- add some mesh collision classes

This commit is contained in:
Magnus Norddahl 2018-10-29 18:33:22 +01:00
parent 6acea159f7
commit 99a4ffa69f
3 changed files with 1011 additions and 0 deletions

View file

@ -151,6 +151,7 @@ set( SOURCES
src/lightmap/trace.cpp
src/lightmap/wad.cpp
src/lightmap/worker.cpp
src/lightmap/collision.cpp
src/lightmap/kexlib/binfile.cpp
src/lightmap/kexlib/kstring.cpp
src/lightmap/kexlib/memheap.cpp
@ -193,6 +194,7 @@ set( HEADERS
src/lightmap/trace.h
src/lightmap/wad.h
src/lightmap/worker.h
src/lightmap/collision.h
src/lightmap/kexlib/array.h
src/lightmap/kexlib/binfile.h
src/lightmap/kexlib/kstring.h

859
src/lightmap/collision.cpp Normal file
View file

@ -0,0 +1,859 @@
/*
** ZDRay collision
** Copyright (c) 2018 Magnus Norddahl
**
** This software is provided 'as-is', without any express or implied
** warranty. In no event will the authors be held liable for any damages
** arising from the use of this software.
**
** Permission is granted to anyone to use this software for any purpose,
** including commercial applications, and to alter it and redistribute it
** freely, subject to the following restrictions:
**
** 1. The origin of this software must not be misrepresented; you must not
** claim that you wrote the original software. If you use this software
** in a product, an acknowledgment in the product documentation would be
** appreciated but is not required.
** 2. Altered source versions must be plainly marked as such, and must not be
** misrepresented as being the original software.
** 3. This notice may not be removed or altered from any source distribution.
**
*/
#include "collision.h"
#include <algorithm>
#include <functional>
#undef min
#undef max
TriangleMeshShape::TriangleMeshShape(const kexVec3 *vertices, int num_vertices, const unsigned int *elements, int num_elements)
: vertices(vertices), num_vertices(num_vertices), elements(elements), num_elements(num_elements), root(-1)
{
int num_triangles = num_elements / 3;
if (num_triangles <= 0)
return;
std::vector<int> triangles;
std::vector<kexVec3> centroids;
triangles.reserve(num_triangles);
centroids.reserve(num_triangles);
for (int i = 0; i < num_triangles; i++)
{
triangles.push_back(i);
int element_index = i * 3;
kexVec3 centroid = (vertices[elements[element_index + 0]] + vertices[elements[element_index + 1]] + vertices[elements[element_index + 2]]) * (1.0f / 3.0f);
centroids.push_back(centroid);
}
std::vector<int> work_buffer(num_triangles * 2);
root = subdivide(&triangles[0], (int)triangles.size(), &centroids[0], &work_buffer[0]);
}
float TriangleMeshShape::sweep(TriangleMeshShape *shape1, SphereShape *shape2, const kexVec3 &target)
{
return sweep(shape1, shape2, shape1->root, target);
}
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape1, TriangleMeshShape *shape2)
{
return find_any_hit(shape1, shape2, shape1->root, shape2->root);
}
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape1, SphereShape *shape2)
{
return find_any_hit(shape1, shape2, shape1->root);
}
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape, const kexVec3 &ray_start, const kexVec3 &ray_end)
{
return find_any_hit(shape, ray_start, ray_end, shape->root);
}
float TriangleMeshShape::sweep(TriangleMeshShape *shape1, SphereShape *shape2, int a, const kexVec3 &target)
{
if (sweep_overlap_bv_sphere(shape1, shape2, a, target))
{
if (shape1->is_leaf(a))
{
return sweep_intersect_triangle_sphere(shape1, shape2, a, target);
}
else
{
return std::min(sweep(shape1, shape2, shape1->nodes[a].left, target), sweep(shape1, shape2, shape1->nodes[a].right, target));
}
}
return 1.0f;
}
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape1, SphereShape *shape2, int a)
{
if (overlap_bv_sphere(shape1, shape2, a))
{
if (shape1->is_leaf(a))
{
return overlap_triangle_sphere(shape1, shape2, a);
}
else
{
if (find_any_hit(shape1, shape2, shape1->nodes[a].left))
return true;
else
return find_any_hit(shape1, shape2, shape1->nodes[a].right);
}
}
return false;
}
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b)
{
bool leaf_a = shape1->is_leaf(a);
bool leaf_b = shape2->is_leaf(b);
if (leaf_a && leaf_b)
{
return overlap_triangle_triangle(shape1, shape2, a, b);
}
else if (!leaf_a && !leaf_b)
{
if (overlap_bv(shape1, shape2, a, b))
{
if (shape1->volume(a) > shape2->volume(b))
{
if (find_any_hit(shape1, shape2, shape1->nodes[a].left, b))
return true;
else
return find_any_hit(shape1, shape2, shape1->nodes[a].right, b);
}
else
{
if (find_any_hit(shape1, shape2, a, shape2->nodes[b].left))
return true;
else
return find_any_hit(shape1, shape2, a, shape2->nodes[b].right);
}
}
return false;
}
else if (leaf_a)
{
if (overlap_bv_triangle(shape2, shape1, b, a))
{
if (find_any_hit(shape1, shape2, a, shape2->nodes[b].left))
return true;
else
return find_any_hit(shape1, shape2, a, shape2->nodes[b].right);
}
return false;
}
else
{
if (overlap_bv_triangle(shape1, shape2, a, b))
{
if (find_any_hit(shape1, shape2, shape1->nodes[a].left, b))
return true;
else
return find_any_hit(shape1, shape2, shape1->nodes[a].right, b);
}
return false;
}
}
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape, const kexVec3 &ray_start, const kexVec3 &ray_end, int a)
{
if (overlap_bv_ray(shape, ray_start, ray_end, a))
{
if (shape->is_leaf(a))
{
return intersect_triangle_ray(shape, ray_start, ray_end, a) < 1.0f;
}
else
{
if (find_any_hit(shape, ray_start, ray_end, shape->nodes[a].left))
return true;
else
return find_any_hit(shape, ray_start, ray_end, shape->nodes[a].right);
}
}
return false;
}
bool TriangleMeshShape::overlap_bv_ray(TriangleMeshShape *shape, const kexVec3 &ray_start, const kexVec3 &ray_end, int a)
{
return IntersectionTest::ray_aabb(ray_start, ray_end, shape->nodes[a].aabb) == IntersectionTest::overlap;
}
float TriangleMeshShape::intersect_triangle_ray(TriangleMeshShape *shape, const kexVec3 &ray_start, const kexVec3 &ray_end, int a)
{
const int start_element = shape->nodes[a].element_index;
kexVec3 p[3] =
{
shape->vertices[shape->elements[start_element]],
shape->vertices[shape->elements[start_element + 1]],
shape->vertices[shape->elements[start_element + 2]]
};
// MoellerTrumbore ray-triangle intersection algorithm:
kexVec3 D = ray_end - ray_start;
// Find vectors for two edges sharing p[0]
kexVec3 e1 = p[1] - p[0];
kexVec3 e2 = p[2] - p[0];
// Begin calculating determinant - also used to calculate u parameter
kexVec3 P = kexVec3::Cross(D, e2);
float det = kexVec3::Dot(e1, P);
// If determinant is near zero, ray lies in plane of triangle
if (det > -FLT_EPSILON && det < FLT_EPSILON)
return 1.0f;
float inv_det = 1.0f / det;
// Calculate distance from p[0] to ray origin
kexVec3 T = ray_start - p[0];
// Calculate u parameter and test bound
float u = kexVec3::Dot(T, P) * inv_det;
// Check if the intersection lies outside of the triangle
if (u < 0.f || u > 1.f)
return 1.0f;
// Prepare to test v parameter
kexVec3 Q = kexVec3::Cross(T, e1);
// Calculate V parameter and test bound
float v = kexVec3::Dot(D, Q) * inv_det;
// The intersection lies outside of the triangle
if (v < 0.f || u + v > 1.f)
return 1.0f;
float t = kexVec3::Dot(e2, Q) * inv_det;
if (t > FLT_EPSILON)
return t;
// No hit, no win
return 1.0f;
}
bool TriangleMeshShape::sweep_overlap_bv_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int a, const kexVec3 &target)
{
// Convert to ray test by expanding the AABB:
kexBBox aabb = shape1->nodes[a].aabb;
aabb.min -= shape2->radius;
aabb.max += shape2->radius;
return IntersectionTest::ray_aabb(shape2->center, target, aabb) == IntersectionTest::overlap;
}
float TriangleMeshShape::sweep_intersect_triangle_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int a, const kexVec3 &target)
{
const int start_element = shape1->nodes[a].element_index;
kexVec3 p[3] =
{
shape1->vertices[shape1->elements[start_element]],
shape1->vertices[shape1->elements[start_element + 1]],
shape1->vertices[shape1->elements[start_element + 2]]
};
kexVec3 c = shape2->center;
kexVec3 e = target;
float r = shape2->radius;
// Dynamic intersection test between a ray and the minkowski sum of the sphere and polygon:
kexVec3 n = kexVec3::Normalize(kexVec3::Cross(p[1] - p[0], p[2] - p[0]));
kexVec4 plane(n, -kexVec3::Dot(n, p[0]));
// Step 1: Plane intersect test
float sc = kexVec4::Dot(plane, kexVec4(c, 1.0f));
float se = kexVec4::Dot(plane, kexVec4(e, 1.0f));
bool same_side = sc * se > 0.0f;
if (same_side && std::abs(sc) > r && std::abs(se) > r)
return 1.0f;
// Step 1a: Check if point is in polygon (using crossing ray test in 2d)
{
float t = (sc - r) / (sc - se);
kexVec3 vt = c + (e - c) * t;
kexVec3 u0 = p[1] - p[0];
kexVec3 u1 = p[2] - p[0];
kexVec2 v_2d[3] =
{
kexVec2(0.0f, 0.0f),
kexVec2(kexVec3::Dot(u0, u0), 0.0f),
kexVec2(0.0f, kexVec3::Dot(u1, u1))
};
kexVec2 point(kexVec3::Dot(u0, vt), kexVec3::Dot(u1, vt));
bool inside = false;
kexVec2 e0 = v_2d[2];
bool y0 = e0.y >= point.y;
for (int i = 0; i < 3; i++)
{
kexVec2 e1 = v_2d[i];
bool y1 = e1.y >= point.y;
if (y0 != y1 && ((e1.y - point.y) * (e0.x - e1.x) >= (e1.x - point.x) * (e0.y - e1.y)) == y1)
inside = !inside;
y0 = y1;
e0 = e1;
}
if (inside)
return t;
}
// Step 2: Edge intersect test
kexVec3 ke[3] =
{
p[1] - p[0],
p[2] - p[1],
p[0] - p[2],
};
kexVec3 kg[3] =
{
p[0] - c,
p[1] - c,
p[2] - c,
};
kexVec3 ks = e - c;
float kgg[3];
float kgs[3];
float kss[3];
for (int i = 0; i < 3; i++)
{
float kee = kexVec3::Dot(ke[i], ke[i]);
float keg = kexVec3::Dot(ke[i], kg[i]);
float kes = kexVec3::Dot(ke[i], ks);
kgg[i] = kexVec3::Dot(kg[i], kg[i]);
kgs[i] = kexVec3::Dot(kg[i], ks);
kss[i] = kexVec3::Dot(ks, ks);
float aa = kee * kss[i] - kes * kes;
float bb = 2 * (keg * kes - kee * kgs[i]);
float cc = kee * (kgg[i] - r * r) - keg * keg;
float sign = (bb >= 0.0f) ? 1.0f : -1.0f;
float q = -0.5f * (bb + sign * std::sqrt(bb * bb - 4 * aa * cc));
float t0 = q / aa;
float t1 = cc / q;
float t;
if (t0 < 0.0f || t0 > 1.0f)
t = t1;
else if (t1 < 0.0f || t1 > 1.0f)
t = t0;
else
t = std::min(t0, t1);
if (t >= 0.0f && t <= 1.0f)
{
kexVec3 ct = c + ks * t;
float d = kexVec3::Dot(ct - p[i], ke[i]);
if (d >= 0.0f && d <= kee)
return t;
}
}
// Step 3: Point intersect test
for (int i = 0; i < 3; i++)
{
float aa = kss[i];
float bb = -2.0f * kgs[i];
float cc = kgg[i] - r * r;
float sign = (bb >= 0.0f) ? 1.0f : -1.0f;
float q = -0.5f * (bb + sign * std::sqrt(bb * bb - 4 * aa * cc));
float t0 = q / aa;
float t1 = cc / q;
float t;
if (t0 < 0.0f || t0 > 1.0f)
t = t1;
else if (t1 < 0.0f || t1 > 1.0f)
t = t0;
else
t = std::min(t0, t1);
if (t >= 0.0f && t <= 1.0f)
return t;
}
return 1.0f;
}
bool TriangleMeshShape::overlap_bv(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b)
{
return IntersectionTest::aabb(shape1->nodes[a].aabb, shape2->nodes[b].aabb) == IntersectionTest::overlap;
}
bool TriangleMeshShape::overlap_bv_triangle(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b)
{
return false;
}
bool TriangleMeshShape::overlap_bv_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int a)
{
return IntersectionTest::sphere_aabb(shape2->center, shape2->radius, shape1->nodes[a].aabb) == IntersectionTest::overlap;
}
bool TriangleMeshShape::overlap_triangle_triangle(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b)
{
return false;
}
bool TriangleMeshShape::overlap_triangle_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int shape1_node_index)
{
// http://realtimecollisiondetection.net/blog/?p=103
int element_index = shape1->nodes[shape1_node_index].element_index;
kexVec3 P = shape2->center;
kexVec3 A = shape1->vertices[shape1->elements[element_index]] - P;
kexVec3 B = shape1->vertices[shape1->elements[element_index + 1]] - P;
kexVec3 C = shape1->vertices[shape1->elements[element_index + 2]] - P;
float r = shape2->radius;
float rr = r * r;
// Testing if sphere lies outside the triangle plane
kexVec3 V = kexVec3::Cross(B - A, C - A);
float d = kexVec3::Dot(A, V);
float e = kexVec3::Dot(V, V);
bool sep1 = d * d > rr * e;
// Testing if sphere lies outside a triangle vertex
float aa = kexVec3::Dot(A, A);
float ab = kexVec3::Dot(A, B);
float ac = kexVec3::Dot(A, C);
float bb = kexVec3::Dot(B, B);
float bc = kexVec3::Dot(B, C);
float cc = kexVec3::Dot(C, C);
bool sep2 = (aa > rr) && (ab > aa) && (ac > aa);
bool sep3 = (bb > rr) && (ab > bb) && (bc > bb);
bool sep4 = (cc > rr) && (ac > cc) && (bc > cc);
// Testing if sphere lies outside a triangle edge
kexVec3 AB = B - A;
kexVec3 BC = C - B;
kexVec3 CA = A - C;
float d1 = ab - aa;
float d2 = bc - bb;
float d3 = ac - cc;
float e1 = kexVec3::Dot(AB, AB);
float e2 = kexVec3::Dot(BC, BC);
float e3 = kexVec3::Dot(CA, CA);
kexVec3 Q1 = A * e1 - AB * d1;
kexVec3 Q2 = B * e2 - BC * d2;
kexVec3 Q3 = C * e3 - CA * d3;
kexVec3 QC = C * e1 - Q1;
kexVec3 QA = A * e2 - Q2;
kexVec3 QB = B * e3 - Q3;
bool sep5 = (kexVec3::Dot(Q1, Q1) > rr * e1 * e1) && (kexVec3::Dot(Q1, QC) > 0.0f);
bool sep6 = (kexVec3::Dot(Q2, Q2) > rr * e2 * e2) && (kexVec3::Dot(Q2, QA) > 0.0f);
bool sep7 = (kexVec3::Dot(Q3, Q3) > rr * e3 * e3) && (kexVec3::Dot(Q3, QB) > 0.0f);
bool separated = sep1 || sep2 || sep3 || sep4 || sep5 || sep6 || sep7;
return (!separated);
}
bool TriangleMeshShape::is_leaf(int node_index)
{
return nodes[node_index].element_index != -1;
}
float TriangleMeshShape::volume(int node_index)
{
kexVec3 extents = nodes[node_index].aabb.Extents();
return extents.x * extents.y * extents.z;
}
int TriangleMeshShape::get_min_depth()
{
std::function<int(int, int)> visit;
visit = [&](int level, int node_index) -> int {
const Node &node = nodes[node_index];
if (node.element_index == -1)
return std::min(visit(level + 1, node.left), visit(level + 1, node.right));
else
return level;
};
return visit(1, root);
}
int TriangleMeshShape::get_max_depth()
{
std::function<int(int, int)> visit;
visit = [&](int level, int node_index) -> int {
const Node &node = nodes[node_index];
if (node.element_index == -1)
return std::max(visit(level + 1, node.left), visit(level + 1, node.right));
else
return level;
};
return visit(1, root);
}
float TriangleMeshShape::get_average_depth()
{
std::function<float(int, int)> visit;
visit = [&](int level, int node_index) -> float {
const Node &node = nodes[node_index];
if (node.element_index == -1)
return visit(level + 1, node.left) + visit(level + 1, node.right);
else
return (float)level;
};
float depth_sum = visit(1, root);
int leaf_count = (num_elements / 3);
return depth_sum / leaf_count;
}
float TriangleMeshShape::get_balanced_depth()
{
return std::log2((float)(num_elements / 3));
}
int TriangleMeshShape::subdivide(int *triangles, int num_triangles, const kexVec3 *centroids, int *work_buffer)
{
if (num_triangles == 0)
return -1;
// Find bounding box and median of the triangle centroids
kexVec3 median;
kexVec3 min, max;
min = vertices[elements[triangles[0] * 3]];
max = min;
for (int i = 0; i < num_triangles; i++)
{
int element_index = triangles[i] * 3;
for (int j = 0; j < 3; j++)
{
const kexVec3 &vertex = vertices[elements[element_index + j]];
min.x = std::min(min.x, vertex.x);
min.y = std::min(min.y, vertex.y);
min.z = std::min(min.z, vertex.z);
max.x = std::max(max.x, vertex.x);
max.y = std::max(max.y, vertex.y);
max.z = std::max(max.z, vertex.z);
}
median += centroids[triangles[i]];
}
median /= (float)num_triangles;
if (num_triangles == 1) // Leaf node
{
nodes.push_back(Node(min, max, triangles[0] * 3));
return (int)nodes.size() - 1;
}
// Find the longest axis
float axis_lengths[3] =
{
max.x - min.x,
max.y - min.y,
max.z - min.z
};
int axis_order[3] = { 0, 1, 2 };
std::sort(axis_order, axis_order + 3, [&](int a, int b) { return axis_lengths[a] > axis_lengths[b]; });
// Try split at longest axis, then if that fails the next longest, and then the remaining one
int left_count, right_count;
kexVec3 axis;
for (int attempt = 0; attempt < 3; attempt++)
{
// Find the split plane for axis
switch (axis_order[attempt])
{
default:
case 0: axis = kexVec3(1.0f, 0.0f, 0.0f); break;
case 1: axis = kexVec3(0.0f, 1.0f, 0.0f); break;
case 2: axis = kexVec3(0.0f, 0.0f, 1.0f); break;
}
kexVec4 plane(axis, -kexVec3::Dot(median, axis));
// Split triangles into two
left_count = 0;
right_count = 0;
for (int i = 0; i < num_triangles; i++)
{
int triangle = triangles[i];
int element_index = triangle * 3;
float side = kexVec4::Dot(kexVec4(centroids[triangles[i]], 1.0f), plane);
if (side >= 0.0f)
{
work_buffer[left_count] = triangle;
left_count++;
}
else
{
work_buffer[num_triangles + right_count] = triangle;
right_count++;
}
}
if (left_count != 0 && right_count != 0)
break;
}
// Check if something went wrong when splitting and do a random split instead
if (left_count == 0 || right_count == 0)
{
left_count = num_triangles / 2;
right_count = num_triangles - left_count;
}
else
{
// Move result back into triangles list:
for (int i = 0; i < left_count; i++)
triangles[i] = work_buffer[i];
for (int i = 0; i < right_count; i++)
triangles[i + left_count] = work_buffer[num_triangles + i];
}
// Create child nodes:
int left_index = -1;
int right_index = -1;
if (left_count > 0)
left_index = subdivide(triangles, left_count, centroids, work_buffer);
if (right_count > 0)
right_index = subdivide(triangles + left_count, right_count, centroids, work_buffer);
nodes.push_back(Node(min, max, left_index, right_index));
return (int)nodes.size() - 1;
}
/////////////////////////////////////////////////////////////////////////////
IntersectionTest::Result IntersectionTest::plane_aabb(const kexVec4 &plane, const kexBBox &aabb)
{
kexVec3 center = aabb.Center();
kexVec3 extents = aabb.Extents();
float e = extents.x * std::abs(plane.x) + extents.y * std::abs(plane.y) + extents.z * std::abs(plane.z);
float s = center.x * plane.x + center.y * plane.y + center.z * plane.z + plane.w;
if (s - e > 0)
return inside;
else if (s + e < 0)
return outside;
else
return intersecting;
}
IntersectionTest::Result IntersectionTest::plane_obb(const kexVec4 &plane, const kexOrientedBBox &obb)
{
kexVec3 n = plane.ToVec3();
float d = plane.w;
float e = obb.Extents.x * std::abs(kexVec3::Dot(obb.axis_x, n)) + obb.Extents.y * std::abs(kexVec3::Dot(obb.axis_y, n)) + obb.Extents.z * std::abs(kexVec3::Dot(obb.axis_z, n));
float s = kexVec3::Dot(obb.Center, n) + d;
if (s - e > 0)
return inside;
else if (s + e < 0)
return outside;
else
return intersecting;
}
IntersectionTest::OverlapResult IntersectionTest::sphere(const kexVec3 &center1, float radius1, const kexVec3 &center2, float radius2)
{
kexVec3 h = center1 - center2;
float square_distance = kexVec3::Dot(h, h);
float radius_sum = radius1 + radius2;
if (square_distance > radius_sum * radius_sum)
return disjoint;
else
return overlap;
}
IntersectionTest::OverlapResult IntersectionTest::sphere_aabb(const kexVec3 &center, float radius, const kexBBox &aabb)
{
kexVec3 a = aabb.min - center;
kexVec3 b = center - aabb.max;
a.x = std::max(a.x, 0.0f);
a.y = std::max(a.y, 0.0f);
a.z = std::max(a.z, 0.0f);
b.x = std::max(b.x, 0.0f);
b.y = std::max(b.y, 0.0f);
b.z = std::max(b.z, 0.0f);
kexVec3 e = a + b;
float d = kexVec3::Dot(e, e);
if (d > radius * radius)
return disjoint;
else
return overlap;
}
IntersectionTest::OverlapResult IntersectionTest::aabb(const kexBBox &a, const kexBBox &b)
{
if (a.min.x > b.max.x || b.min.x > a.max.x ||
a.min.y > b.max.y || b.min.y > a.max.y ||
a.min.z > b.max.z || b.min.z > a.max.z)
{
return disjoint;
}
else
{
return overlap;
}
}
IntersectionTest::Result IntersectionTest::frustum_aabb(const FrustumPlanes &frustum, const kexBBox &box)
{
bool is_intersecting = false;
for (int i = 0; i < 6; i++)
{
Result result = plane_aabb(frustum.planes[i], box);
if (result == outside)
return outside;
else if (result == intersecting)
is_intersecting = true;
break;
}
if (is_intersecting)
return intersecting;
else
return inside;
}
IntersectionTest::Result IntersectionTest::frustum_obb(const FrustumPlanes &frustum, const kexOrientedBBox &box)
{
bool is_intersecting = false;
for (int i = 0; i < 6; i++)
{
Result result = plane_obb(frustum.planes[i], box);
if (result == outside)
return outside;
else if (result == intersecting)
is_intersecting = true;
}
if (is_intersecting)
return intersecting;
else
return inside;
}
IntersectionTest::OverlapResult IntersectionTest::ray_aabb(const kexVec3 &ray_start, const kexVec3 &ray_end, const kexBBox &aabb)
{
kexVec3 c = (ray_start + ray_end) * 0.5f;
kexVec3 w = ray_end - c;
kexVec3 h = aabb.Extents();
c -= aabb.Center();
kexVec3 v(std::abs(w.x), std::abs(w.y), std::abs(w.z));
if (std::abs(c.x) > v.x + h.x || std::abs(c.y) > v.y + h.y || std::abs(c.z) > v.z + h.z)
return disjoint;
if (std::abs(c.y * w.z - c.z * w.y) > h.y * v.z + h.z * v.y ||
std::abs(c.x * w.z - c.z * w.x) > h.x * v.z + h.z * v.x ||
std::abs(c.x * w.y - c.y * w.x) > h.x * v.y + h.y * v.x)
return disjoint;
return overlap;
}
/////////////////////////////////////////////////////////////////////////////
FrustumPlanes::FrustumPlanes()
{
}
FrustumPlanes::FrustumPlanes(const kexMatrix &world_to_projection)
{
planes[0] = near_frustum_plane(world_to_projection);
planes[1] = far_frustum_plane(world_to_projection);
planes[2] = left_frustum_plane(world_to_projection);
planes[3] = right_frustum_plane(world_to_projection);
planes[4] = top_frustum_plane(world_to_projection);
planes[5] = bottom_frustum_plane(world_to_projection);
}
kexVec4 FrustumPlanes::left_frustum_plane(const kexMatrix &matrix)
{
kexVec4 plane(
matrix[3 + 0 * 4] + matrix[0 + 0 * 4],
matrix[3 + 1 * 4] + matrix[0 + 1 * 4],
matrix[3 + 2 * 4] + matrix[0 + 2 * 4],
matrix[3 + 3 * 4] + matrix[0 + 3 * 4]);
plane /= plane.ToVec3().Length();
return plane;
}
kexVec4 FrustumPlanes::right_frustum_plane(const kexMatrix &matrix)
{
kexVec4 plane(
matrix[3 + 0 * 4] - matrix[0 + 0 * 4],
matrix[3 + 1 * 4] - matrix[0 + 1 * 4],
matrix[3 + 2 * 4] - matrix[0 + 2 * 4],
matrix[3 + 3 * 4] - matrix[0 + 3 * 4]);
plane /= plane.ToVec3().Length();
return plane;
}
kexVec4 FrustumPlanes::top_frustum_plane(const kexMatrix &matrix)
{
kexVec4 plane(
matrix[3 + 0 * 4] - matrix[1 + 0 * 4],
matrix[3 + 1 * 4] - matrix[1 + 1 * 4],
matrix[3 + 2 * 4] - matrix[1 + 2 * 4],
matrix[3 + 3 * 4] - matrix[1 + 3 * 4]);
plane /= plane.ToVec3().Length();
return plane;
}
kexVec4 FrustumPlanes::bottom_frustum_plane(const kexMatrix &matrix)
{
kexVec4 plane(
matrix[3 + 0 * 4] + matrix[1 + 0 * 4],
matrix[3 + 1 * 4] + matrix[1 + 1 * 4],
matrix[3 + 2 * 4] + matrix[1 + 2 * 4],
matrix[3 + 3 * 4] + matrix[1 + 3 * 4]);
plane /= plane.ToVec3().Length();
return plane;
}
kexVec4 FrustumPlanes::near_frustum_plane(const kexMatrix &matrix)
{
kexVec4 plane(
matrix[3 + 0 * 4] + matrix[2 + 0 * 4],
matrix[3 + 1 * 4] + matrix[2 + 1 * 4],
matrix[3 + 2 * 4] + matrix[2 + 2 * 4],
matrix[3 + 3 * 4] + matrix[2 + 3 * 4]);
plane /= plane.ToVec3().Length();
return plane;
}
kexVec4 FrustumPlanes::far_frustum_plane(const kexMatrix &matrix)
{
kexVec4 plane(
matrix[3 + 0 * 4] - matrix[2 + 0 * 4],
matrix[3 + 1 * 4] - matrix[2 + 1 * 4],
matrix[3 + 2 * 4] - matrix[2 + 2 * 4],
matrix[3 + 3 * 4] - matrix[2 + 3 * 4]);
plane /= plane.ToVec3().Length();
return plane;
}

150
src/lightmap/collision.h Normal file
View file

@ -0,0 +1,150 @@
/*
** ZDRay collision
** Copyright (c) 2018 Magnus Norddahl
**
** This software is provided 'as-is', without any express or implied
** warranty. In no event will the authors be held liable for any damages
** arising from the use of this software.
**
** Permission is granted to anyone to use this software for any purpose,
** including commercial applications, and to alter it and redistribute it
** freely, subject to the following restrictions:
**
** 1. The origin of this software must not be misrepresented; you must not
** claim that you wrote the original software. If you use this software
** in a product, an acknowledgment in the product documentation would be
** appreciated but is not required.
** 2. Altered source versions must be plainly marked as such, and must not be
** misrepresented as being the original software.
** 3. This notice may not be removed or altered from any source distribution.
**
*/
#pragma once
#include "kexlib/math/mathlib.h"
#include <vector>
class SphereShape
{
public:
SphereShape() { }
SphereShape(const kexVec3 &center, float radius) : center(center), radius(radius) { }
kexVec3 center;
float radius = 0.0f;
};
class TriangleMeshShape
{
public:
TriangleMeshShape(const kexVec3 *vertices, int num_vertices, const unsigned int *elements, int num_elements);
int get_min_depth();
int get_max_depth();
float get_average_depth();
float get_balanced_depth();
static float sweep(TriangleMeshShape *shape1, SphereShape *shape2, const kexVec3 &target);
static bool find_any_hit(TriangleMeshShape *shape1, TriangleMeshShape *shape2);
static bool find_any_hit(TriangleMeshShape *shape1, SphereShape *shape2);
static bool find_any_hit(TriangleMeshShape *shape, const kexVec3 &ray_start, const kexVec3 &ray_end);
struct Node
{
Node() : left(-1), right(-1), element_index(-1) { }
Node(const kexVec3 &aabb_min, const kexVec3 &aabb_max, int element_index) : aabb(aabb_min, aabb_max), left(-1), right(-1), element_index(element_index) { }
Node(const kexVec3 &aabb_min, const kexVec3 &aabb_max, int left, int right) : aabb(aabb_min, aabb_max), left(left), right(right), element_index(-1) { }
kexBBox aabb;
int left;
int right;
int element_index;
};
const kexVec3 *vertices;
const int num_vertices;
const unsigned int *elements;
int num_elements;
std::vector<Node> nodes;
int root;
private:
static float sweep(TriangleMeshShape *shape1, SphereShape *shape2, int a, const kexVec3 &target);
static bool find_any_hit(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b);
static bool find_any_hit(TriangleMeshShape *shape1, SphereShape *shape2, int a);
static bool find_any_hit(TriangleMeshShape *shape1, const kexVec3 &ray_start, const kexVec3 &ray_end, int a);
inline static bool overlap_bv_ray(TriangleMeshShape *shape, const kexVec3 &ray_start, const kexVec3 &ray_end, int a);
inline static float intersect_triangle_ray(TriangleMeshShape *shape, const kexVec3 &ray_start, const kexVec3 &ray_end, int a);
inline static bool sweep_overlap_bv_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int a, const kexVec3 &target);
inline static float sweep_intersect_triangle_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int a, const kexVec3 &target);
inline static bool overlap_bv(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b);
inline static bool overlap_bv_triangle(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b);
inline static bool overlap_bv_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int a);
inline static bool overlap_triangle_triangle(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b);
inline static bool overlap_triangle_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int a);
inline bool is_leaf(int node_index);
inline float volume(int node_index);
int subdivide(int *triangles, int num_triangles, const kexVec3 *centroids, int *work_buffer);
};
class kexOrientedBBox
{
public:
kexVec3 Center;
kexVec3 Extents;
kexVec3 axis_x;
kexVec3 axis_y;
kexVec3 axis_z;
};
class FrustumPlanes
{
public:
FrustumPlanes();
explicit FrustumPlanes(const kexMatrix &world_to_projection);
kexVec4 planes[6];
private:
static kexVec4 left_frustum_plane(const kexMatrix &matrix);
static kexVec4 right_frustum_plane(const kexMatrix &matrix);
static kexVec4 top_frustum_plane(const kexMatrix &matrix);
static kexVec4 bottom_frustum_plane(const kexMatrix &matrix);
static kexVec4 near_frustum_plane(const kexMatrix &matrix);
static kexVec4 far_frustum_plane(const kexMatrix &matrix);
};
class IntersectionTest
{
public:
enum Result
{
outside,
inside,
intersecting,
};
enum OverlapResult
{
disjoint,
overlap
};
static Result plane_aabb(const kexVec4 &plane, const kexBBox &aabb);
static Result plane_obb(const kexVec4 &plane, const kexOrientedBBox &obb);
static OverlapResult sphere(const kexVec3 &center1, float radius1, const kexVec3 &center2, float radius2);
static OverlapResult sphere_aabb(const kexVec3 &center, float radius, const kexBBox &aabb);
static OverlapResult aabb(const kexBBox &a, const kexBBox &b);
static Result frustum_aabb(const FrustumPlanes &frustum, const kexBBox &box);
static Result frustum_obb(const FrustumPlanes &frustum, const kexOrientedBBox &box);
static OverlapResult ray_aabb(const kexVec3 &ray_start, const kexVec3 &ray_end, const kexBBox &box);
};