zdbsp/Unused/rejectbuilder.cpp-nogl

331 lines
8.1 KiB
Plaintext

// This is the same algorithm used by DoomBSP:
//
// Represent each sector by its bounding box. Then for each pair of
// sectors, see if any chains of one-sided lines can walk from one
// side of the convex hull for that pair to the other side.
//
// It works, but it's far from being perfect. It's quite easy for
// this algorithm to consider two sectors as being visible from
// each other when they are really not. But it won't erroneously
// flag two sectors as obstructed when they're really not, and that's
// the only thing that really matters when building a REJECT lump.
#include <string.h>
#include <stdio.h>
#include "rejectbuilder.h"
#include "templates.h"
FRejectBuilder::FRejectBuilder (FLevel &level)
: Level (level), BlockChains (NULL)
{
RejectSize = (Level.NumSectors*Level.NumSectors + 7) / 8;
Reject = new BYTE[RejectSize];
memset (Reject, 0, RejectSize);
FindSectorBounds ();
FindBlockChains ();
BuildReject ();
}
FRejectBuilder::~FRejectBuilder ()
{
FBlockChain *chain, *next;
chain = BlockChains;
while (chain != NULL)
{
next = chain->Next;
delete chain;
chain = next;
}
}
BYTE *FRejectBuilder::GetReject ()
{
return Reject;
}
void FRejectBuilder::FindSectorBounds ()
{
int i;
SectorBounds = new BBox[Level.NumSectors];
for (i = 0; i < Level.NumSectors; ++i)
{
SectorBounds[i].Bounds[LEFT] = SectorBounds[i].Bounds[BOTTOM] = INT_MAX;
SectorBounds[i].Bounds[RIGHT] = SectorBounds[i].Bounds[TOP] = INT_MIN;
}
for (i = 0; i < Level.NumLines; ++i)
{
if (Level.Lines[i].sidenum[0] != NO_INDEX)
{
int secnum = Level.Sides[Level.Lines[i].sidenum[0]].sector;
SectorBounds[secnum].AddPt (Level.Vertices[Level.Lines[i].v1]);
SectorBounds[secnum].AddPt (Level.Vertices[Level.Lines[i].v2]);
}
if (Level.Lines[i].sidenum[1] != NO_INDEX)
{
int secnum = Level.Sides[Level.Lines[i].sidenum[1]].sector;
SectorBounds[secnum].AddPt (Level.Vertices[Level.Lines[i].v1]);
SectorBounds[secnum].AddPt (Level.Vertices[Level.Lines[i].v2]);
}
}
}
void FRejectBuilder::FindBlockChains ()
{
bool *marked = new bool[Level.NumLines];
WORD *nextForVert = new WORD[Level.NumLines];
WORD *firstLine = new WORD[Level.NumVertices];
int i, j, k;
FBlockChain *chain;
FPoint pt;
TArray<FPoint> pts;
memset (nextForVert, 0xff, Level.NumLines*sizeof(*nextForVert));
memset (firstLine, 0xff, Level.NumVertices*sizeof(*firstLine));
memset (marked, 0, Level.NumLines*sizeof(*marked));
for (i = 0; i < Level.NumLines; ++i)
{
if (Level.Lines[i].sidenum[0] == NO_INDEX || Level.Lines[i].sidenum[1] != NO_INDEX)
{
marked[i] = true;
}
else
{
nextForVert[Level.Lines[i].v1] = firstLine[Level.Lines[i].v1];
firstLine[Level.Lines[i].v1] = i;
}
}
for (i = 0; i < Level.NumLines; ++i)
{
if (marked[i])
{
continue;
}
pt.x = Level.Vertices[Level.Lines[i].v1].x >> FRACBITS;
pt.y = Level.Vertices[Level.Lines[i].v1].y >> FRACBITS;
pts.Clear ();
pts.Push (pt);
chain = new FBlockChain;
chain->Bounds(LEFT) = chain->Bounds(RIGHT) = pt.x;
chain->Bounds(TOP) = chain->Bounds(BOTTOM) = pt.y;
for (j = i; j != NO_INDEX; )
{
marked[j] = true;
pt.x = Level.Vertices[Level.Lines[j].v2].x >> FRACBITS;
pt.y = Level.Vertices[Level.Lines[j].v2].y >> FRACBITS;
pts.Push (pt);
chain->Bounds.AddPt (pt);
k = firstLine[Level.Lines[j].v2];
if (k == NO_INDEX)
{
break;
}
if (nextForVert[k] == NO_INDEX)
{
j = marked[k] ? NO_INDEX : k;
}
else
{
int best = NO_INDEX;
angle_t bestang = ANGLE_MAX;
angle_t ang1 = PointToAngle (Level.Vertices[Level.Lines[j].v2].x - Level.Vertices[Level.Lines[j].v1].x,
Level.Vertices[Level.Lines[j].v2].y - Level.Vertices[Level.Lines[j].v1].y) + (1 << 31);
while (k != NO_INDEX)
{
if (!marked[k])
{
angle_t ang2 = PointToAngle (Level.Vertices[Level.Lines[k].v2].x - Level.Vertices[Level.Lines[k].v1].x,
Level.Vertices[Level.Lines[k].v2].y - Level.Vertices[Level.Lines[k].v1].y) + (1 << 31);
angle_t angdiff = ang2 - ang1;
if (angdiff < bestang && angdiff > 0)
{
bestang = angdiff;
best = k;
}
}
k = nextForVert[k];
}
j = best;
}
}
chain->NumPoints = pts.Size();
chain->Points = new FPoint[chain->NumPoints];
memcpy (chain->Points, &pts[0], chain->NumPoints*sizeof(*chain->Points));
chain->Next = BlockChains;
BlockChains = chain;
}
}
void FRejectBuilder::HullSides (const BBox &box1, const BBox &box2, FPoint sides[4])
{
static const int vertSides[4][2] = {
{ LEFT, BOTTOM },
{ LEFT, TOP },
{ RIGHT, TOP },
{ RIGHT, BOTTOM }
};
static const int stuffSpots[4] = { 0, 3, 2, 1 };
const int *boxp1, *boxp2;
boxp1 = box2.Bounds;
boxp2 = box1.Bounds;
for (int mainBox = 2; mainBox != 0; )
{
const int *stuffs = stuffSpots + (--mainBox)*2;
int outerEdges[4];
outerEdges[LEFT] = boxp1[LEFT] <= boxp2[LEFT];
outerEdges[TOP] = boxp1[TOP] >= boxp2[TOP];
outerEdges[RIGHT] = boxp1[RIGHT] >= boxp2[RIGHT];
outerEdges[BOTTOM] = boxp1[BOTTOM] <= boxp2[BOTTOM];
for (int vertex = 0; vertex < 4; ++vertex)
{
if (outerEdges[(vertex-1)&3] != outerEdges[vertex])
{
FPoint *pt = &sides[stuffs[outerEdges[vertex]]];
pt->x = boxp1[vertSides[vertex][0]];
pt->y = boxp1[vertSides[vertex][1]];
}
}
boxp1 = box1.Bounds;
boxp2 = box2.Bounds;
}
}
int FRejectBuilder::PointOnSide (const FPoint *pt, const FPoint &lpt1, const FPoint &lpt2)
{
return (pt->y - lpt1.y) * (lpt2.x - lpt1.x) >= (pt->x - lpt1.x) * (lpt2.y - lpt1.y);
}
bool FRejectBuilder::ChainBlocks (const FBlockChain *chain,
const BBox *hullBounds, const FPoint *hullPts)
{
int startSide, side, i;
if (chain->Bounds[LEFT] > hullBounds->Bounds[RIGHT] ||
chain->Bounds[RIGHT] < hullBounds->Bounds[LEFT] ||
chain->Bounds[TOP] < hullBounds->Bounds[BOTTOM] ||
chain->Bounds[BOTTOM] > hullBounds->Bounds[TOP])
{
return false;
}
startSide = -1;
for (i = 0; i < chain->NumPoints; ++i)
{
const FPoint *pt = &chain->Points[i];
if (PointOnSide (pt, hullPts[1], hullPts[2]))
{
startSide = -1;
continue;
}
if (PointOnSide (pt, hullPts[3], hullPts[0]))
{
startSide = -1;
continue;
}
if (PointOnSide (pt, hullPts[0], hullPts[1]))
{
side = 0;
}
else if (PointOnSide (pt, hullPts[2], hullPts[3]))
{
side = 1;
}
else
{
continue;
}
if (startSide == -1 || startSide == side)
{
startSide = side;
}
else
{
return true;
}
}
return false;
}
void FRejectBuilder::BuildReject ()
{
int s1, s2;
for (s1 = 0; s1 < Level.NumSectors-1; ++s1)
{
printf (" Reject: %3d%%\r", s1*100/Level.NumSectors);
for (s2 = s1 + 1; s2 < Level.NumSectors; ++s2)
{
BBox HullBounds;
FPoint HullPts[4];
const BBox *sb1, *sb2;
sb1 = &SectorBounds[s1];
sb2 = &SectorBounds[s2];
int pos = s1*Level.NumSectors + s2;
if (Reject[pos>>3] & (1<<(pos&7)))
{
continue;
}
// Overlapping and touching sectors are considered to always
// see each other.
if (sb1->Bounds[LEFT] <= sb2->Bounds[RIGHT] &&
sb1->Bounds[RIGHT] >= sb2->Bounds[LEFT] &&
sb1->Bounds[TOP] >= sb2->Bounds[BOTTOM] &&
sb1->Bounds[BOTTOM] <= sb2->Bounds[TOP])
{
continue;
}
HullBounds(LEFT) = MIN (sb1->Bounds[LEFT], sb2->Bounds[LEFT]);
HullBounds(RIGHT) = MAX (sb1->Bounds[RIGHT], sb2->Bounds[RIGHT]);
HullBounds(BOTTOM) = MIN (sb1->Bounds[BOTTOM], sb2->Bounds[BOTTOM]);
HullBounds(TOP) = MAX (sb1->Bounds[TOP], sb2->Bounds[TOP]);
HullSides (*sb1, *sb2, HullPts);
for (FBlockChain *chain = BlockChains; chain != NULL; chain = chain->Next)
{
if (ChainBlocks (chain, &HullBounds, HullPts))
{
break;
}
}
if (chain == NULL)
{
continue;
}
Reject[pos>>3] |= 1 << (pos & 7);
pos = s2*Level.NumSectors + s1;
Reject[pos>>3] |= 1 << (pos & 7);
}
}
printf (" Reject: 100%%\n");
}