Implement bounces and emissive surfaces

This commit is contained in:
Magnus Norddahl 2021-11-07 23:52:44 +01:00
parent 8df36944eb
commit 0c4199b281
12 changed files with 377 additions and 248 deletions

View file

@ -5,7 +5,9 @@ static const char* glsl_rchit_bounce = R"glsl(
struct hitPayload
{
vec3 hitPosition;
float hitAttenuation;
int hitSurfaceIndex;
};
struct SurfaceInfo
@ -25,9 +27,10 @@ layout(set = 0, binding = 6) buffer SurfaceBuffer { SurfaceInfo surfaces[]; };
void main()
{
// SurfaceInfo surface = surfaces[surfaceIndices[gl_PrimitiveID]];
payload.hitAttenuation = 0.0;
int surfaceIndex = surfaceIndices[gl_PrimitiveID];
payload.hitPosition = gl_WorldRayOriginEXT + gl_WorldRayDirectionEXT * gl_HitTEXT;
payload.hitSurfaceIndex = surfaceIndex;
payload.hitAttenuation = 1.0;
}
)glsl";

View file

@ -5,7 +5,9 @@ static const char* glsl_rchit_light = R"glsl(
struct hitPayload
{
vec3 hitPosition;
float hitAttenuation;
int hitSurfaceIndex;
};
struct SurfaceInfo
@ -20,7 +22,7 @@ struct SurfaceInfo
layout(location = 0) rayPayloadInEXT hitPayload payload;
layout(set = 0, binding = 5) buffer SurfaceIndexBuffer { int surfaceIndices[]; };
layout(set = 0, binding = 5) buffer SurfaceIndexBuffer { uint surfaceIndices[]; };
layout(set = 0, binding = 6) buffer SurfaceBuffer { SurfaceInfo surfaces[]; };
void main()

View file

@ -5,7 +5,9 @@ static const char* glsl_rchit_sun = R"glsl(
struct hitPayload
{
vec3 hitPosition;
float hitAttenuation;
int hitSurfaceIndex;
};
struct SurfaceInfo

View file

@ -5,30 +5,143 @@ static const char* glsl_rgen_bounce = R"glsl(
struct hitPayload
{
vec3 hitPosition;
float hitAttenuation;
int hitSurfaceIndex;
};
layout(location = 0) rayPayloadEXT hitPayload payload;
layout(set = 0, binding = 0) uniform accelerationStructureEXT acc;
layout(set = 0, binding = 1, rgba32f) uniform image2D positions;
layout(set = 0, binding = 2, rgba32f) uniform image2D normals;
layout(set = 0, binding = 1, rgba32f) uniform image2D startpositions;
layout(set = 0, binding = 2, rgba32f) uniform image2D positions;
layout(set = 0, binding = 3, rgba32f) uniform image2D outputs;
layout(set = 0, binding = 4) uniform Uniforms
{
uint SampleIndex;
uint SampleCount;
uint PassType;
uint Padding2;
vec3 LightOrigin;
float PassType;
float Padding0;
float LightRadius;
float LightIntensity;
float LightInnerAngleCos;
float LightOuterAngleCos;
vec3 LightSpotDir;
vec3 LightDir;
float SampleDistance;
vec3 LightColor;
float Padding;
float Padding1;
};
struct SurfaceInfo
{
vec3 Normal;
float EmissiveDistance;
vec3 EmissiveColor;
float EmissiveIntensity;
float Sky;
float Padding0, Padding1, Padding2;
};
layout(set = 0, binding = 6) buffer SurfaceBuffer { SurfaceInfo surfaces[]; };
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness);
vec2 Hammersley(uint i, uint N);
float RadicalInverse_VdC(uint bits);
void main()
{
ivec2 texelPos = ivec2(gl_LaunchIDEXT.xy);
vec4 data0;
if (PassType == 2)
data0 = imageLoad(positions, texelPos);
else
data0 = imageLoad(startpositions, texelPos);
vec4 incoming = vec4(0.0, 0.0, 0.0, 1.0);
int surfaceIndex = int(data0.w);
if (surfaceIndex >= 0)
{
SurfaceInfo surface = surfaces[surfaceIndex];
vec3 origin = data0.xyz;
vec3 normal = surface.Normal;
if (PassType == 0)
{
incoming.rgb = surface.EmissiveColor * surface.EmissiveIntensity;
}
else
{
incoming = imageLoad(outputs, texelPos);
if (PassType == 1)
incoming.w = 1.0f / float(SampleCount);
vec2 Xi = Hammersley(SampleIndex, SampleCount);
vec3 H = ImportanceSampleGGX(Xi, normal, 1.0f);
vec3 L = normalize(H * (2.0f * dot(normal, H)) - normal);
float NdotL = max(dot(normal, L), 0.0);
const float p = 1 / (2 * 3.14159265359);
incoming.w *= NdotL / p;
if (NdotL > 0.0f)
{
const float minDistance = 0.1;
traceRayEXT(acc, gl_RayFlagsOpaqueEXT, 0xff, 0, 0, 0, origin, minDistance, L, 2000, 0);
if (payload.hitAttenuation == 1.0)
{
float hitDistance = distance(origin, payload.hitPosition);
surfaceIndex = payload.hitSurfaceIndex;
surface = surfaces[surfaceIndex];
origin = payload.hitPosition;
if (surface.EmissiveDistance > 0.0)
{
float attenuation = max(1.0 - (hitDistance / surface.EmissiveDistance), 0.0f);
incoming.rgb += surface.EmissiveColor * (surface.EmissiveIntensity * attenuation * incoming.w);
}
}
}
incoming.w *= 0.25; // the amount of incoming light the surfaces emit
}
data0.xyz = origin;
data0.w = float(surfaceIndex);
}
imageStore(positions, texelPos, data0);
imageStore(outputs, texelPos, incoming);
}
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness)
{
float a = roughness * roughness;
float phi = 2.0f * 3.14159265359 * Xi.x;
float cosTheta = sqrt((1.0f - Xi.y) / (1.0f + (a * a - 1.0f) * Xi.y));
float sinTheta = sqrt(1.0f - cosTheta * cosTheta);
// from spherical coordinates to cartesian coordinates
vec3 H = vec3(cos(phi) * sinTheta, sin(phi) * sinTheta, cosTheta);
// from tangent-space vector to world-space sample vector
vec3 up = abs(N.z) < 0.999f ? vec3(0.0f, 0.0f, 1.0f) : vec3(1.0f, 0.0f, 0.0f);
vec3 tangent = normalize(cross(up, N));
vec3 bitangent = cross(N, tangent);
vec3 sampleVec = tangent * H.x + bitangent * H.y + N * H.z;
return normalize(sampleVec);
}
float RadicalInverse_VdC(uint bits)
{
bits = (bits << 16u) | (bits >> 16u);
@ -44,67 +157,4 @@ vec2 Hammersley(uint i, uint N)
return vec2(float(i) / float(N), RadicalInverse_VdC(i));
}
void main()
{
ivec2 texelPos = ivec2(gl_LaunchIDEXT.xy);
vec4 data0 = imageLoad(positions, texelPos);
vec4 data1 = imageLoad(normals, texelPos);
if (data1 == vec4(0))
return;
vec3 origin = data0.xyz;
vec3 normal = data1.xyz;
vec4 emittance = vec4(0.0);
if (PassType == 1.0)
emittance = imageLoad(outputs, texelPos);
const float minDistance = 0.01;
const uint sample_count = 1024;
float dist = distance(LightOrigin, origin);
if (dist > minDistance && dist < LightRadius)
{
vec3 dir = normalize(LightOrigin - origin);
float distAttenuation = max(1.0 - (dist / LightRadius), 0.0);
float angleAttenuation = max(dot(normal, dir), 0.0);
float spotAttenuation = 1.0;
if (LightOuterAngleCos > -1.0)
{
float cosDir = dot(dir, LightSpotDir);
spotAttenuation = smoothstep(LightOuterAngleCos, LightInnerAngleCos, cosDir);
spotAttenuation = max(spotAttenuation, 0.0);
}
float attenuation = distAttenuation * angleAttenuation * spotAttenuation;
if (attenuation > 0.0)
{
float shadowAttenuation = 0.0;
vec3 e0 = cross(normal, abs(normal.x) < abs(normal.y) ? vec3(1.0, 0.0, 0.0) : vec3(0.0, 1.0, 0.0));
vec3 e1 = cross(normal, e0);
e0 = cross(normal, e1);
for (uint i = 0; i < sample_count; i++)
{
vec2 offset = (Hammersley(i, sample_count) - 0.5) * SampleDistance;
vec3 origin2 = origin + offset.x * e0 + offset.y * e1;
float dist2 = distance(LightOrigin, origin2);
vec3 dir2 = normalize(LightOrigin - origin2);
traceRayEXT(acc, gl_RayFlagsOpaqueEXT, 0xff, 0, 0, 0, origin2, minDistance, dir2, dist2, 0);
shadowAttenuation += payload.hitAttenuation;
}
shadowAttenuation *= 1.0 / float(sample_count);
attenuation *= shadowAttenuation;
emittance.rgb += LightColor * (attenuation * LightIntensity);
}
}
emittance.w += 1.0;
imageStore(outputs, texelPos, emittance);
}
)glsl";

View file

@ -5,30 +5,119 @@ static const char* glsl_rgen_light = R"glsl(
struct hitPayload
{
vec3 hitPosition;
float hitAttenuation;
int hitSurfaceIndex;
};
layout(location = 0) rayPayloadEXT hitPayload payload;
layout(set = 0, binding = 0) uniform accelerationStructureEXT acc;
layout(set = 0, binding = 1, rgba32f) uniform image2D positions;
layout(set = 0, binding = 2, rgba32f) uniform image2D normals;
layout(set = 0, binding = 1, rgba32f) uniform image2D startpositions;
layout(set = 0, binding = 2, rgba32f) uniform image2D positions;
layout(set = 0, binding = 3, rgba32f) uniform image2D outputs;
layout(set = 0, binding = 4) uniform Uniforms
{
uint SampleIndex;
uint SampleCount;
uint PassType;
uint Padding2;
vec3 LightOrigin;
float PassType;
float Padding0;
float LightRadius;
float LightIntensity;
float LightInnerAngleCos;
float LightOuterAngleCos;
vec3 LightSpotDir;
vec3 LightDir;
float SampleDistance;
vec3 LightColor;
float Padding;
float Padding1;
};
struct SurfaceInfo
{
vec3 Normal;
float EmissiveDistance;
vec3 EmissiveColor;
float EmissiveIntensity;
float Sky;
float Padding0, Padding1, Padding2;
};
layout(set = 0, binding = 6) buffer SurfaceBuffer { SurfaceInfo surfaces[]; };
vec2 Hammersley(uint i, uint N);
float RadicalInverse_VdC(uint bits);
void main()
{
ivec2 texelPos = ivec2(gl_LaunchIDEXT.xy);
vec4 incoming = imageLoad(outputs, texelPos);
vec4 data0 = imageLoad(positions, texelPos);
int surfaceIndex = int(data0.w);
if (surfaceIndex < 0 || incoming.w <= 0.0)
return;
const float minDistance = 0.01;
vec3 origin = data0.xyz;
float dist = distance(LightOrigin, origin);
if (dist > minDistance && dist < LightRadius)
{
vec3 dir = normalize(LightOrigin - origin);
SurfaceInfo surface = surfaces[surfaceIndex];
vec3 normal = surface.Normal;
float distAttenuation = max(1.0 - (dist / LightRadius), 0.0);
float angleAttenuation = max(dot(normal, dir), 0.0);
float spotAttenuation = 1.0;
if (LightOuterAngleCos > -1.0)
{
float cosDir = dot(dir, LightDir);
spotAttenuation = smoothstep(LightOuterAngleCos, LightInnerAngleCos, cosDir);
spotAttenuation = max(spotAttenuation, 0.0);
}
float attenuation = distAttenuation * angleAttenuation * spotAttenuation;
if (attenuation > 0.0)
{
float shadowAttenuation = 0.0;
if (PassType == 0)
{
vec3 e0 = cross(normal, abs(normal.x) < abs(normal.y) ? vec3(1.0, 0.0, 0.0) : vec3(0.0, 1.0, 0.0));
vec3 e1 = cross(normal, e0);
e0 = cross(normal, e1);
for (uint i = 0; i < SampleCount; i++)
{
vec2 offset = (Hammersley(i, SampleCount) - 0.5) * SampleDistance;
vec3 origin2 = origin + offset.x * e0 + offset.y * e1;
float dist2 = distance(LightOrigin, origin2);
vec3 dir2 = normalize(LightOrigin - origin2);
traceRayEXT(acc, gl_RayFlagsOpaqueEXT, 0xff, 1, 0, 1, origin2, minDistance, dir2, dist2, 0);
shadowAttenuation += payload.hitAttenuation;
}
shadowAttenuation *= 1.0 / float(SampleCount);
}
else
{
traceRayEXT(acc, gl_RayFlagsOpaqueEXT, 0xff, 1, 0, 1, origin, minDistance, dir, dist, 0);
shadowAttenuation = payload.hitAttenuation;
}
attenuation *= shadowAttenuation;
incoming.rgb += LightColor * (attenuation * LightIntensity) * incoming.w;
}
}
imageStore(outputs, texelPos, incoming);
}
float RadicalInverse_VdC(uint bits)
{
bits = (bits << 16u) | (bits >> 16u);
@ -44,67 +133,4 @@ vec2 Hammersley(uint i, uint N)
return vec2(float(i) / float(N), RadicalInverse_VdC(i));
}
void main()
{
ivec2 texelPos = ivec2(gl_LaunchIDEXT.xy);
vec4 data0 = imageLoad(positions, texelPos);
vec4 data1 = imageLoad(normals, texelPos);
if (data1 == vec4(0))
return;
vec3 origin = data0.xyz;
vec3 normal = data1.xyz;
vec4 emittance = vec4(0.0);
if (PassType == 1.0)
emittance = imageLoad(outputs, texelPos);
const float minDistance = 0.01;
const uint sample_count = 1024;
float dist = distance(LightOrigin, origin);
if (dist > minDistance && dist < LightRadius)
{
vec3 dir = normalize(LightOrigin - origin);
float distAttenuation = max(1.0 - (dist / LightRadius), 0.0);
float angleAttenuation = max(dot(normal, dir), 0.0);
float spotAttenuation = 1.0;
if (LightOuterAngleCos > -1.0)
{
float cosDir = dot(dir, LightSpotDir);
spotAttenuation = smoothstep(LightOuterAngleCos, LightInnerAngleCos, cosDir);
spotAttenuation = max(spotAttenuation, 0.0);
}
float attenuation = distAttenuation * angleAttenuation * spotAttenuation;
if (attenuation > 0.0)
{
float shadowAttenuation = 0.0;
vec3 e0 = cross(normal, abs(normal.x) < abs(normal.y) ? vec3(1.0, 0.0, 0.0) : vec3(0.0, 1.0, 0.0));
vec3 e1 = cross(normal, e0);
e0 = cross(normal, e1);
for (uint i = 0; i < sample_count; i++)
{
vec2 offset = (Hammersley(i, sample_count) - 0.5) * SampleDistance;
vec3 origin2 = origin + offset.x * e0 + offset.y * e1;
float dist2 = distance(LightOrigin, origin2);
vec3 dir2 = normalize(LightOrigin - origin2);
traceRayEXT(acc, gl_RayFlagsOpaqueEXT, 0xff, 1, 0, 1, origin2, minDistance, dir2, dist2, 0);
shadowAttenuation += payload.hitAttenuation;
}
shadowAttenuation *= 1.0 / float(sample_count);
attenuation *= shadowAttenuation;
emittance.rgb += LightColor * (attenuation * LightIntensity);
}
}
emittance.w += 1.0;
imageStore(outputs, texelPos, emittance);
}
)glsl";

View file

@ -5,30 +5,96 @@ static const char* glsl_rgen_sun = R"glsl(
struct hitPayload
{
vec3 hitPosition;
float hitAttenuation;
int hitSurfaceIndex;
};
layout(location = 0) rayPayloadEXT hitPayload payload;
layout(set = 0, binding = 0) uniform accelerationStructureEXT acc;
layout(set = 0, binding = 1, rgba32f) uniform image2D positions;
layout(set = 0, binding = 2, rgba32f) uniform image2D normals;
layout(set = 0, binding = 1, rgba32f) uniform image2D startpositions;
layout(set = 0, binding = 2, rgba32f) uniform image2D positions;
layout(set = 0, binding = 3, rgba32f) uniform image2D outputs;
layout(set = 0, binding = 4) uniform Uniforms
{
uint SampleIndex;
uint SampleCount;
uint PassType;
uint Padding2;
vec3 LightOrigin;
float PassType;
float Padding0;
float LightRadius;
float LightIntensity;
float LightInnerAngleCos;
float LightOuterAngleCos;
vec3 LightSpotDir;
vec3 LightDir;
float SampleDistance;
vec3 LightColor;
float Padding;
float Padding1;
};
struct SurfaceInfo
{
vec3 Normal;
float EmissiveDistance;
vec3 EmissiveColor;
float EmissiveIntensity;
float Sky;
float Padding0, Padding1, Padding2;
};
layout(set = 0, binding = 6) buffer SurfaceBuffer { SurfaceInfo surfaces[]; };
vec2 Hammersley(uint i, uint N);
float RadicalInverse_VdC(uint bits);
void main()
{
ivec2 texelPos = ivec2(gl_LaunchIDEXT.xy);
vec4 incoming = imageLoad(outputs, texelPos);
vec4 data0 = imageLoad(positions, texelPos);
int surfaceIndex = int(data0.w);
if (surfaceIndex < 0 || incoming.w <= 0.0)
return;
SurfaceInfo surface = surfaces[surfaceIndex];
vec3 normal = surface.Normal;
vec3 origin = data0.xyz;
origin += normal * 0.1;
const float minDistance = 0;
const float dist = 32768.0;
float attenuation = 0.0;
if (PassType == 0)
{
vec3 e0 = cross(normal, abs(normal.x) < abs(normal.y) ? vec3(1.0, 0.0, 0.0) : vec3(0.0, 1.0, 0.0));
vec3 e1 = cross(normal, e0);
e0 = cross(normal, e1);
for (uint i = 0; i < SampleCount; i++)
{
vec2 offset = (Hammersley(i, SampleCount) - 0.5) * SampleDistance;
vec3 origin2 = origin + offset.x * e0 + offset.y * e1;
traceRayEXT(acc, gl_RayFlagsOpaqueEXT, 0xff, 2, 0, 2, origin2, minDistance, LightDir, dist, 0);
attenuation += payload.hitAttenuation;
}
attenuation *= 1.0 / float(SampleCount);
}
else
{
traceRayEXT(acc, gl_RayFlagsOpaqueEXT, 0xff, 2, 0, 2, origin, minDistance, LightDir, dist, 0);
attenuation = payload.hitAttenuation;
}
incoming.rgb += LightColor * (attenuation * LightIntensity) * incoming.w;
imageStore(outputs, texelPos, incoming);
}
float RadicalInverse_VdC(uint bits)
{
bits = (bits << 16u) | (bits >> 16u);
@ -44,47 +110,4 @@ vec2 Hammersley(uint i, uint N)
return vec2(float(i) / float(N), RadicalInverse_VdC(i));
}
void main()
{
ivec2 texelPos = ivec2(gl_LaunchIDEXT.xy);
vec4 data0 = imageLoad(positions, texelPos);
vec4 data1 = imageLoad(normals, texelPos);
if (data1 == vec4(0))
return;
vec3 origin = data0.xyz;
vec3 normal = data1.xyz;
vec4 emittance = vec4(0.0);
if (PassType == 1.0)
emittance = imageLoad(outputs, texelPos);
const float minDistance = 0.01;
const uint sample_count = 1024;
vec3 e0 = cross(normal, abs(normal.x) < abs(normal.y) ? vec3(1.0, 0.0, 0.0) : vec3(0.0, 1.0, 0.0));
vec3 e1 = cross(normal, e0);
e0 = cross(normal, e1);
origin += normal * 0.1;
float attenuation = 0.0;
for (uint i = 0; i < sample_count; i++)
{
vec2 offset = (Hammersley(i, sample_count) - 0.5) * SampleDistance;
vec3 origin2 = origin + offset.x * e0 + offset.y * e1;
float dist2 = 32768.0;
vec3 dir2 = LightSpotDir;
traceRayEXT(acc, gl_RayFlagsOpaqueEXT, 0xff, 2, 0, 2, origin2, minDistance, dir2, dist2, 0);
attenuation += payload.hitAttenuation;
}
attenuation *= 1.0 / float(sample_count);
emittance.rgb += LightColor * (attenuation * LightIntensity);
emittance.w += 1.0;
imageStore(outputs, texelPos, emittance);
}
)glsl";

View file

@ -5,7 +5,9 @@ static const char* glsl_rmiss_bounce = R"glsl(
struct hitPayload
{
vec3 hitPosition;
float hitAttenuation;
int hitSurfaceIndex;
};
layout(location = 0) rayPayloadInEXT hitPayload payload;

View file

@ -5,7 +5,9 @@ static const char* glsl_rmiss_light = R"glsl(
struct hitPayload
{
vec3 hitPosition;
float hitAttenuation;
int hitSurfaceIndex;
};
layout(location = 0) rayPayloadInEXT hitPayload payload;

View file

@ -5,7 +5,9 @@ static const char* glsl_rmiss_sun = R"glsl(
struct hitPayload
{
vec3 hitPosition;
float hitAttenuation;
int hitSurfaceIndex;
};
layout(location = 0) rayPayloadInEXT hitPayload payload;

View file

@ -76,36 +76,62 @@ void GPURaytracer::Raytrace(LevelMesh* level)
UploadTasks(tasks);
// Sunlight
{
Uniforms uniforms = {};
uniforms.LightOrigin = Vec3(0.0f, 0.0f, 0.0f);
uniforms.LightRadius = -1.0f;
uniforms.LightIntensity = 1.0f;
uniforms.LightInnerAngleCos = -1.0f;
uniforms.LightOuterAngleCos = -1.0f;
uniforms.LightSpotDir = mesh->map->GetSunDirection();
uniforms.LightColor = mesh->map->GetSunColor();
uniforms.PassType = 0.0f;
uniforms.SampleDistance = (float)mesh->samples;
RunTrace(uniforms, rgenSunRegion);
}
Uniforms uniforms = {};
uniforms.SampleDistance = (float)mesh->samples;
uniforms.SampleCount = SAMPLE_COUNT;
uniforms.SampleIndex = 0;
uniforms.PassType = 0;
RunTrace(uniforms, rgenBounceRegion);
uniforms.LightDir = mesh->map->GetSunDirection();
uniforms.LightColor = mesh->map->GetSunColor();
uniforms.LightIntensity = 1.0f;
RunTrace(uniforms, rgenSunRegion);
for (ThingLight& light : mesh->map->ThingLights)
{
Uniforms uniforms = {};
uniforms.LightOrigin = light.LightOrigin();
uniforms.LightRadius = light.LightRadius();
uniforms.LightIntensity = light.intensity;
uniforms.LightInnerAngleCos = light.innerAngleCos;
uniforms.LightOuterAngleCos = light.outerAngleCos;
uniforms.LightSpotDir = light.SpotDir();
uniforms.LightDir = light.SpotDir();
uniforms.LightColor = light.rgb;
uniforms.PassType = 1.0f;
uniforms.SampleDistance = (float)mesh->samples;
RunTrace(uniforms, rgenLightRegion);
}
for (uint32_t i = 0; i < uniforms.SampleCount; i++)
{
uniforms.PassType = 1;
uniforms.SampleIndex = i;
RunTrace(uniforms, rgenBounceRegion);
for (int bounce = 0; bounce < LightBounce; bounce++)
{
uniforms.LightDir = mesh->map->GetSunDirection();
uniforms.LightColor = mesh->map->GetSunColor();
uniforms.LightIntensity = 1.0f;
RunTrace(uniforms, rgenSunRegion);
for (ThingLight& light : mesh->map->ThingLights)
{
uniforms.LightOrigin = light.LightOrigin();
uniforms.LightRadius = light.LightRadius();
uniforms.LightIntensity = light.intensity;
uniforms.LightInnerAngleCos = light.innerAngleCos;
uniforms.LightOuterAngleCos = light.outerAngleCos;
uniforms.LightDir = light.SpotDir();
uniforms.LightColor = light.rgb;
RunTrace(uniforms, rgenLightRegion);
}
uniforms.PassType = 2;
uniforms.SampleIndex = (i + bounce) % uniforms.SampleCount;
RunTrace(uniforms, rgenBounceRegion);
}
}
DownloadTasks(tasks);
if (device->renderdoc)
@ -139,9 +165,8 @@ void GPURaytracer::UploadTasks(const std::vector<SurfaceTask>& tasks)
throw std::runtime_error("Ray trace task count is too large");
size_t imageSize = sizeof(Vec4) * rayTraceImageSize * rayTraceImageSize;
uint8_t* imageData = (uint8_t*)imageTransferBuffer->Map(0, imageSize * 2);
Vec4* positions = (Vec4*)imageData;
Vec4* normals = (Vec4*)(imageData + imageSize);
uint8_t* imageData = (uint8_t*)imageTransferBuffer->Map(0, imageSize);
Vec4* startPositions = (Vec4*)imageData;
for (size_t i = 0; i < tasks.size(); i++)
{
const SurfaceTask& task = tasks[i];
@ -150,19 +175,16 @@ void GPURaytracer::UploadTasks(const std::vector<SurfaceTask>& tasks)
Vec3 normal = surface->plane.Normal();
Vec3 pos = surface->lightmapOrigin + normal + surface->lightmapSteps[0] * (float)task.x + surface->lightmapSteps[1] * (float)task.y;
positions[i] = Vec4(pos, 1.0f);
normals[i] = Vec4(normal, 1.0f);
startPositions[i] = Vec4(pos, (float)task.surf);
}
for (size_t i = tasks.size(); i < maxTasks; i++)
{
positions[i] = Vec4(0.0f, 0.0f, 0.0f, 0.0f);
normals[i] = Vec4(0.0f, 0.0f, 0.0f, 0.0f);
startPositions[i] = Vec4(0.0f, 0.0f, 0.0f, -1.0f);
}
imageTransferBuffer->Unmap();
PipelineBarrier barrier1;
barrier1.addImage(positionsImage.get(), VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 0, VK_ACCESS_TRANSFER_WRITE_BIT);
barrier1.addImage(normalsImage.get(), VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 0, VK_ACCESS_TRANSFER_WRITE_BIT);
barrier1.addImage(startPositionsImage.get(), VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 0, VK_ACCESS_TRANSFER_WRITE_BIT);
barrier1.execute(cmdbuffer.get(), VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT);
VkBufferImageCopy region = {};
@ -172,21 +194,12 @@ void GPURaytracer::UploadTasks(const std::vector<SurfaceTask>& tasks)
region.imageExtent.depth = 1;
region.imageSubresource.layerCount = 1;
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
cmdbuffer->copyBufferToImage(imageTransferBuffer->buffer, positionsImage->image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &region);
region = {};
region.bufferOffset = imageSize;
region.imageExtent.width = rayTraceImageSize;
region.imageExtent.height = rayTraceImageSize;
region.imageExtent.depth = 1;
region.imageSubresource.layerCount = 1;
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
cmdbuffer->copyBufferToImage(imageTransferBuffer->buffer, normalsImage->image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &region);
cmdbuffer->copyBufferToImage(imageTransferBuffer->buffer, startPositionsImage->image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &region);
PipelineBarrier barrier2;
barrier2.addBuffer(uniformBuffer.get(), VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT);
barrier2.addImage(positionsImage.get(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT);
barrier2.addImage(normalsImage.get(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT);
barrier2.addImage(startPositionsImage.get(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT);
barrier2.addImage(positionsImage.get(), VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_GENERAL, 0, VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT);
barrier2.addImage(outputImage.get(), VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_GENERAL, 0, VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT);
barrier2.execute(cmdbuffer.get(), VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR);
}
@ -303,7 +316,7 @@ void GPURaytracer::CreateVertexAndIndexBuffers()
info.Normal = surface->plane.Normal();
if (def)
{
info.EmissiveDistance = def->distance;
info.EmissiveDistance = def->distance + def->distance;
info.EmissiveIntensity = def->intensity;
info.EmissiveColor = def->rgb;
}
@ -611,7 +624,7 @@ void GPURaytracer::CreatePipeline()
setbuilder.addBinding(3, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, VK_SHADER_STAGE_RAYGEN_BIT_KHR);
setbuilder.addBinding(4, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_RAYGEN_BIT_KHR);
setbuilder.addBinding(5, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
setbuilder.addBinding(6, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
setbuilder.addBinding(6, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
descriptorSetLayout = setbuilder.create(device.get());
descriptorSetLayout->SetDebugName("descriptorSetLayout");
@ -750,15 +763,15 @@ void GPURaytracer::CreateDescriptorSet()
imgbuilder1.setUsage(VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT);
imgbuilder1.setFormat(VK_FORMAT_R32G32B32A32_SFLOAT);
imgbuilder1.setSize(rayTraceImageSize, rayTraceImageSize);
positionsImage = imgbuilder1.create(device.get());
positionsImage->SetDebugName("positionsImage");
startPositionsImage = imgbuilder1.create(device.get());
startPositionsImage->SetDebugName("startPositionsImage");
ImageBuilder imgbuilder2;
imgbuilder2.setUsage(VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT);
imgbuilder2.setFormat(VK_FORMAT_R32G32B32A32_SFLOAT);
imgbuilder2.setSize(rayTraceImageSize, rayTraceImageSize);
normalsImage = imgbuilder2.create(device.get());
normalsImage->SetDebugName("normalsImage");
positionsImage = imgbuilder2.create(device.get());
positionsImage->SetDebugName("positionsImage");
ImageBuilder imgbuilder3;
imgbuilder3.setUsage(VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT);
@ -768,14 +781,14 @@ void GPURaytracer::CreateDescriptorSet()
outputImage->SetDebugName("outputImage");
ImageViewBuilder viewbuilder1;
viewbuilder1.setImage(positionsImage.get(), VK_FORMAT_R32G32B32A32_SFLOAT);
positionsImageView = viewbuilder1.create(device.get());
positionsImageView->SetDebugName("positionsImageView");
viewbuilder1.setImage(startPositionsImage.get(), VK_FORMAT_R32G32B32A32_SFLOAT);
startPositionsImageView = viewbuilder1.create(device.get());
startPositionsImageView->SetDebugName("startPositionsImageView");
ImageViewBuilder viewbuilder2;
viewbuilder2.setImage(normalsImage.get(), VK_FORMAT_R32G32B32A32_SFLOAT);
normalsImageView = viewbuilder2.create(device.get());
normalsImageView->SetDebugName("normalsImageView");
viewbuilder2.setImage(positionsImage.get(), VK_FORMAT_R32G32B32A32_SFLOAT);
positionsImageView = viewbuilder2.create(device.get());
positionsImageView->SetDebugName("positionsImageView");
ImageViewBuilder viewbuilder3;
viewbuilder3.setImage(outputImage.get(), VK_FORMAT_R32G32B32A32_SFLOAT);
@ -796,8 +809,8 @@ void GPURaytracer::CreateDescriptorSet()
WriteDescriptors write;
write.addAccelerationStructure(descriptorSet.get(), 0, tlAccelStruct.get());
write.addStorageImage(descriptorSet.get(), 1, positionsImageView.get(), VK_IMAGE_LAYOUT_GENERAL);
write.addStorageImage(descriptorSet.get(), 2, normalsImageView.get(), VK_IMAGE_LAYOUT_GENERAL);
write.addStorageImage(descriptorSet.get(), 1, startPositionsImageView.get(), VK_IMAGE_LAYOUT_GENERAL);
write.addStorageImage(descriptorSet.get(), 2, positionsImageView.get(), VK_IMAGE_LAYOUT_GENERAL);
write.addStorageImage(descriptorSet.get(), 3, outputImageView.get(), VK_IMAGE_LAYOUT_GENERAL);
write.addBuffer(descriptorSet.get(), 4, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, uniformBuffer.get());
write.addBuffer(descriptorSet.get(), 5, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, surfaceIndexBuffer.get());
@ -982,7 +995,7 @@ Vec3 GPURaytracer::TracePath(const Vec3& pos, const Vec3& dir, int sampleIndex,
return emittance;
const float p = 1 / (2 * M_PI);
Vec3 incoming = TracePath(hitpos, normal, (sampleIndex + depth + 1) % SAMPLE_COUNT, depth + 1);
Vec3 incoming = TracePath(hitpos, L, (sampleIndex + depth + 1) % SAMPLE_COUNT, depth + 1);
return emittance + incoming * NdotL / p;
}

View file

@ -8,16 +8,20 @@ class LevelMesh;
struct Uniforms
{
uint32_t SampleIndex;
uint32_t SampleCount;
uint32_t PassType;
uint32_t Padding2;
Vec3 LightOrigin;
float PassType;
float Padding0;
float LightRadius;
float LightIntensity;
float LightInnerAngleCos;
float LightOuterAngleCos;
Vec3 LightSpotDir;
Vec3 LightDir;
float SampleDistance;
Vec3 LightColor;
float Padding;
float Padding1;
};
struct SurfaceInfo
@ -110,8 +114,8 @@ private:
VkStridedDeviceAddressRegionKHR hitRegion = {};
VkStridedDeviceAddressRegionKHR callRegion = {};
std::unique_ptr<VulkanImage> positionsImage, normalsImage, outputImage;
std::unique_ptr<VulkanImageView> positionsImageView, normalsImageView, outputImageView;
std::unique_ptr<VulkanImage> startPositionsImage, positionsImage, outputImage;
std::unique_ptr<VulkanImageView> startPositionsImageView, positionsImageView, outputImageView;
std::unique_ptr<VulkanBuffer> imageTransferBuffer;
std::unique_ptr<VulkanBuffer> uniformBuffer;

View file

@ -220,7 +220,7 @@ Vec3 Raytracer::TracePath(const Vec3& pos, const Vec3& dir, int sampleIndex, int
return emittance;
const float p = 1 / (2 * M_PI);
Vec3 incoming = TracePath(hitpos, normal, (sampleIndex + depth + 1) % SAMPLE_COUNT, depth + 1);
Vec3 incoming = TracePath(hitpos, L, (sampleIndex + depth + 1) % SAMPLE_COUNT, depth + 1);
return emittance + incoming * NdotL / p;
}