mirror of
https://github.com/ZDoom/Raze.git
synced 2024-11-16 01:11:44 +00:00
f7dd0ec4a2
As it turned out, the triangulator only works fine for regular polygons, but creates incomplete meshes for sectors with multiple sections or some degenerate areas, which are quite common with swinging doors. The node builder is more costly and creates wall splits, of course, but it does not create broken output for degenerate sectors so it's a good fallback.
535 lines
14 KiB
C++
535 lines
14 KiB
C++
/*
|
|
** nodebuild_utility.cpp
|
|
**
|
|
** Miscellaneous node builder utility functions.
|
|
**
|
|
**---------------------------------------------------------------------------
|
|
** Copyright 2002-2006 Randy Heit
|
|
** All rights reserved.
|
|
**
|
|
** Redistribution and use in source and binary forms, with or without
|
|
** modification, are permitted provided that the following conditions
|
|
** are met:
|
|
**
|
|
** 1. Redistributions of source code must retain the above copyright
|
|
** notice, this list of conditions and the following disclaimer.
|
|
** 2. Redistributions in binary form must reproduce the above copyright
|
|
** notice, this list of conditions and the following disclaimer in the
|
|
** documentation and/or other materials provided with the distribution.
|
|
** 3. The name of the author may not be used to endorse or promote products
|
|
** derived from this software without specific prior written permission.
|
|
** 4. When not used as part of ZDoom or a ZDoom derivative, this code will be
|
|
** covered by the terms of the GNU General Public License as published by
|
|
** the Free Software Foundation; either version 2 of the License, or (at
|
|
** your option) any later version.
|
|
**
|
|
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
**---------------------------------------------------------------------------
|
|
**
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#ifdef _MSC_VER
|
|
#include <malloc.h>
|
|
#endif
|
|
#include <string.h>
|
|
#include "nodebuild.h"
|
|
#include "printf.h"
|
|
#include "m_fixed.h"
|
|
#include "m_bbox.h"
|
|
|
|
#if 0
|
|
#define D(x) x
|
|
#else
|
|
#define D(x) do{}while(0)
|
|
#endif
|
|
|
|
#if 0
|
|
#define P(x) x
|
|
#else
|
|
#define P(x) do{}while(0)
|
|
#endif
|
|
|
|
angle_t FNodeBuilder::PointToAngle (fixed_t x, fixed_t y)
|
|
{
|
|
const double rad2bam = double(1<<30) / M_PI;
|
|
double ang = g_atan2 (double(y), double(x));
|
|
// Convert to signed first since negative double to unsigned is undefined.
|
|
return angle_t(int(ang * rad2bam)) << 1;
|
|
}
|
|
|
|
void FNodeBuilder::FindUsedVertices (vertex_t *oldverts, int max)
|
|
{
|
|
int *map = new int[max];
|
|
int i;
|
|
FPrivVert newvert;
|
|
|
|
memset (&map[0], -1, sizeof(int)*max);
|
|
|
|
for (i = 0; i < Level.NumLines; ++i)
|
|
{
|
|
ptrdiff_t v1 = Level.Lines[i].v1 - oldverts;
|
|
ptrdiff_t v2 = Level.Lines[i].v2 - oldverts;
|
|
|
|
if (map[v1] == -1)
|
|
{
|
|
newvert.x = oldverts[v1].fixX();
|
|
newvert.y = oldverts[v1].fixY();
|
|
map[v1] = VertexMap->SelectVertexExact (newvert);
|
|
}
|
|
if (map[v2] == -1)
|
|
{
|
|
newvert.x = oldverts[v2].fixX();
|
|
newvert.y = oldverts[v2].fixY();
|
|
map[v2] = VertexMap->SelectVertexExact (newvert);
|
|
}
|
|
|
|
Level.Lines[i].v1 = (vertex_t *)(size_t)map[v1];
|
|
Level.Lines[i].v2 = (vertex_t *)(size_t)map[v2];
|
|
}
|
|
OldVertexTable = map;
|
|
}
|
|
|
|
// Retrieves the original vertex -> current vertex table.
|
|
// Doing so prevents the node builder from freeing it.
|
|
|
|
const int *FNodeBuilder::GetOldVertexTable()
|
|
{
|
|
int *table = OldVertexTable;
|
|
OldVertexTable = NULL;
|
|
return table;
|
|
}
|
|
|
|
// For every sidedef in the map, create a corresponding seg.
|
|
|
|
void FNodeBuilder::MakeSegsFromSides ()
|
|
{
|
|
int i, j;
|
|
|
|
if (Level.NumLines == 0)
|
|
{
|
|
I_Error ("Map is empty.\n");
|
|
}
|
|
|
|
for (i = 0; i < Level.NumLines; ++i)
|
|
{
|
|
if (Level.Lines[i].sidedef[0] != NULL)
|
|
{
|
|
CreateSeg (i, 0);
|
|
}
|
|
else
|
|
{
|
|
Printf ("Linedef %d does not have a front side.\n", i);
|
|
}
|
|
|
|
if (Level.Lines[i].sidedef[1] != NULL)
|
|
{
|
|
j = CreateSeg (i, 1);
|
|
if (Level.Lines[i].sidedef[0] != NULL)
|
|
{
|
|
Segs[j-1].partner = j;
|
|
Segs[j].partner = j-1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int FNodeBuilder::CreateSeg (int linenum, int sidenum)
|
|
{
|
|
FPrivSeg seg;
|
|
int segnum;
|
|
|
|
seg.next = UINT_MAX;
|
|
seg.loopnum = 0;
|
|
seg.partner = UINT_MAX;
|
|
seg.hashnext = NULL;
|
|
seg.planefront = false;
|
|
seg.planenum = UINT_MAX;
|
|
seg.storedseg = UINT_MAX;
|
|
|
|
if (sidenum == 0)
|
|
{ // front
|
|
seg.frontsector = Level.Lines[linenum].frontsector;
|
|
seg.backsector = Level.Lines[linenum].backsector;
|
|
seg.v1 = (int)(size_t)Level.Lines[linenum].v1;
|
|
seg.v2 = (int)(size_t)Level.Lines[linenum].v2;
|
|
}
|
|
else
|
|
{ // back
|
|
seg.frontsector = Level.Lines[linenum].backsector;
|
|
seg.backsector = Level.Lines[linenum].frontsector;
|
|
seg.v2 = (int)(size_t)Level.Lines[linenum].v1;
|
|
seg.v1 = (int)(size_t)Level.Lines[linenum].v2;
|
|
}
|
|
seg.linedef = linenum;
|
|
side_t *sd = Level.Lines[linenum].sidedef[sidenum];
|
|
seg.sidedef = sd != NULL? sd->Index() : int(NO_SIDE);
|
|
seg.nextforvert = Vertices[seg.v1].segs;
|
|
seg.nextforvert2 = Vertices[seg.v2].segs2;
|
|
|
|
segnum = (int)Segs.Push (seg);
|
|
Vertices[seg.v1].segs = segnum;
|
|
Vertices[seg.v2].segs2 = segnum;
|
|
D(Printf(PRINT_LOG, "Seg %4d: From line %d, side %s (%5d,%5d)-(%5d,%5d) [%08x,%08x]-[%08x,%08x]\n", segnum, linenum, sidenum ? "back " : "front",
|
|
Vertices[seg.v1].x>>16, Vertices[seg.v1].y>>16, Vertices[seg.v2].x>>16, Vertices[seg.v2].y>>16,
|
|
Vertices[seg.v1].x, Vertices[seg.v1].y, Vertices[seg.v2].x, Vertices[seg.v2].y));
|
|
|
|
return segnum;
|
|
}
|
|
|
|
// For every seg, create FPrivSegs and FPrivVerts.
|
|
|
|
void FNodeBuilder::AddSegs(seg_t *segs, int numsegs)
|
|
{
|
|
assert(numsegs > 0);
|
|
|
|
for (int i = 0; i < numsegs; ++i)
|
|
{
|
|
FPrivSeg seg;
|
|
FPrivVert vert;
|
|
int segnum;
|
|
|
|
seg.next = UINT_MAX;
|
|
seg.loopnum = 0;
|
|
seg.partner = UINT_MAX;
|
|
seg.hashnext = NULL;
|
|
seg.planefront = false;
|
|
seg.planenum = UINT_MAX;
|
|
seg.storedseg = UINT_MAX;
|
|
|
|
seg.frontsector = segs[i].frontsector;
|
|
seg.backsector = segs[i].backsector;
|
|
vert.x = segs[i].v1->fixX();
|
|
vert.y = segs[i].v1->fixY();
|
|
seg.v1 = VertexMap->SelectVertexExact(vert);
|
|
vert.x = segs[i].v2->fixX();
|
|
vert.y = segs[i].v2->fixY();
|
|
seg.v2 = VertexMap->SelectVertexExact(vert);
|
|
seg.linedef = segs[i].linedef->Index();
|
|
seg.sidedef = segs[i].sidedef != NULL ? segs[i].sidedef->Index() : int(NO_SIDE);
|
|
seg.nextforvert = Vertices[seg.v1].segs;
|
|
seg.nextforvert2 = Vertices[seg.v2].segs2;
|
|
|
|
segnum = (int)Segs.Push(seg);
|
|
Vertices[seg.v1].segs = segnum;
|
|
Vertices[seg.v2].segs2 = segnum;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Group colinear segs together so that only one seg per line needs to be checked
|
|
// by SelectSplitter().
|
|
|
|
void FNodeBuilder::GroupSegPlanes ()
|
|
{
|
|
const int bucketbits = 12;
|
|
FPrivSeg *buckets[1<<bucketbits] = { 0 };
|
|
int i, planenum;
|
|
|
|
for (i = 0; i < (int)Segs.Size(); ++i)
|
|
{
|
|
FPrivSeg *seg = &Segs[i];
|
|
seg->next = i+1;
|
|
seg->hashnext = NULL;
|
|
}
|
|
|
|
Segs[Segs.Size()-1].next = UINT_MAX;
|
|
|
|
for (i = planenum = 0; i < (int)Segs.Size(); ++i)
|
|
{
|
|
FPrivSeg *seg = &Segs[i];
|
|
fixed_t x1 = Vertices[seg->v1].x;
|
|
fixed_t y1 = Vertices[seg->v1].y;
|
|
fixed_t x2 = Vertices[seg->v2].x;
|
|
fixed_t y2 = Vertices[seg->v2].y;
|
|
angle_t ang = PointToAngle (x2 - x1, y2 - y1);
|
|
|
|
if (ang >= 1u<<31)
|
|
ang += 1u<<31;
|
|
|
|
FPrivSeg *check = buckets[ang >>= 31-bucketbits];
|
|
|
|
while (check != NULL)
|
|
{
|
|
fixed_t cx1 = Vertices[check->v1].x;
|
|
fixed_t cy1 = Vertices[check->v1].y;
|
|
fixed_t cdx = Vertices[check->v2].x - cx1;
|
|
fixed_t cdy = Vertices[check->v2].y - cy1;
|
|
if (PointOnSide (x1, y1, cx1, cy1, cdx, cdy) == 0 &&
|
|
PointOnSide (x2, y2, cx1, cy1, cdx, cdy) == 0)
|
|
{
|
|
break;
|
|
}
|
|
check = check->hashnext;
|
|
}
|
|
if (check != NULL)
|
|
{
|
|
seg->planenum = check->planenum;
|
|
const FSimpleLine *line = &Planes[seg->planenum];
|
|
if (line->dx != 0)
|
|
{
|
|
if ((line->dx > 0 && x2 > x1) || (line->dx < 0 && x2 < x1))
|
|
{
|
|
seg->planefront = true;
|
|
}
|
|
else
|
|
{
|
|
seg->planefront = false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ((line->dy > 0 && y2 > y1) || (line->dy < 0 && y2 < y1))
|
|
{
|
|
seg->planefront = true;
|
|
}
|
|
else
|
|
{
|
|
seg->planefront = false;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
seg->hashnext = buckets[ang];
|
|
buckets[ang] = seg;
|
|
seg->planenum = planenum++;
|
|
seg->planefront = true;
|
|
|
|
FSimpleLine pline = { Vertices[seg->v1].x,
|
|
Vertices[seg->v1].y,
|
|
Vertices[seg->v2].x - Vertices[seg->v1].x,
|
|
Vertices[seg->v2].y - Vertices[seg->v1].y };
|
|
Planes.Push (pline);
|
|
}
|
|
}
|
|
|
|
D(Printf ("%d planes from %d segs\n", planenum, Segs.Size()));
|
|
|
|
PlaneChecked.Reserve ((planenum + 7) / 8);
|
|
}
|
|
|
|
// Just create one plane per seg. Should be good enough for mini BSPs.
|
|
void FNodeBuilder::GroupSegPlanesSimple()
|
|
{
|
|
Planes.Resize(Segs.Size());
|
|
for (int i = 0; i < (int)Segs.Size(); ++i)
|
|
{
|
|
FPrivSeg *seg = &Segs[i];
|
|
FSimpleLine *pline = &Planes[i];
|
|
seg->next = i+1;
|
|
seg->hashnext = NULL;
|
|
seg->planenum = i;
|
|
seg->planefront = true;
|
|
pline->x = Vertices[seg->v1].x;
|
|
pline->y = Vertices[seg->v1].y;
|
|
pline->dx = Vertices[seg->v2].x - Vertices[seg->v1].x;
|
|
pline->dy = Vertices[seg->v2].y - Vertices[seg->v1].y;
|
|
}
|
|
Segs.Last().next = UINT_MAX;
|
|
PlaneChecked.Reserve((Segs.Size() + 7) / 8);
|
|
}
|
|
|
|
void FNodeBuilder::AddSegToBBox (fixed_t bbox[4], const FPrivSeg *seg)
|
|
{
|
|
FPrivVert *v1 = &Vertices[seg->v1];
|
|
FPrivVert *v2 = &Vertices[seg->v2];
|
|
|
|
if (v1->x < bbox[BOXLEFT]) bbox[BOXLEFT] = v1->x;
|
|
if (v1->x > bbox[BOXRIGHT]) bbox[BOXRIGHT] = v1->x;
|
|
if (v1->y < bbox[BOXBOTTOM]) bbox[BOXBOTTOM] = v1->y;
|
|
if (v1->y > bbox[BOXTOP]) bbox[BOXTOP] = v1->y;
|
|
|
|
if (v2->x < bbox[BOXLEFT]) bbox[BOXLEFT] = v2->x;
|
|
if (v2->x > bbox[BOXRIGHT]) bbox[BOXRIGHT] = v2->x;
|
|
if (v2->y < bbox[BOXBOTTOM]) bbox[BOXBOTTOM] = v2->y;
|
|
if (v2->y > bbox[BOXTOP]) bbox[BOXTOP] = v2->y;
|
|
}
|
|
|
|
void FNodeBuilder::FLevel::FindMapBounds()
|
|
{
|
|
double minx, maxx, miny, maxy;
|
|
|
|
minx = maxx = Vertices[0].fX();
|
|
miny = maxy = Vertices[0].fY();
|
|
|
|
for (int i = 1; i < NumLines; ++i)
|
|
{
|
|
for (int j = 0; j < 2; j++)
|
|
{
|
|
vertex_t *v = (j == 0 ? Lines[i].v1 : Lines[i].v2);
|
|
if (v->fX() < minx) minx = v->fX();
|
|
else if (v->fX() > maxx) maxx = v->fX();
|
|
if (v->fY() < miny) miny = v->fY();
|
|
else if (v->fY() > maxy) maxy = v->fY();
|
|
}
|
|
}
|
|
|
|
MinX = FLOAT2FIXED(minx);
|
|
MinY = FLOAT2FIXED(miny);
|
|
MaxX = FLOAT2FIXED(maxx);
|
|
MaxY = FLOAT2FIXED(maxy);
|
|
}
|
|
|
|
FNodeBuilder::IVertexMap::~IVertexMap()
|
|
{
|
|
}
|
|
|
|
FNodeBuilder::FVertexMap::FVertexMap (FNodeBuilder &builder,
|
|
fixed_t minx, fixed_t miny, fixed_t maxx, fixed_t maxy)
|
|
: MyBuilder(builder)
|
|
{
|
|
MinX = minx;
|
|
MinY = miny;
|
|
BlocksWide = int(((double(maxx) - minx + 1) + (BLOCK_SIZE - 1)) / BLOCK_SIZE);
|
|
BlocksTall = int(((double(maxy) - miny + 1) + (BLOCK_SIZE - 1)) / BLOCK_SIZE);
|
|
MaxX = MinX + fixed64_t(BlocksWide) * BLOCK_SIZE - 1;
|
|
MaxY = MinY + fixed64_t(BlocksTall) * BLOCK_SIZE - 1;
|
|
VertexGrid = new TArray<int>[BlocksWide * BlocksTall];
|
|
}
|
|
|
|
FNodeBuilder::FVertexMap::~FVertexMap ()
|
|
{
|
|
delete[] VertexGrid;
|
|
}
|
|
|
|
int FNodeBuilder::FVertexMap::SelectVertexExact (FNodeBuilder::FPrivVert &vert)
|
|
{
|
|
TArray<int> &block = VertexGrid[GetBlock (vert.x, vert.y)];
|
|
FPrivVert *vertices = &MyBuilder.Vertices[0];
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < block.Size(); ++i)
|
|
{
|
|
if (vertices[block[i]].x == vert.x && vertices[block[i]].y == vert.y)
|
|
{
|
|
return block[i];
|
|
}
|
|
}
|
|
|
|
// Not present: add it!
|
|
return InsertVertex (vert);
|
|
}
|
|
|
|
int FNodeBuilder::FVertexMap::SelectVertexClose (FNodeBuilder::FPrivVert &vert)
|
|
{
|
|
TArray<int> &block = VertexGrid[GetBlock (vert.x, vert.y)];
|
|
FPrivVert *vertices = &MyBuilder.Vertices[0];
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < block.Size(); ++i)
|
|
{
|
|
#if VERTEX_EPSILON <= 1
|
|
if (vertices[block[i]].x == vert.x && vertices[block[i]].y == vert.y)
|
|
#else
|
|
if (abs(vertices[block[i]].x - vert.x) < VERTEX_EPSILON &&
|
|
abs(vertices[block[i]].y - vert.y) < VERTEX_EPSILON)
|
|
#endif
|
|
{
|
|
return block[i];
|
|
}
|
|
}
|
|
|
|
// Not present: add it!
|
|
return InsertVertex (vert);
|
|
}
|
|
|
|
int FNodeBuilder::FVertexMap::InsertVertex (FNodeBuilder::FPrivVert &vert)
|
|
{
|
|
int vertnum;
|
|
|
|
vert.segs = UINT_MAX;
|
|
vert.segs2 = UINT_MAX;
|
|
vertnum = (int)MyBuilder.Vertices.Push (vert);
|
|
|
|
// If a vertex is near a block boundary, then it will be inserted on
|
|
// both sides of the boundary so that SelectVertexClose can find
|
|
// it by checking in only one block.
|
|
fixed64_t minx = MAX (MinX, fixed64_t(vert.x) - VERTEX_EPSILON);
|
|
fixed64_t maxx = MIN (MaxX, fixed64_t(vert.x) + VERTEX_EPSILON);
|
|
fixed64_t miny = MAX (MinY, fixed64_t(vert.y) - VERTEX_EPSILON);
|
|
fixed64_t maxy = MIN (MaxY, fixed64_t(vert.y) + VERTEX_EPSILON);
|
|
|
|
int blk[4] =
|
|
{
|
|
GetBlock (minx, miny),
|
|
GetBlock (maxx, miny),
|
|
GetBlock (minx, maxy),
|
|
GetBlock (maxx, maxy)
|
|
};
|
|
unsigned int blkcount[4] =
|
|
{
|
|
VertexGrid[blk[0]].Size(),
|
|
VertexGrid[blk[1]].Size(),
|
|
VertexGrid[blk[2]].Size(),
|
|
VertexGrid[blk[3]].Size()
|
|
};
|
|
for (int i = 0; i < 4; ++i)
|
|
{
|
|
if (VertexGrid[blk[i]].Size() == blkcount[i])
|
|
{
|
|
VertexGrid[blk[i]].Push (vertnum);
|
|
}
|
|
}
|
|
|
|
return vertnum;
|
|
}
|
|
|
|
FNodeBuilder::FVertexMapSimple::FVertexMapSimple(FNodeBuilder &builder)
|
|
: MyBuilder(builder)
|
|
{
|
|
}
|
|
|
|
int FNodeBuilder::FVertexMapSimple::SelectVertexExact(FNodeBuilder::FPrivVert &vert)
|
|
{
|
|
FPrivVert *verts = &MyBuilder.Vertices[0];
|
|
unsigned int stop = MyBuilder.Vertices.Size();
|
|
|
|
for (unsigned int i = 0; i < stop; ++i)
|
|
{
|
|
if (verts[i].x == vert.x && verts[i].y == vert.y)
|
|
{
|
|
return i;
|
|
}
|
|
}
|
|
// Not present: add it!
|
|
return InsertVertex(vert);
|
|
}
|
|
|
|
int FNodeBuilder::FVertexMapSimple::SelectVertexClose(FNodeBuilder::FPrivVert &vert)
|
|
{
|
|
FPrivVert *verts = &MyBuilder.Vertices[0];
|
|
unsigned int stop = MyBuilder.Vertices.Size();
|
|
|
|
for (unsigned int i = 0; i < stop; ++i)
|
|
{
|
|
#if VERTEX_EPSILON <= 1
|
|
if (verts[i].x == vert.x && verts[i].y == y)
|
|
#else
|
|
if (abs(verts[i].x - vert.x) < VERTEX_EPSILON &&
|
|
abs(verts[i].y - vert.y) < VERTEX_EPSILON)
|
|
#endif
|
|
{
|
|
return i;
|
|
}
|
|
}
|
|
// Not present: add it!
|
|
return InsertVertex (vert);
|
|
}
|
|
|
|
int FNodeBuilder::FVertexMapSimple::InsertVertex (FNodeBuilder::FPrivVert &vert)
|
|
{
|
|
vert.segs = UINT_MAX;
|
|
vert.segs2 = UINT_MAX;
|
|
return (int)MyBuilder.Vertices.Push (vert);
|
|
}
|