/* Routines only necessary for building GL-friendly nodes. Copyright (C) 2002-2006 Randy Heit This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include "zdbsp.h" #include "nodebuild.h" #define Printf printf #if 0 #include #define D(x) x #else #define D(x) do{}while(0) #endif double FNodeBuilder::AddIntersection (const node_t &node, int vertex) { static const FEventInfo defaultInfo = { -1, DWORD_MAX }; // Calculate signed distance of intersection vertex from start of splitter. // Only ordering is important, so we don't need a sqrt. FPrivVert *v = &Vertices[vertex]; double dist = (double(v->x) - node.x)*(node.dx) + (double(v->y) - node.y)*(node.dy); FEvent *event = Events.FindEvent (dist); if (event == NULL) { event = Events.GetNewNode (); event->Distance = dist; event->Info = defaultInfo; event->Info.Vertex = vertex; Events.Insert (event); } return dist; } // If there are any segs on the splitter that span more than two events, they // must be split. Alien Vendetta is one example wad that is quite bad about // having overlapping lines. If we skip this step, these segs will still be // split later, but minisegs will erroneously be added for them, and partner // seg information will be messed up in the generated tree. void FNodeBuilder::FixSplitSharers () { D(printf("events:\n")); D(Events.PrintTree()); for (unsigned int i = 0; i < SplitSharers.Size(); ++i) { DWORD seg = SplitSharers[i].Seg; int v2 = Segs[seg].v2; FEvent *event = Events.FindEvent (SplitSharers[i].Distance); FEvent *next; if (event == NULL) { // Should not happen continue; } D(printf("Considering events on seg %d(%d[%d,%d]->%d[%d,%d]) [%g:%g]\n", seg, Segs[seg].v1, Vertices[Segs[seg].v1].x>>16, Vertices[Segs[seg].v1].y>>16, Segs[seg].v2, Vertices[Segs[seg].v2].x>>16, Vertices[Segs[seg].v2].y>>16, SplitSharers[i].Distance, event->Distance)); if (SplitSharers[i].Forward) { event = Events.GetSuccessor (event); if (event == NULL) { continue; } next = Events.GetSuccessor (event); } else { event = Events.GetPredecessor (event); if (event == NULL) { continue; } next = Events.GetPredecessor (event); } while (event != NULL && next != NULL && event->Info.Vertex != v2) { D(printf("Forced split of seg %d(%d[%d,%d]->%d[%d,%d]) at %d(%d,%d):%g\n", seg, Segs[seg].v1, Vertices[Segs[seg].v1].x>>16, Vertices[Segs[seg].v1].y>>16, Segs[seg].v2, Vertices[Segs[seg].v2].x>>16, Vertices[Segs[seg].v2].y>>16, event->Info.Vertex, Vertices[event->Info.Vertex].x>>16, Vertices[event->Info.Vertex].y>>16, event->Distance)); DWORD newseg = SplitSeg (seg, event->Info.Vertex, 1); Segs[newseg].next = Segs[seg].next; Segs[seg].next = newseg; DWORD partner = Segs[seg].partner; if (partner != DWORD_MAX) { int endpartner = SplitSeg (partner, event->Info.Vertex, 1); Segs[endpartner].next = Segs[partner].next; Segs[partner].next = endpartner; Segs[seg].partner = endpartner; //Segs[endpartner].partner = seg; Segs[partner].partner = newseg; assert (Segs[Segs[seg].partner].partner == seg); assert (Segs[Segs[newseg].partner].partner == newseg); assert (Segs[seg].v1 == Segs[endpartner].v2); assert (Segs[seg].v2 == Segs[endpartner].v1); assert (Segs[partner].v1 == Segs[newseg].v2); assert (Segs[partner].v2 == Segs[newseg].v1); } seg = newseg; if (SplitSharers[i].Forward) { event = next; next = Events.GetSuccessor (next); } else { event = next; next = Events.GetPredecessor (next); } } } } void FNodeBuilder::AddMinisegs (const node_t &node, DWORD splitseg, DWORD &fset, DWORD &bset) { FEvent *event = Events.GetMinimum (), *prev = NULL; while (event != NULL) { if (prev != NULL) { DWORD fseg1, bseg1, fseg2, bseg2; DWORD fnseg, bnseg; // Minisegs should only be added when they can create valid loops on both the front and // back of the splitter. This means some subsectors could be unclosed if their sectors // are unclosed, but at least we won't be needlessly creating subsectors in void space. // Unclosed subsectors can be closed trivially once the BSP tree is complete. if ((fseg1 = CheckLoopStart (node.dx, node.dy, prev->Info.Vertex, event->Info.Vertex)) != DWORD_MAX && (bseg1 = CheckLoopStart (-node.dx, -node.dy, event->Info.Vertex, prev->Info.Vertex)) != DWORD_MAX && (fseg2 = CheckLoopEnd (node.dx, node.dy, event->Info.Vertex)) != DWORD_MAX && (bseg2 = CheckLoopEnd (-node.dx, -node.dy, prev->Info.Vertex)) != DWORD_MAX) { // Add miniseg on the front side fnseg = AddMiniseg (prev->Info.Vertex, event->Info.Vertex, DWORD_MAX, fseg1, splitseg); Segs[fnseg].next = fset; fset = fnseg; // Add miniseg on the back side bnseg = AddMiniseg (event->Info.Vertex, prev->Info.Vertex, fnseg, bseg1, splitseg); Segs[bnseg].next = bset; bset = bnseg; int fsector, bsector; fsector = Segs[fseg1].frontsector; bsector = Segs[bseg1].frontsector; Segs[fnseg].frontsector = fsector; Segs[fnseg].backsector = bsector; Segs[bnseg].frontsector = bsector; Segs[bnseg].backsector = fsector; // Only print the warning if this might be bad. if (fsector != bsector && fsector != Segs[fseg1].backsector && bsector != Segs[bseg1].backsector) { Warn ("Sectors %d at (%d,%d) and %d at (%d,%d) don't match.\n", Segs[fseg1].frontsector, Vertices[prev->Info.Vertex].x>>FRACBITS, Vertices[prev->Info.Vertex].y>>FRACBITS, Segs[bseg1].frontsector, Vertices[event->Info.Vertex].x>>FRACBITS, Vertices[event->Info.Vertex].y>>FRACBITS ); } D(Printf ("**Minisegs** %d/%d added %d(%d,%d)->%d(%d,%d)\n", fnseg, bnseg, prev->Info.Vertex, Vertices[prev->Info.Vertex].x>>16, Vertices[prev->Info.Vertex].y>>16, event->Info.Vertex, Vertices[event->Info.Vertex].x>>16, Vertices[event->Info.Vertex].y>>16)); } } prev = event; event = Events.GetSuccessor (event); } } DWORD FNodeBuilder::AddMiniseg (int v1, int v2, DWORD partner, DWORD seg1, DWORD splitseg) { DWORD nseg; FPrivSeg *seg = &Segs[seg1]; FPrivSeg newseg; newseg.sidedef = NO_INDEX; newseg.linedef = NO_INDEX; newseg.loopnum = 0; newseg.next = DWORD_MAX; newseg.planefront = true; newseg.hashnext = NULL; newseg.storedseg = DWORD_MAX; newseg.frontsector = -1; newseg.backsector = -1; newseg.offset = 0; newseg.angle = 0; if (splitseg != DWORD_MAX) { newseg.planenum = Segs[splitseg].planenum; } else { newseg.planenum = -1; } newseg.v1 = v1; newseg.v2 = v2; newseg.nextforvert = Vertices[v1].segs; newseg.nextforvert2 = Vertices[v2].segs2; newseg.next = seg->next; if (partner != DWORD_MAX) { newseg.partner = partner; assert (Segs[partner].v1 == newseg.v2); assert (Segs[partner].v2 == newseg.v1); } else { newseg.partner = DWORD_MAX; } nseg = Segs.Push (newseg); if (newseg.partner != DWORD_MAX) { Segs[partner].partner = nseg; } Vertices[v1].segs = nseg; Vertices[v2].segs2 = nseg; //Printf ("Between %d and %d::::\n", seg1, seg2); return nseg; } DWORD FNodeBuilder::CheckLoopStart (fixed_t dx, fixed_t dy, int vertex, int vertex2) { FPrivVert *v = &Vertices[vertex]; angle_t splitAngle = PointToAngle (dx, dy); DWORD segnum; angle_t bestang; DWORD bestseg; // Find the seg ending at this vertex that forms the smallest angle // to the splitter. segnum = v->segs2; bestang = ANGLE_MAX; bestseg = DWORD_MAX; while (segnum != DWORD_MAX) { FPrivSeg *seg = &Segs[segnum]; angle_t segAngle = PointToAngle (Vertices[seg->v1].x - v->x, Vertices[seg->v1].y - v->y); angle_t diff = splitAngle - segAngle; if (diff < ANGLE_EPSILON && PointOnSide (Vertices[seg->v1].x, Vertices[seg->v1].y, v->x, v->y, dx, dy) == 0) { // If a seg lies right on the splitter, don't count it } else { if (diff <= bestang) { bestang = diff; bestseg = segnum; } } segnum = seg->nextforvert2; } if (bestseg == DWORD_MAX) { return DWORD_MAX; } // Now make sure there are no segs starting at this vertex that form // an even smaller angle to the splitter. segnum = v->segs; while (segnum != DWORD_MAX) { FPrivSeg *seg = &Segs[segnum]; if (seg->v2 == vertex2) { return DWORD_MAX; } angle_t segAngle = PointToAngle (Vertices[seg->v2].x - v->x, Vertices[seg->v2].y - v->y); angle_t diff = splitAngle - segAngle; if (diff < bestang && seg->partner != bestseg) { return DWORD_MAX; } segnum = seg->nextforvert; } return bestseg; } DWORD FNodeBuilder::CheckLoopEnd (fixed_t dx, fixed_t dy, int vertex) { FPrivVert *v = &Vertices[vertex]; angle_t splitAngle = PointToAngle (dx, dy) + ANGLE_180; DWORD segnum; angle_t bestang; DWORD bestseg; // Find the seg starting at this vertex that forms the smallest angle // to the splitter. segnum = v->segs; bestang = ANGLE_MAX; bestseg = DWORD_MAX; while (segnum != DWORD_MAX) { FPrivSeg *seg = &Segs[segnum]; angle_t segAngle = PointToAngle (Vertices[seg->v2].x - v->x, Vertices[seg->v2].y - v->y); angle_t diff = segAngle - splitAngle; if (diff < ANGLE_EPSILON && PointOnSide (Vertices[seg->v1].x, Vertices[seg->v1].y, v->x, v->y, dx, dy) == 0) { // If a seg lies right on the splitter, don't count it } else { if (diff <= bestang) { bestang = diff; bestseg = segnum; } } segnum = seg->nextforvert; } if (bestseg == DWORD_MAX) { return DWORD_MAX; } // Now make sure there are no segs ending at this vertex that form // an even smaller angle to the splitter. segnum = v->segs2; while (segnum != DWORD_MAX) { FPrivSeg *seg = &Segs[segnum]; angle_t segAngle = PointToAngle (Vertices[seg->v1].x - v->x, Vertices[seg->v1].y - v->y); angle_t diff = segAngle - splitAngle; if (diff < bestang && seg->partner != bestseg) { return DWORD_MAX; } segnum = seg->nextforvert2; } return bestseg; }