVector3(0.0f, 0.0f, 0.0f) };
int width, height;
switch (BestAxis(Plane))
{
default:
case AXIS_YZ:
width = (int)(uvMax.Y - uvMin.Y);
height = (int)(uvMax.Z - uvMin.Z);
tCoords[0].Y = 1.0f / SampleDimension;
tCoords[1].Z = 1.0f / SampleDimension;
break;
case AXIS_XZ:
width = (int)(uvMax.X - uvMin.X);
height = (int)(uvMax.Z - uvMin.Z);
tCoords[0].X = 1.0f / SampleDimension;
tCoords[1].Z = 1.0f / SampleDimension;
break;
case AXIS_XY:
width = (int)(uvMax.X - uvMin.X);
height = (int)(uvMax.Y - uvMin.Y);
tCoords[0].X = 1.0f / SampleDimension;
tCoords[1].Y = 1.0f / SampleDimension;
break;
}
textureSize -= 6; // Lightmapper needs some padding when baking
// Tile can never be bigger than the texture.
if (width > textureSize)
{
tCoords[0] *= textureSize / (float)width;
width = textureSize;
}
if (height > textureSize)
{
tCoords[1] *= textureSize / (float)height;
height = textureSize;
}
Transform.TranslateWorldToLocal.X = uvMin.X * SampleDimension;
Transform.TranslateWorldToLocal.Y = uvMin.Y * SampleDimension;
Transform.TranslateWorldToLocal.Z = uvMin.Z * SampleDimension;
Transform.ProjLocalToU = tCoords[0];
Transform.ProjLocalToV = tCoords[1];
AtlasLocation.Width = width;
AtlasLocation.Height = height;
}
};

View file

@ -27,7 +27,7 @@
VkLevelMesh::VkLevelMesh(VulkanRenderDevice* fb) : fb(fb)
{
useRayQuery = fb->GetDevice()->SupportsExtension(VK_KHR_RAY_QUERY_EXTENSION_NAME) && fb->GetDevice()->PhysicalDevice.Features.RayQuery.rayQuery;
useRayQuery = fb->IsRayQueryEnabled();
SetLevelMesh(nullptr);
}
@ -52,6 +52,8 @@ void VkLevelMesh::Reset()
deletelist->Add(std::move(UniformsBuffer));
deletelist->Add(std::move(SurfaceIndexBuffer));
deletelist->Add(std::move(PortalBuffer));
deletelist->Add(std::move(LightBuffer));
deletelist->Add(std::move(LightIndexBuffer));
deletelist->Add(std::move(StaticBLAS.ScratchBuffer));
deletelist->Add(std::move(StaticBLAS.AccelStructBuffer));
deletelist->Add(std::move(StaticBLAS.AccelStruct));
@ -89,7 +91,7 @@ void VkLevelMesh::CreateVulkanObjects()
.AddMemory(VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR | VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR | VK_ACCESS_SHADER_READ_BIT)
.Execute(fb->GetCommands()->GetTransferCommands(), VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR | VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR);
CreateTopLevelAS();
CreateTopLevelAS(DynamicBLAS.AccelStruct ? 2 : 1);
// Finish building the accel struct before using it from the shaders
PipelineBarrier()
@ -126,7 +128,8 @@ void VkLevelMesh::BeginFrame()
deletelist->Add(std::move(TopLevelAS.TransferBuffer));
deletelist->Add(std::move(TopLevelAS.InstanceBuffer));
DynamicBLAS = CreateBLAS(Mesh->DynamicMesh.get(), true, Mesh->StaticMesh->Mesh.Vertices.Size(), Mesh->StaticMesh->Mesh.Indexes.Size());
if (Mesh->Mesh.DynamicIndexStart < (int)Mesh->Mesh.Indexes.Size())
DynamicBLAS = CreateBLAS(true, Mesh->Mesh.DynamicIndexStart, Mesh->Mesh.Indexes.Size() - Mesh->Mesh.DynamicIndexStart);
CreateTLASInstanceBuffer();
UploadTLASInstanceBuffer();
@ -136,7 +139,7 @@ void VkLevelMesh::BeginFrame()
.AddMemory(VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR | VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR | VK_ACCESS_SHADER_READ_BIT)
.Execute(fb->GetCommands()->GetTransferCommands(), VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR | VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR);
UpdateTopLevelAS();
UpdateTopLevelAS(DynamicBLAS.AccelStruct ? 2 : 1);
// Finish building the accel struct before using it from the shaders
PipelineBarrier()
@ -154,38 +157,27 @@ void VkLevelMesh::BeginFrame()
void VkLevelMesh::UploadMeshes(bool dynamicOnly)
{
if (dynamicOnly)
{
Locations.Index.Push({ Mesh->Mesh.DynamicIndexStart, (int)(Mesh->Mesh.Indexes.Size() - Mesh->Mesh.DynamicIndexStart) });
}
else
{
if (!useRayQuery)
Locations.Node.Push({ 0, (int)Mesh->Collision->get_nodes().size() });
Locations.Vertex.Push({ 0, (int)Mesh->Mesh.Vertices.Size() });
Locations.Index.Push({ 0, (int)Mesh->Mesh.Indexes.Size() });
Locations.SurfaceIndex.Push({ 0, (int)Mesh->Mesh.SurfaceIndexes.Size() });
Locations.Surface.Push({ 0, Mesh->GetSurfaceCount() });
Locations.UniformIndexes.Push({ 0, (int)Mesh->Mesh.UniformIndexes.Size() });
Locations.Uniforms.Push({ 0, (int)Mesh->Mesh.Uniforms.Size() });
Locations.Portals.Push({ 0, (int)Mesh->Portals.Size() });
Locations.Light.Push({ 0, (int)Mesh->Mesh.Lights.Size() });
Locations.LightIndex.Push({ 0, (int)Mesh->Mesh.LightIndexes.Size() });
}
VkLevelMeshUploader uploader(this);
uploader.Upload(dynamicOnly);
}
int VkLevelMesh::GetMaxVertexBufferSize()
{
return Mesh->StaticMesh->Mesh.Vertices.Size() + MaxDynamicVertices;
}
int VkLevelMesh::GetMaxIndexBufferSize()
{
return Mesh->StaticMesh->Mesh.Indexes.Size() + MaxDynamicIndexes;
}
int VkLevelMesh::GetMaxNodeBufferSize()
{
return (int)Mesh->StaticMesh->Collision->get_nodes().size() + MaxDynamicNodes + 1; // + 1 for the merge root node
}
int VkLevelMesh::GetMaxSurfaceBufferSize()
{
return Mesh->StaticMesh->GetSurfaceCount() + MaxDynamicSurfaces;
}
int VkLevelMesh::GetMaxUniformsBufferSize()
{
return Mesh->StaticMesh->Mesh.Uniforms.Size() + MaxDynamicUniforms;
}
int VkLevelMesh::GetMaxSurfaceIndexBufferSize()
{
return Mesh->StaticMesh->Mesh.SurfaceIndexes.Size() + MaxDynamicSurfaceIndexes;
uploader.Upload();
}
void VkLevelMesh::CreateBuffers()
@ -198,7 +190,7 @@ void VkLevelMesh::CreateBuffers()
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT |
VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR : 0) |
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT)
.Size(GetMaxVertexBufferSize() * sizeof(FFlatVertex))
.Size(Mesh->Mesh.MaxVertices * sizeof(FFlatVertex))
.DebugName("VertexBuffer")
.Create(fb->GetDevice());
@ -206,7 +198,7 @@ void VkLevelMesh::CreateBuffers()
.Usage(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT |
VK_BUFFER_USAGE_TRANSFER_DST_BIT)
.Size(GetMaxVertexBufferSize() * sizeof(int))
.Size(Mesh->Mesh.MaxVertices * sizeof(int))
.DebugName("UniformIndexes")
.Create(fb->GetDevice());
@ -218,31 +210,31 @@ void VkLevelMesh::CreateBuffers()
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT |
VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR : 0) |
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT)
.Size((size_t)GetMaxIndexBufferSize() * sizeof(uint32_t))
.Size((size_t)Mesh->Mesh.MaxIndexes * sizeof(uint32_t))
.DebugName("IndexBuffer")
.Create(fb->GetDevice());
NodeBuffer = BufferBuilder()
.Usage(VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT)
.Size(sizeof(CollisionNodeBufferHeader) + GetMaxNodeBufferSize() * sizeof(CollisionNode))
.Size(sizeof(CollisionNodeBufferHeader) + Mesh->Mesh.MaxNodes * sizeof(CollisionNode))
.DebugName("NodeBuffer")
.Create(fb->GetDevice());
SurfaceIndexBuffer = BufferBuilder()
.Usage(VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT)
.Size(GetMaxSurfaceIndexBufferSize() * sizeof(int))
.Size(Mesh->Mesh.MaxSurfaceIndexes * sizeof(int))
.DebugName("SurfaceBuffer")
.Create(fb->GetDevice());
SurfaceBuffer = BufferBuilder()
.Usage(VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT)
.Size(GetMaxSurfaceBufferSize() * sizeof(SurfaceInfo))
.Size(Mesh->Mesh.MaxSurfaces * sizeof(SurfaceInfo))
.DebugName("SurfaceBuffer")
.Create(fb->GetDevice());
UniformsBuffer = BufferBuilder()
.Usage(VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT)
.Size(GetMaxUniformsBufferSize() * sizeof(SurfaceUniforms))
.Size(Mesh->Mesh.MaxUniforms * sizeof(SurfaceUniforms))
.DebugName("SurfaceUniformsBuffer")
.Create(fb->GetDevice());
@ -251,9 +243,21 @@ void VkLevelMesh::CreateBuffers()
.Size(Mesh->Portals.Size() * sizeof(PortalInfo))
.DebugName("PortalBuffer")
.Create(fb->GetDevice());
LightBuffer = BufferBuilder()
.Usage(VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT)
.Size(Mesh->Mesh.MaxLights * sizeof(LightInfo))
.DebugName("LightBuffer")
.Create(fb->GetDevice());
LightIndexBuffer = BufferBuilder()
.Usage(VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT)
.Size(Mesh->Mesh.MaxLightIndexes * sizeof(int32_t))
.DebugName("LightIndexBuffer")
.Create(fb->GetDevice());
}
VkLevelMesh::BLAS VkLevelMesh::CreateBLAS(LevelSubmesh* submesh, bool preferFastBuild, int vertexOffset, int indexOffset)
VkLevelMesh::BLAS VkLevelMesh::CreateBLAS(bool preferFastBuild, int indexOffset, int indexCount)
{
BLAS blas;
@ -269,7 +273,7 @@ VkLevelMesh::BLAS VkLevelMesh::CreateBLAS(LevelSubmesh* submesh, bool preferFast
accelStructBLDesc.geometry.triangles.vertexStride = sizeof(FFlatVertex);
accelStructBLDesc.geometry.triangles.indexType = VK_INDEX_TYPE_UINT32;
accelStructBLDesc.geometry.triangles.indexData.deviceAddress = IndexBuffer->GetDeviceAddress() + indexOffset * sizeof(uint32_t);
accelStructBLDesc.geometry.triangles.maxVertex = vertexOffset + submesh->Mesh.Vertices.Size() - 1;
accelStructBLDesc.geometry.triangles.maxVertex = Mesh->Mesh.Vertices.Size() - 1;
buildInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
buildInfo.flags = preferFastBuild ? VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_BUILD_BIT_KHR : VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
@ -277,7 +281,7 @@ VkLevelMesh::BLAS VkLevelMesh::CreateBLAS(LevelSubmesh* submesh, bool preferFast
buildInfo.geometryCount = 1;
buildInfo.ppGeometries = geometries;
uint32_t maxPrimitiveCount = submesh->Mesh.Indexes.Size() / 3;
uint32_t maxPrimitiveCount = indexCount / 3;
VkAccelerationStructureBuildSizesInfoKHR sizeInfo = { VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_SIZES_INFO_KHR };
vkGetAccelerationStructureBuildSizesKHR(fb->GetDevice()->device, VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR, &buildInfo, &maxPrimitiveCount, &sizeInfo);
@ -315,12 +319,13 @@ VkLevelMesh::BLAS VkLevelMesh::CreateBLAS(LevelSubmesh* submesh, bool preferFast
void VkLevelMesh::CreateStaticBLAS()
{
StaticBLAS = CreateBLAS(Mesh->StaticMesh.get(), false, 0, 0);
StaticBLAS = CreateBLAS(false, 0, Mesh->Mesh.DynamicIndexStart);
}
void VkLevelMesh::CreateDynamicBLAS()
{
DynamicBLAS = CreateBLAS(Mesh->DynamicMesh.get(), true, Mesh->StaticMesh->Mesh.Vertices.Size(), Mesh->StaticMesh->Mesh.Indexes.Size());
if (Mesh->Mesh.DynamicIndexStart < (int)Mesh->Mesh.Indexes.Size())
DynamicBLAS = CreateBLAS(true, Mesh->Mesh.DynamicIndexStart, Mesh->Mesh.Indexes.Size() - Mesh->Mesh.DynamicIndexStart);
}
void VkLevelMesh::CreateTLASInstanceBuffer()
@ -338,7 +343,7 @@ void VkLevelMesh::CreateTLASInstanceBuffer()
.Create(fb->GetDevice());
}
void VkLevelMesh::CreateTopLevelAS()
void VkLevelMesh::CreateTopLevelAS(int instanceCount)
{
VkAccelerationStructureBuildGeometryInfoKHR buildInfo = { VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR };
VkAccelerationStructureGeometryKHR accelStructTLDesc = { VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR };
@ -383,12 +388,12 @@ void VkLevelMesh::CreateTopLevelAS()
VkAccelerationStructureBuildRangeInfoKHR rangeInfo = {};
VkAccelerationStructureBuildRangeInfoKHR* rangeInfos[] = { &rangeInfo };
rangeInfo.primitiveCount = 2;
rangeInfo.primitiveCount = instanceCount;
fb->GetCommands()->GetTransferCommands()->buildAccelerationStructures(1, &buildInfo, rangeInfos);
}
void VkLevelMesh::UpdateTopLevelAS()
void VkLevelMesh::UpdateTopLevelAS(int instanceCount)
{
VkAccelerationStructureBuildGeometryInfoKHR buildInfo = { VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR };
VkAccelerationStructureGeometryKHR accelStructTLDesc = { VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR };
@ -409,7 +414,7 @@ void VkLevelMesh::UpdateTopLevelAS()
VkAccelerationStructureBuildRangeInfoKHR rangeInfo = {};
VkAccelerationStructureBuildRangeInfoKHR* rangeInfos[] = { &rangeInfo };
rangeInfo.primitiveCount = 2;
rangeInfo.primitiveCount = instanceCount;
fb->GetCommands()->GetTransferCommands()->buildAccelerationStructures(1, &buildInfo, rangeInfos);
}
@ -424,12 +429,15 @@ void VkLevelMesh::UploadTLASInstanceBuffer()
instances[0].flags = 0;
instances[0].accelerationStructureReference = StaticBLAS.AccelStruct->GetDeviceAddress();
instances[1].transform.matrix[0][0] = 1.0f;
instances[1].transform.matrix[1][1] = 1.0f;
instances[1].transform.matrix[2][2] = 1.0f;
instances[1].mask = 0xff;
instances[1].flags = 0;
instances[1].accelerationStructureReference = DynamicBLAS.AccelStruct->GetDeviceAddress();
if (DynamicBLAS.AccelStruct)
{
instances[1].transform.matrix[0][0] = 1.0f;
instances[1].transform.matrix[1][1] = 1.0f;
instances[1].transform.matrix[2][2] = 1.0f;
instances[1].mask = 0xff;
instances[1].flags = 0;
instances[1].accelerationStructureReference = DynamicBLAS.AccelStruct->GetDeviceAddress();
}
auto data = (uint8_t*)TopLevelAS.TransferBuffer->Map(0, sizeof(VkAccelerationStructureInstanceKHR) * 2);
memcpy(data, instances, sizeof(VkAccelerationStructureInstanceKHR) * 2);
@ -444,30 +452,44 @@ VkLevelMeshUploader::VkLevelMeshUploader(VkLevelMesh* mesh) : Mesh(mesh)
{
}
void VkLevelMeshUploader::Upload(bool dynamicOnly)
void VkLevelMeshUploader::Upload()
{
UpdateSizes();
UpdateLocations();
start = dynamicOnly;
end = locations.Size();
size_t transferBufferSize = GetTransferSize();
if (transferBufferSize == 0)
{
ClearRanges();
return;
}
BeginTransfer(transferBufferSize);
UploadNodes();
UploadVertices();
UploadUniformIndexes();
UploadIndexes();
UploadSurfaceIndexes();
UploadRanges(Mesh->Locations.Vertex, Mesh->Mesh->Mesh.Vertices.Data(), Mesh->VertexBuffer.get());
UploadRanges(Mesh->Locations.UniformIndexes, Mesh->Mesh->Mesh.UniformIndexes.Data(), Mesh->UniformIndexBuffer.get());
UploadRanges(Mesh->Locations.Index, Mesh->Mesh->Mesh.Indexes.Data(), Mesh->IndexBuffer.get());
UploadRanges(Mesh->Locations.SurfaceIndex, Mesh->Mesh->Mesh.SurfaceIndexes.Data(), Mesh->SurfaceIndexBuffer.get());
UploadRanges(Mesh->Locations.LightIndex, Mesh->Mesh->Mesh.LightIndexes.Data(), Mesh->LightIndexBuffer.get());
UploadSurfaces();
UploadUniforms();
UploadPortals();
UploadLights();
EndTransfer(transferBufferSize);
ClearRanges();
}
void VkLevelMeshUploader::ClearRanges()
{
Mesh->Locations.Vertex.Clear();
Mesh->Locations.Index.Clear();
Mesh->Locations.Node.Clear();
Mesh->Locations.SurfaceIndex.Clear();
Mesh->Locations.Surface.Clear();
Mesh->Locations.UniformIndexes.Clear();
Mesh->Locations.Uniforms.Clear();
Mesh->Locations.Portals.Clear();
Mesh->Locations.Light.Clear();
Mesh->Locations.LightIndex.Clear();
}
void VkLevelMeshUploader::BeginTransfer(size_t transferBufferSize)
@ -498,146 +520,63 @@ static FVector3 SwapYZ(const FVector3& v)
void VkLevelMeshUploader::UploadNodes()
{
// Copy node buffer header and create a root node that merges the static and dynamic AABB trees
if (locations[1].Submesh->Collision->get_root() != -1)
{
int root0 = locations[0].Submesh->Collision->get_root();
int root1 = locations[1].Submesh->Collision->get_root();
const auto& node0 = locations[0].Submesh->Collision->get_nodes()[root0];
const auto& node1 = locations[1].Submesh->Collision->get_nodes()[root1];
FVector3 aabbMin(std::min(node0.aabb.min.X, node1.aabb.min.X), std::min(node0.aabb.min.Y, node1.aabb.min.Y), std::min(node0.aabb.min.Z, node1.aabb.min.Z));
FVector3 aabbMax(std::max(node0.aabb.max.X, node1.aabb.max.X), std::max(node0.aabb.max.Y, node1.aabb.max.Y), std::max(node0.aabb.max.Z, node1.aabb.max.Z));
CollisionBBox bbox(aabbMin, aabbMax);
CollisionNodeBufferHeader nodesHeader;
nodesHeader.root = locations[1].Node.Offset + locations[1].Node.Size;
CollisionNode info;
info.center = SwapYZ(bbox.Center);
info.extents = SwapYZ(bbox.Extents);
info.left = locations[0].Node.Offset + root0;
info.right = locations[1].Node.Offset + root1;
info.element_index = -1;
*((CollisionNodeBufferHeader*)(data + datapos)) = nodesHeader;
*((CollisionNode*)(data + datapos + sizeof(CollisionNodeBufferHeader))) = info;
cmdbuffer->copyBuffer(transferBuffer.get(), Mesh->NodeBuffer.get(), datapos, 0, sizeof(CollisionNodeBufferHeader));
cmdbuffer->copyBuffer(transferBuffer.get(), Mesh->NodeBuffer.get(), datapos + sizeof(CollisionNodeBufferHeader), sizeof(CollisionNodeBufferHeader) + nodesHeader.root * sizeof(CollisionNode), sizeof(CollisionNode));
}
else // second submesh is empty, just point the header at the first one
// Always update the header struct of the collision storage buffer block if something changed
if (Mesh->Locations.Node.Size() > 0)
{
CollisionNodeBufferHeader nodesHeader;
nodesHeader.root = locations[0].Submesh->Collision->get_root();
nodesHeader.root = Mesh->Mesh->Collision->get_root();
*((CollisionNodeBufferHeader*)(data + datapos)) = nodesHeader;
cmdbuffer->copyBuffer(transferBuffer.get(), Mesh->NodeBuffer.get(), datapos, 0, sizeof(CollisionNodeBufferHeader));
datapos += sizeof(CollisionNodeBufferHeader) + sizeof(CollisionNode);
}
datapos += sizeof(CollisionNodeBufferHeader) + sizeof(CollisionNode);
// Copy collision nodes
for (unsigned int i = start; i < end; i++)
for (const MeshBufferRange& range : Mesh->Locations.Node)
{
const SubmeshBufferLocation& cur = locations[i];
auto submesh = cur.Submesh;
const auto& srcnodes = Mesh->Mesh->Collision->get_nodes();
CollisionNode* nodes = (CollisionNode*)(data + datapos);
for (auto& node : submesh->Collision->get_nodes())
for (int i = 0, count = range.Size; i < count; i++)
{
const auto& node = srcnodes[range.Offset + i];
CollisionNode info;
info.center = SwapYZ(node.aabb.Center);
info.extents = SwapYZ(node.aabb.Extents);
info.left = node.left != -1 ? node.left + cur.Node.Offset : -1;
info.right = node.right != -1 ? node.right + cur.Node.Offset : -1;
info.element_index = node.element_index != -1 ? node.element_index + cur.Index.Offset : -1;
info.left = node.left;
info.right = node.right;
info.element_index = node.element_index;
*(nodes++) = info;
}
size_t copysize = submesh->Collision->get_nodes().size() * sizeof(CollisionNode);
size_t copysize = range.Size * sizeof(CollisionNode);
if (copysize > 0)
cmdbuffer->copyBuffer(transferBuffer.get(), Mesh->NodeBuffer.get(), datapos, sizeof(CollisionNodeBufferHeader) + cur.Node.Offset * sizeof(CollisionNode), copysize);
cmdbuffer->copyBuffer(transferBuffer.get(), Mesh->NodeBuffer.get(), datapos, sizeof(CollisionNodeBufferHeader) + range.Offset * sizeof(CollisionNode), copysize);
datapos += copysize;
}
}
void VkLevelMeshUploader::UploadVertices()
template<typename T>
void VkLevelMeshUploader::UploadRanges(const TArray<MeshBufferRange>& ranges, const T* srcbuffer, VulkanBuffer* destbuffer)
{
for (unsigned int i = start; i < end; i++)
for (const MeshBufferRange& range : ranges)
{
const SubmeshBufferLocation& cur = locations[i];
auto submesh = cur.Submesh;
size_t copysize = submesh->Mesh.Vertices.Size() * sizeof(FFlatVertex);
memcpy(data + datapos, submesh->Mesh.Vertices.Data(), copysize);
size_t copysize = range.Size * sizeof(T);
memcpy(data + datapos, srcbuffer + range.Offset, copysize);
if (copysize > 0)
cmdbuffer->copyBuffer(transferBuffer.get(), Mesh->VertexBuffer.get(), datapos, cur.Vertex.Offset * sizeof(FFlatVertex), copysize);
datapos += copysize;
}
}
void VkLevelMeshUploader::UploadUniformIndexes()
{
for (unsigned int i = start; i < end; i++)
{
const SubmeshBufferLocation& cur = locations[i];
auto submesh = cur.Submesh;
size_t copysize = submesh->Mesh.UniformIndexes.Size() * sizeof(int);
memcpy(data + datapos, submesh->Mesh.UniformIndexes.Data(), copysize);
if (copysize > 0)
cmdbuffer->copyBuffer(transferBuffer.get(), Mesh->UniformIndexBuffer.get(), datapos, cur.UniformIndexes.Offset * sizeof(int), copysize);
datapos += copysize;
}
}
void VkLevelMeshUploader::UploadIndexes()
{
for (unsigned int i = start; i < end; i++)
{
const SubmeshBufferLocation& cur = locations[i];
auto submesh = cur.Submesh;
uint32_t* indexes = (uint32_t*)(data + datapos);
for (int j = 0, count = submesh->Mesh.Indexes.Size(); j < count; ++j)
*(indexes++) = cur.Vertex.Offset + submesh->Mesh.Indexes[j];
size_t copysize = submesh->Mesh.Indexes.Size() * sizeof(uint32_t);
if (copysize > 0)
cmdbuffer->copyBuffer(transferBuffer.get(), Mesh->IndexBuffer.get(), datapos, cur.Index.Offset * sizeof(uint32_t), copysize);
datapos += copysize;
}
}
void VkLevelMeshUploader::UploadSurfaceIndexes()
{
for (unsigned int i = start; i < end; i++)
{
const SubmeshBufferLocation& cur = locations[i];
auto submesh = cur.Submesh;
int* indexes = (int*)(data + datapos);
for (int j = 0, count = submesh->Mesh.SurfaceIndexes.Size(); j < count; ++j)
*(indexes++) = cur.SurfaceIndex.Offset + submesh->Mesh.SurfaceIndexes[j];
size_t copysize = submesh->Mesh.SurfaceIndexes.Size() * sizeof(int);
if (copysize > 0)
cmdbuffer->copyBuffer(transferBuffer.get(), Mesh->SurfaceIndexBuffer.get(), datapos, cur.SurfaceIndex.Offset * sizeof(int), copysize);
cmdbuffer->copyBuffer(transferBuffer.get(), destbuffer, datapos, range.Offset * sizeof(T), copysize);
datapos += copysize;
}
}
void VkLevelMeshUploader::UploadSurfaces()
{
for (unsigned int i = start; i < end; i++)
for (const MeshBufferRange& range : Mesh->Locations.Surface)
{
const SubmeshBufferLocation& cur = locations[i];
auto submesh = cur.Submesh;
SurfaceInfo* surfaces = (SurfaceInfo*)(data + datapos);
for (int j = 0, count = submesh->GetSurfaceCount(); j < count; ++j)
for (int j = 0, count = range.Size; j < count; j++)
{
LevelMeshSurface* surface = submesh->GetSurface(j);
LevelMeshSurface* surface = Mesh->Mesh->GetSurface(range.Offset + j);
SurfaceInfo info;
info.Normal = FVector3(surface->Plane.X, surface->Plane.Z, surface->Plane.Y);
@ -646,144 +585,115 @@ void VkLevelMeshUploader::UploadSurfaces()
info.Alpha = surface->Alpha;
if (surface->Texture.isValid())
{
#ifdef NEEDS_PORTING
auto mat = FMaterial::ValidateTexture(surface->Texture, 0);
info.TextureIndex = Mesh->fb->GetBindlessTextureIndex(mat, CLAMP_NONE, 0);
#else
info.TextureIndex = 0;
#endif
info.TextureIndex = Mesh->fb->GetBindlessTextureIndex(surface->Texture);
}
else
{
info.TextureIndex = 0;
}
info.LightStart = surface->LightList.Pos;
info.LightEnd = surface->LightList.Pos + surface->LightList.Count;
*(surfaces++) = info;
}
size_t copysize = submesh->GetSurfaceCount() * sizeof(SurfaceInfo);
size_t copysize = range.Size * sizeof(SurfaceInfo);
if (copysize > 0)
cmdbuffer->copyBuffer(transferBuffer.get(), Mesh->SurfaceBuffer.get(), datapos, cur.Surface.Offset * sizeof(SurfaceInfo), copysize);
cmdbuffer->copyBuffer(transferBuffer.get(), Mesh->SurfaceBuffer.get(), datapos, range.Offset * sizeof(SurfaceInfo), copysize);
datapos += copysize;
}
}
void VkLevelMeshUploader::UploadUniforms()
{
for (unsigned int i = start; i < end; i++)
for (const MeshBufferRange& range : Mesh->Locations.Uniforms)
{
const SubmeshBufferLocation& cur = locations[i];
auto submesh = cur.Submesh;
for (int j = 0, count = submesh->Mesh.Uniforms.Size(); j < count; j++)
for (int j = 0, count = range.Size; j < count; j++)
{
auto& surfaceUniforms = submesh->Mesh.Uniforms[j];
auto& material = submesh->Mesh.Materials[j];
if (material.mMaterial)
auto& surfaceUniforms = Mesh->Mesh->Mesh.Uniforms[range.Offset + j];
auto& material = Mesh->Mesh->Mesh.Materials[range.Offset + j];
/*if (material.mMaterial)
{
#ifdef NEEDS_PORTING
auto source = material.mMaterial->Source();
surfaceUniforms.uSpecularMaterial = { source->GetGlossiness(), source->GetSpecularLevel() };
surfaceUniforms.uTextureIndex = Mesh->fb->GetBindlessTextureIndex(material.mMaterial, material.mClampMode, material.mTranslation);
#else
surfaceUniforms.uTextureIndex = 0;
#endif
}
else
else*/
{
surfaceUniforms.uTextureIndex = 0;
}
}
SurfaceUniforms* uniforms = (SurfaceUniforms*)(data + datapos);
size_t copysize = submesh->Mesh.Uniforms.Size() * sizeof(SurfaceUniforms);
memcpy(uniforms, submesh->Mesh.Uniforms.Data(), copysize);
size_t copysize = range.Size * sizeof(SurfaceUniforms);
memcpy(uniforms, Mesh->Mesh->Mesh.Uniforms.Data(), copysize);
if (copysize > 0)
cmdbuffer->copyBuffer(transferBuffer.get(), Mesh->UniformsBuffer.get(), datapos, cur.Uniforms.Offset * sizeof(SurfaceUniforms), copysize);
cmdbuffer->copyBuffer(transferBuffer.get(), Mesh->UniformsBuffer.get(), datapos, range.Offset * sizeof(SurfaceUniforms), copysize);
datapos += copysize;
}
}
void VkLevelMeshUploader::UploadPortals()
{
if (start == 0)
for (const MeshBufferRange& range : Mesh->Locations.Portals)
{
PortalInfo* portals = (PortalInfo*)(data + datapos);
for (auto& portal : Mesh->Mesh->Portals)
for (int i = 0, count = range.Size; i < count; i++)
{
const auto& portal = Mesh->Mesh->Portals[range.Offset + i];
PortalInfo info;
info.transformation = portal.transformation;
*(portals++) = info;
}
size_t copysize = Mesh->Mesh->Portals.Size() * sizeof(PortalInfo);
size_t copysize = range.Size * sizeof(PortalInfo);
if (copysize > 0)
cmdbuffer->copyBuffer(transferBuffer.get(), Mesh->PortalBuffer.get(), datapos, 0, copysize);
cmdbuffer->copyBuffer(transferBuffer.get(), Mesh->PortalBuffer.get(), datapos, range.Offset * sizeof(PortalInfo), copysize);
datapos += copysize;
}
}
void VkLevelMeshUploader::UpdateSizes()
void VkLevelMeshUploader::UploadLights()
{
for (LevelSubmesh* submesh : { Mesh->GetMesh()->StaticMesh.get(), Mesh->GetMesh()->DynamicMesh.get() })
for (const MeshBufferRange& range : Mesh->Locations.Light)
{
SubmeshBufferLocation location;
location.Submesh = submesh;
location.Vertex.Size = submesh->Mesh.Vertices.Size();
location.Index.Size = submesh->Mesh.Indexes.Size();
location.Node.Size = (int)submesh->Collision->get_nodes().size();
location.SurfaceIndex.Size = submesh->Mesh.SurfaceIndexes.Size();
location.Surface.Size = submesh->GetSurfaceCount();
location.UniformIndexes.Size = submesh->Mesh.UniformIndexes.Size();
location.Uniforms.Size = submesh->Mesh.Uniforms.Size();
locations.Push(location);
}
}
void VkLevelMeshUploader::UpdateLocations()
{
for (unsigned int i = 1, count = locations.Size(); i < count; i++)
{
const SubmeshBufferLocation& prev = locations[i - 1];
SubmeshBufferLocation& cur = locations[i];
cur.Vertex.Offset = prev.Vertex.Offset + prev.Vertex.Size;
cur.Index.Offset = prev.Index.Offset + prev.Index.Size;
cur.Node.Offset = prev.Node.Offset + prev.Node.Size;
cur.SurfaceIndex.Offset = prev.SurfaceIndex.Offset + prev.SurfaceIndex.Size;
cur.Surface.Offset = prev.Surface.Offset + prev.Surface.Size;
cur.UniformIndexes.Offset = prev.UniformIndexes.Offset + prev.UniformIndexes.Size;
cur.Uniforms.Offset = prev.Uniforms.Offset + prev.Uniforms.Size;
if (
cur.Vertex.Offset + cur.Vertex.Size > Mesh->GetMaxVertexBufferSize() ||
cur.Index.Offset + cur.Index.Size > Mesh->GetMaxIndexBufferSize() ||
cur.Node.Offset + cur.Node.Size > Mesh->GetMaxNodeBufferSize() ||
cur.SurfaceIndex.Offset + cur.SurfaceIndex.Size > Mesh->GetMaxSurfaceIndexBufferSize() ||
cur.Surface.Offset + cur.Surface.Size > Mesh->GetMaxSurfaceBufferSize() ||
cur.UniformIndexes.Offset + cur.UniformIndexes.Size > Mesh->GetMaxVertexBufferSize() ||
cur.Uniforms.Offset + cur.Uniforms.Size > Mesh->GetMaxUniformsBufferSize())
LightInfo* lights = (LightInfo*)(data + datapos);
for (int i = 0, count = range.Size; i < count; i++)
{
I_FatalError("Dynamic accel struct buffers are too small!");
const auto& light = Mesh->Mesh->Mesh.Lights[range.Offset + i];
LightInfo info;
info.Origin = SwapYZ(light.Origin);
info.RelativeOrigin = SwapYZ(light.RelativeOrigin);
info.Radius = light.Radius;
info.Intensity = light.Intensity;
info.InnerAngleCos = light.InnerAngleCos;
info.OuterAngleCos = light.OuterAngleCos;
info.SpotDir = SwapYZ(light.SpotDir);
info.Color = light.Color;
*(lights++) = info;
}
size_t copysize = range.Size * sizeof(LightInfo);
if (copysize > 0)
cmdbuffer->copyBuffer(transferBuffer.get(), Mesh->LightBuffer.get(), datapos, range.Offset * sizeof(LightInfo), copysize);
datapos += copysize;
}
}
size_t VkLevelMeshUploader::GetTransferSize()
{
// Figure out how much memory we need to transfer it to the GPU
size_t transferBufferSize = sizeof(CollisionNodeBufferHeader) + sizeof(CollisionNode);
for (unsigned int i = start; i < end; i++)
{
const SubmeshBufferLocation& cur = locations[i];
transferBufferSize += cur.Submesh->Mesh.Vertices.Size() * sizeof(FFlatVertex);
transferBufferSize += cur.Submesh->Mesh.UniformIndexes.Size() * sizeof(int);
transferBufferSize += cur.Submesh->Mesh.Indexes.Size() * sizeof(uint32_t);
transferBufferSize += cur.Submesh->Collision->get_nodes().size() * sizeof(CollisionNode);
transferBufferSize += cur.Submesh->Mesh.SurfaceIndexes.Size() * sizeof(int);
transferBufferSize += cur.Submesh->GetSurfaceCount() * sizeof(SurfaceInfo);
transferBufferSize += cur.Submesh->Mesh.Uniforms.Size() * sizeof(SurfaceUniforms);
}
if (start == 0)
transferBufferSize += Mesh->GetMesh()->Portals.Size() * sizeof(PortalInfo);
size_t transferBufferSize = 0;
if (Mesh->Locations.Node.Size() > 0) transferBufferSize += sizeof(CollisionNodeBufferHeader) + sizeof(CollisionNode);
for (const MeshBufferRange& range : Mesh->Locations.Node) transferBufferSize += range.Size * sizeof(CollisionNode);
for (const MeshBufferRange& range : Mesh->Locations.Vertex) transferBufferSize += range.Size * sizeof(FFlatVertex);
for (const MeshBufferRange& range : Mesh->Locations.UniformIndexes) transferBufferSize += range.Size * sizeof(int);
for (const MeshBufferRange& range : Mesh->Locations.Index) transferBufferSize += range.Size * sizeof(uint32_t);
for (const MeshBufferRange& range : Mesh->Locations.SurfaceIndex) transferBufferSize += range.Size * sizeof(int);
for (const MeshBufferRange& range : Mesh->Locations.Surface) transferBufferSize += range.Size * sizeof(SurfaceInfo);
for (const MeshBufferRange& range : Mesh->Locations.Uniforms) transferBufferSize += range.Size * sizeof(SurfaceUniforms);
for (const MeshBufferRange& range : Mesh->Locations.Portals) transferBufferSize += range.Size * sizeof(PortalInfo);
for (const MeshBufferRange& range : Mesh->Locations.LightIndex) transferBufferSize += range.Size * sizeof(int32_t);
for (const MeshBufferRange& range : Mesh->Locations.Light) transferBufferSize += range.Size * sizeof(LightInfo);
return transferBufferSize;
}

View file

@ -34,7 +34,11 @@ struct SurfaceInfo
uint32_t PortalIndex;
int32_t TextureIndex;
float Alpha;
float Padding;
float Padding0;
uint32_t LightStart;
uint32_t LightEnd;
uint32_t Padding1;
uint32_t Padding2;
};
struct PortalInfo
@ -42,24 +46,30 @@ struct PortalInfo
VSMatrix transformation;
};
struct SubmeshBufferRange
struct LightInfo
{
FVector3 Origin;
float Padding0;
FVector3 RelativeOrigin;
float Padding1;
float Radius;
float Intensity;
float InnerAngleCos;
float OuterAngleCos;
FVector3 SpotDir;
float Padding2;
FVector3 Color;
float Padding3;
};
static_assert(sizeof(LightInfo) == sizeof(float) * 20);
struct MeshBufferRange
{
int Offset = 0;
int Size = 0;
};
struct SubmeshBufferLocation
{
LevelSubmesh* Submesh = nullptr;
SubmeshBufferRange Vertex;
SubmeshBufferRange Index;
SubmeshBufferRange Node;
SubmeshBufferRange SurfaceIndex;
SubmeshBufferRange Surface;
SubmeshBufferRange UniformIndexes;
SubmeshBufferRange Uniforms;
};
class VkLevelMesh
{
public:
@ -77,6 +87,8 @@ public:
VulkanBuffer* GetSurfaceBuffer() { return SurfaceBuffer.get(); }
VulkanBuffer* GetUniformsBuffer() { return UniformsBuffer.get(); }
VulkanBuffer* GetPortalBuffer() { return PortalBuffer.get(); }
VulkanBuffer* GetLightBuffer() { return LightBuffer.get(); }
VulkanBuffer* GetLightIndexBuffer() { return LightIndexBuffer.get(); }
LevelMesh* GetMesh() { return Mesh; }
@ -94,20 +106,13 @@ private:
void CreateStaticBLAS();
void CreateDynamicBLAS();
void CreateTLASInstanceBuffer();
void CreateTopLevelAS();
void CreateTopLevelAS(int instanceCount);
void UploadMeshes(bool dynamicOnly);
void UploadTLASInstanceBuffer();
void UpdateTopLevelAS();
void UpdateTopLevelAS(int instanceCount);
BLAS CreateBLAS(LevelSubmesh *submesh, bool preferFastBuild, int vertexOffset, int indexOffset);
int GetMaxVertexBufferSize();
int GetMaxIndexBufferSize();
int GetMaxNodeBufferSize();
int GetMaxSurfaceBufferSize();
int GetMaxUniformsBufferSize();
int GetMaxSurfaceIndexBufferSize();
BLAS CreateBLAS(bool preferFastBuild, int indexOffset, int indexCount);
VulkanRenderDevice* fb = nullptr;
@ -116,6 +121,20 @@ private:
LevelMesh NullMesh;
LevelMesh* Mesh = nullptr;
struct
{
TArray<MeshBufferRange> Vertex;
TArray<MeshBufferRange> Index;
TArray<MeshBufferRange> Node;
TArray<MeshBufferRange> SurfaceIndex;
TArray<MeshBufferRange> Surface;
TArray<MeshBufferRange> UniformIndexes;
TArray<MeshBufferRange> Uniforms;
TArray<MeshBufferRange> Portals;
TArray<MeshBufferRange> Light;
TArray<MeshBufferRange> LightIndex;
} Locations;
std::unique_ptr<VulkanBuffer> VertexBuffer;
std::unique_ptr<VulkanBuffer> UniformIndexBuffer;
std::unique_ptr<VulkanBuffer> IndexBuffer;
@ -123,17 +142,11 @@ private:
std::unique_ptr<VulkanBuffer> SurfaceBuffer;
std::unique_ptr<VulkanBuffer> UniformsBuffer;
std::unique_ptr<VulkanBuffer> PortalBuffer;
std::unique_ptr<VulkanBuffer> LightBuffer;
std::unique_ptr<VulkanBuffer> LightIndexBuffer;
std::unique_ptr<VulkanBuffer> NodeBuffer;
TArray<FFlatVertex> Vertices;
static const int MaxDynamicVertices = 100'000;
static const int MaxDynamicIndexes = 100'000;
static const int MaxDynamicSurfaces = 100'000;
static const int MaxDynamicUniforms = 100'000;
static const int MaxDynamicSurfaceIndexes = 25'000;
static const int MaxDynamicNodes = 10'000;
BLAS StaticBLAS;
BLAS DynamicBLAS;
@ -154,27 +167,24 @@ class VkLevelMeshUploader
public:
VkLevelMeshUploader(VkLevelMesh* mesh);
void Upload(bool dynamicOnly);
void Upload();
private:
void BeginTransfer(size_t transferBufferSize);
void EndTransfer(size_t transferBufferSize);
size_t GetTransferSize();
void ClearRanges();
void UploadNodes();
void UploadVertices();
void UploadUniformIndexes();
void UploadIndexes();
void UploadSurfaceIndexes();
void UploadSurfaces();
void UploadUniforms();
void UploadPortals();
void UpdateSizes();
void UpdateLocations();
size_t GetTransferSize();
void UploadLights();
VkLevelMesh* Mesh;
TArray<SubmeshBufferLocation> locations;
unsigned int start = 0;
unsigned int end = 0;
template<typename T>
void UploadRanges(const TArray<MeshBufferRange>& ranges, const T* srcbuffer, VulkanBuffer* destbuffer);
VkLevelMesh* Mesh = nullptr;
uint8_t* data = nullptr;
size_t datapos = 0;
VulkanCommandBuffer* cmdbuffer = nullptr;

View file

@ -12,8 +12,10 @@
#include "glsl/frag_copy.glsl.h"
#include "glsl/frag_raytrace.glsl.h"
#include "glsl/frag_resolve.glsl.h"
#include "glsl/montecarlo.glsl.h"
#include "glsl/polyfill_rayquery.glsl.h"
#include "glsl/trace_ambient_occlusion.glsl.h"
#include "glsl/trace_bounce.glsl.h"
#include "glsl/trace_levelmesh.glsl.h"
#include "glsl/trace_light.glsl.h"
#include "glsl/trace_sunlight.glsl.h"
@ -29,17 +31,17 @@ bool lm_ao = true;
bool lm_softshadows = true;
bool lm_sunlight = true;
bool lm_blur = true;
bool lm_bounce = true;
VkLightmapper::VkLightmapper(VulkanRenderDevice* fb) : fb(fb)
{
useRayQuery = fb->GetDevice()->SupportsExtension(VK_KHR_RAY_QUERY_EXTENSION_NAME) && fb->GetDevice()->PhysicalDevice.Features.RayQuery.rayQuery;
useRayQuery = fb->IsRayQueryEnabled();
templightlist.Resize(128);
try
{
CreateUniformBuffer();
CreateLightBuffer();
CreateTileBuffer();
CreateDrawIndexedBuffer();
@ -64,8 +66,6 @@ VkLightmapper::~VkLightmapper()
void VkLightmapper::ReleaseResources()
{
if (lights.Buffer)
lights.Buffer->Unmap();
if (copytiles.Buffer)
copytiles.Buffer->Unmap();
if (drawindexed.CommandsBuffer)
@ -82,8 +82,6 @@ void VkLightmapper::SetLevelMesh(LevelMesh* level)
void VkLightmapper::BeginFrame()
{
lights.Pos = 0;
lights.ResetCounter++;
drawindexed.Pos = 0;
}
@ -114,8 +112,8 @@ void VkLightmapper::SelectTiles(const TArray<LightmapTile*>& tiles)
bakeImage.maxY = 0;
selectedTiles.Clear();
const int spacing = 5; // Note: the spacing is here to avoid that the resolve sampler finds data from other surface tiles
RectPacker packer(bakeImageSize - spacing, bakeImageSize - spacing, RectPacker::Spacing(spacing));
// We use a 3 texel spacing between rectangles so that the blur pass will not pick up anything from a neighbour tile.
RectPacker packer(bakeImageSize, bakeImageSize, RectPacker::Spacing(3), RectPacker::Padding(3));
for (int i = 0, count = tiles.Size(); i < count; i++)
{
@ -125,21 +123,25 @@ void VkLightmapper::SelectTiles(const TArray<LightmapTile*>& tiles)
continue;
// Only grab surfaces until our bake texture is full
auto result = packer.insert(tile->AtlasLocation.Width + 2, tile->AtlasLocation.Height + 2);
auto result = packer.insert(tile->AtlasLocation.Width, tile->AtlasLocation.Height);
if (result.pageIndex == 0)
{
SelectedTile selected;
selected.Tile = tile;
selected.X = result.pos.x + 1;
selected.Y = result.pos.y + 1;
selected.X = result.pos.x;
selected.Y = result.pos.y;
selectedTiles.Push(selected);
bakeImage.maxX = std::max<uint16_t>(bakeImage.maxX, uint16_t(selected.X + tile->AtlasLocation.Width + spacing));
bakeImage.maxY = std::max<uint16_t>(bakeImage.maxY, uint16_t(selected.Y + tile->AtlasLocation.Height + spacing));
bakeImage.maxX = std::max<uint16_t>(bakeImage.maxX, uint16_t(result.pos.x + tile->AtlasLocation.Width));
bakeImage.maxY = std::max<uint16_t>(bakeImage.maxY, uint16_t(result.pos.y + tile->AtlasLocation.Height));
tile->NeedsUpdate = false;
}
}
// Include the padding
bakeImage.maxX += 3;
bakeImage.maxY += 3;
}
void VkLightmapper::Render()
@ -150,7 +152,7 @@ void VkLightmapper::Render()
RenderPassBegin()
.RenderPass(raytrace.renderPass.get())
.RenderArea(0, 0, bakeImageSize, bakeImageSize)
.RenderArea(0, 0, bakeImage.maxX, bakeImage.maxY)
.Framebuffer(bakeImage.raytrace.Framebuffer.get())
.AddClearColor(0.0f, 0.0f, 0.0f, 0.0f)
.Execute(cmdbuffer);
@ -169,10 +171,6 @@ void VkLightmapper::Render()
viewport.height = (float)bakeImageSize;
cmdbuffer->setViewport(0, 1, &viewport);
int dynamicSurfaceIndexOffset = mesh->StaticMesh->GetSurfaceCount();
int dynamicFirstIndexOffset = mesh->StaticMesh->Mesh.Indexes.Size();
LevelSubmesh* staticMesh = mesh->StaticMesh.get();
for (int i = 0, count = selectedTiles.Size(); i < count; i++)
{
auto& selectedTile = selectedTiles[i];
@ -191,59 +189,15 @@ void VkLightmapper::Render()
bool buffersFull = false;
// Paint all surfaces visible in the tile
for (LevelMeshSurface* surface : targetTile->Surfaces)
for (int surfaceIndex : targetTile->Surfaces)
{
int surfaceIndexOffset = 0;
int firstIndexOffset = 0;
if (surface->Submesh != staticMesh)
{
surfaceIndexOffset = dynamicSurfaceIndexOffset;
firstIndexOffset = dynamicFirstIndexOffset;
}
LevelMeshSurface* surface = mesh->GetSurface(surfaceIndex);
pc.SurfaceIndex = surfaceIndex;
pc.SurfaceIndex = surfaceIndexOffset + surface->Submesh->GetSurfaceIndex(surface);
if (surface->LightList.ResetCounter != lights.ResetCounter)
{
int lightCount = mesh->AddSurfaceLights(surface, templightlist.Data(), (int)templightlist.Size());
if (lights.Pos + lightCount > lights.BufferSize)
{
// Our light buffer is full. Postpone the rest.
buffersFull = true;
break;
}
surface->LightList.Pos = lights.Pos;
surface->LightList.Count = lightCount;
surface->LightList.ResetCounter = lights.ResetCounter;
LightInfo* lightinfo = &lights.Lights[lights.Pos];
for (int i = 0; i < lightCount; i++)
{
const LevelMeshLight* light = &templightlist[i];
lightinfo->Origin = SwapYZ(light->Origin);
lightinfo->RelativeOrigin = SwapYZ(light->RelativeOrigin);
lightinfo->Radius = light->Radius;
lightinfo->Intensity = light->Intensity;
lightinfo->InnerAngleCos = light->InnerAngleCos;
lightinfo->OuterAngleCos = light->OuterAngleCos;
lightinfo->SpotDir = SwapYZ(light->SpotDir);
lightinfo->Color = light->Color;
lightinfo++;
}
lights.Pos += lightCount;
}
pc.LightStart = surface->LightList.Pos;
pc.LightEnd = pc.LightStart + surface->LightList.Count;
#ifdef USE_DRAWINDIRECT
VkDrawIndexedIndirectCommand cmd;
cmd.indexCount = surface->MeshLocation.NumElements;
cmd.instanceCount = 1;
cmd.firstIndex = firstIndexOffset + surface->MeshLocation.StartElementIndex;
cmd.firstIndex = surface->MeshLocation.StartElementIndex;
cmd.vertexOffset = 0;
cmd.firstInstance = drawindexed.Pos;
drawindexed.Constants[drawindexed.Pos] = pc;
@ -256,10 +210,6 @@ void VkLightmapper::Render()
buffersFull = true;
break;
}
#else
cmdbuffer->pushConstants(raytrace.pipelineLayout.get(), VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(LightmapRaytracePC), &pc);
cmdbuffer->drawIndexed(surface->numElements, 1, surface->startElementIndex, 0, 0);
#endif
}
if (buffersFull)
@ -275,9 +225,7 @@ void VkLightmapper::Render()
selectedTile.Rendered = true;
}
#ifdef USE_DRAWINDIRECT
cmdbuffer->drawIndexedIndirect(drawindexed.CommandsBuffer->buffer, 0, drawindexed.Pos, sizeof(VkDrawIndexedIndirectCommand));
#endif
cmdbuffer->endRenderPass();
@ -539,10 +487,6 @@ void VkLightmapper::CreateShaders()
traceprefix += "#extension GL_EXT_ray_query : require\r\n";
traceprefix += "#define USE_RAYQUERY\r\n";
}
#ifdef USE_DRAWINDIRECT
prefix += "#define USE_DRAWINDIRECT\r\n";
traceprefix += "#define USE_DRAWINDIRECT\r\n";
#endif
auto onIncludeLocal = [](std::string headerName, std::string includerName, size_t depth) { return OnInclude(headerName.c_str(), includerName.c_str(), depth, false); };
auto onIncludeSystem = [](std::string headerName, std::string includerName, size_t depth) { return OnInclude(headerName.c_str(), includerName.c_str(), depth, true); };
@ -574,7 +518,7 @@ void VkLightmapper::CreateShaders()
.DebugName("VkLightmapper.VertCopy")
.Create("VkLightmapper.VertCopy", fb->GetDevice());
for (int i = 0; i < 8; i++)
for (int i = 0; i < 16; i++)
{
std::string defines = traceprefix;
if (i & 1)
@ -583,6 +527,8 @@ void VkLightmapper::CreateShaders()
defines += "#define USE_AO\n";
if (i & 4)
defines += "#define USE_SUNLIGHT\n";
if (i & 8)
defines += "#define USE_BOUNCE\n";
shaders.fragRaytrace[i] = ShaderBuilder()
.Type(ShaderType::Fragment)
@ -640,6 +586,8 @@ int VkLightmapper::GetRaytracePipelineIndex()
index |= 2;
if (lm_sunlight && mesh->SunColor != FVector3(0.0f, 0.0f, 0.0f))
index |= 4;
if (lm_bounce)
index |= 8;
return index;
}
@ -654,8 +602,10 @@ FString VkLightmapper::LoadPrivateShaderLump(const char* lumpname)
{ "shaders/lightmap/frag_copy.glsl", frag_copy_glsl },
{ "shaders/lightmap/frag_raytrace.glsl", frag_raytrace_glsl },
{ "shaders/lightmap/frag_resolve.glsl", frag_resolve_glsl },
{ "shaders/lightmap/montecarlo.glsl", montecarlo_glsl },
{ "shaders/lightmap/polyfill_rayquery.glsl", polyfill_rayquery_glsl },
{ "shaders/lightmap/trace_ambient_occlusion.glsl", trace_ambient_occlusion_glsl },
{ "shaders/lightmap/trace_bounce.glsl", trace_bounce_glsl },
{ "shaders/lightmap/trace_levelmesh.glsl", trace_levelmesh_glsl },
{ "shaders/lightmap/trace_light.glsl", trace_light_glsl },
{ "shaders/lightmap/trace_sunlight.glsl", trace_sunlight_glsl },
@ -710,9 +660,8 @@ void VkLightmapper::CreateRaytracePipeline()
.AddBinding(2, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_FRAGMENT_BIT)
.AddBinding(3, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_FRAGMENT_BIT)
.AddBinding(4, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_FRAGMENT_BIT)
#ifdef USE_DRAWINDIRECT
.AddBinding(5, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT)
#endif
.AddBinding(5, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_FRAGMENT_BIT)
.AddBinding(6, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT)
.DebugName("raytrace.descriptorSetLayout0")
.Create(fb->GetDevice());
@ -739,9 +688,6 @@ void VkLightmapper::CreateRaytracePipeline()
.AddSetLayout(raytrace.descriptorSetLayout0.get())
.AddSetLayout(raytrace.descriptorSetLayout1.get())
.AddSetLayout(fb->GetDescriptorSetManager()->GetBindlessLayout())
#ifndef USE_DRAWINDIRECT
.AddPushConstantRange(VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(LightmapRaytracePC))
#endif
.DebugName("raytrace.pipelineLayout")
.Create(fb->GetDevice());
@ -763,7 +709,7 @@ void VkLightmapper::CreateRaytracePipeline()
.DebugName("raytrace.renderPass")
.Create(fb->GetDevice());
for (int i = 0; i < 8; i++)
for (int i = 0; i < 16; i++)
{
raytrace.pipeline[i] = GraphicsPipelineBuilder()
.Layout(raytrace.pipelineLayout.get())
@ -783,7 +729,7 @@ void VkLightmapper::CreateRaytracePipeline()
raytrace.descriptorPool0 = DescriptorPoolBuilder()
.AddPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1)
.AddPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 5)
.AddPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 6)
.MaxSets(1)
.DebugName("raytrace.descriptorPool0")
.Create(fb->GetDevice());
@ -836,11 +782,10 @@ void VkLightmapper::UpdateAccelStructDescriptors()
.AddBuffer(raytrace.descriptorSet0.get(), 0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, uniforms.Buffer.get(), 0, sizeof(Uniforms))
.AddBuffer(raytrace.descriptorSet0.get(), 1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, fb->GetLevelMesh()->GetSurfaceIndexBuffer())
.AddBuffer(raytrace.descriptorSet0.get(), 2, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, fb->GetLevelMesh()->GetSurfaceBuffer())
.AddBuffer(raytrace.descriptorSet0.get(), 3, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, lights.Buffer.get())
.AddBuffer(raytrace.descriptorSet0.get(), 4, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, fb->GetLevelMesh()->GetPortalBuffer())
#ifdef USE_DRAWINDIRECT
.AddBuffer(raytrace.descriptorSet0.get(), 5, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, drawindexed.ConstantsBuffer.get(), 0, drawindexed.BufferSize * sizeof(LightmapRaytracePC))
#endif
.AddBuffer(raytrace.descriptorSet0.get(), 3, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, fb->GetLevelMesh()->GetLightBuffer())
.AddBuffer(raytrace.descriptorSet0.get(), 4, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, fb->GetLevelMesh()->GetLightIndexBuffer())
.AddBuffer(raytrace.descriptorSet0.get(), 5, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, fb->GetLevelMesh()->GetPortalBuffer())
.AddBuffer(raytrace.descriptorSet0.get(), 6, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, drawindexed.ConstantsBuffer.get(), 0, drawindexed.BufferSize * sizeof(LightmapRaytracePC))
.Execute(fb->GetDevice());
}
@ -949,6 +894,9 @@ void VkLightmapper::CreateBlurPipeline()
.Create(fb->GetDevice());
blur.sampler = SamplerBuilder()
.MinFilter(VK_FILTER_NEAREST)
.MagFilter(VK_FILTER_NEAREST)
.MipmapMode(VK_SAMPLER_MIPMAP_MODE_NEAREST)
.DebugName("blur.Sampler")
.Create(fb->GetDevice());
}
@ -1112,25 +1060,6 @@ void VkLightmapper::CreateUniformBuffer()
.Create(fb->GetDevice());
}
void VkLightmapper::CreateLightBuffer()
{
size_t size = sizeof(LightInfo) * lights.BufferSize;
lights.Buffer = BufferBuilder()
.Usage(
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
VMA_MEMORY_USAGE_UNKNOWN, VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT)
.MemoryType(
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT)
.Size(size)
.DebugName("LightmapLightBuffer")
.Create(fb->GetDevice());
lights.Lights = (LightInfo*)lights.Buffer->Map(0, size);
lights.Pos = 0;
}
void VkLightmapper::CreateTileBuffer()
{
size_t size = sizeof(CopyTileInfo) * copytiles.BufferSize;

View file

@ -20,16 +20,16 @@ struct Uniforms
struct LightmapRaytracePC
{
uint32_t LightStart;
uint32_t LightEnd;
int32_t SurfaceIndex;
int32_t PushPadding1;
int32_t Padding0;
int32_t Padding1;
int32_t Padding2;
FVector3 WorldToLocal;
float TextureSize;
FVector3 ProjLocalToU;
float PushPadding2;
float Padding3;
FVector3 ProjLocalToV;
float PushPadding3;
float Padding4;
float TileX;
float TileY;
float TileWidth;
@ -79,22 +79,6 @@ struct LightmapBakeImage
uint16_t maxY = 0;
};
struct LightInfo
{
FVector3 Origin;
float Padding0;
FVector3 RelativeOrigin;
float Padding1;
float Radius;
float Intensity;
float InnerAngleCos;
float OuterAngleCos;
FVector3 SpotDir;
float Padding2;
FVector3 Color;
float Padding3;
};
struct SelectedTile
{
LightmapTile* Tile = nullptr;
@ -103,8 +87,6 @@ struct SelectedTile
bool Rendered = false;
};
static_assert(sizeof(LightInfo) == sizeof(float) * 20);
struct CopyTileInfo
{
int SrcPosX;
@ -147,7 +129,6 @@ private:
void CreateBlurPipeline();
void CreateCopyPipeline();
void CreateUniformBuffer();
void CreateLightBuffer();
void CreateTileBuffer();
void CreateDrawIndexedBuffer();
void CreateBakeImage();
@ -180,15 +161,6 @@ private:
VkDeviceSize StructStride = sizeof(Uniforms);
} uniforms;
struct
{
const int BufferSize = 2 * 1024 * 1024;
std::unique_ptr<VulkanBuffer> Buffer;
LightInfo* Lights = nullptr;
int Pos = 0;
int ResetCounter = 0;
} lights;
struct
{
const int BufferSize = 100'000;
@ -211,7 +183,7 @@ private:
std::unique_ptr<VulkanShader> vertRaytrace;
std::unique_ptr<VulkanShader> vertScreenquad;
std::unique_ptr<VulkanShader> vertCopy;
std::unique_ptr<VulkanShader> fragRaytrace[8];
std::unique_ptr<VulkanShader> fragRaytrace[16];
std::unique_ptr<VulkanShader> fragResolve;
std::unique_ptr<VulkanShader> fragBlur[2];
std::unique_ptr<VulkanShader> fragCopy;
@ -222,7 +194,7 @@ private:
std::unique_ptr<VulkanDescriptorSetLayout> descriptorSetLayout0;
std::unique_ptr<VulkanDescriptorSetLayout> descriptorSetLayout1;
std::unique_ptr<VulkanPipelineLayout> pipelineLayout;
std::unique_ptr<VulkanPipeline> pipeline[8];
std::unique_ptr<VulkanPipeline> pipeline[16];
std::unique_ptr<VulkanRenderPass> renderPass;
std::unique_ptr<VulkanDescriptorPool> descriptorPool0;
std::unique_ptr<VulkanDescriptorPool> descriptorPool1;

View file

@ -25,7 +25,9 @@ public:
VkLevelMesh* GetLevelMesh() { return levelmesh.get(); }
VkLightmapper* GetLightmapper() { return lightmapper.get(); }
int GetBindlessTextureIndex(FTextureID texture) { return -1; }
int GetBindlessTextureIndex(FTextureID texture) { return 0; }
bool IsRayQueryEnabled() const { return useRayQuery; }
bool useRayQuery = false;