raze/polymer/eduke32/build/src/polymer.c

5427 lines
175 KiB
C

// blah
#ifdef POLYMOST
#define POLYMER_C
#include "polymer.h"
#include "engine_priv.h"
#include <float.h>
// CVARS
int32_t pr_lighting = 1;
int32_t pr_normalmapping = 1;
int32_t pr_specularmapping = 1;
int32_t pr_shadows = 1;
int32_t pr_shadowcount = 5;
int32_t pr_shadowdetail = 4;
int32_t pr_shadowfiltering = 1;
int32_t pr_maxlightpasses = 10;
int32_t pr_maxlightpriority = PR_MAXLIGHTPRIORITY;
int32_t pr_fov = 426; // appears to be the classic setting.
float pr_customaspect = 0.0f;
int32_t pr_billboardingmode = 1;
int32_t pr_verbosity = 1; // 0: silent, 1: errors and one-times, 2: multiple-times, 3: flood
int32_t pr_wireframe = 0;
int32_t pr_vbos = 2;
int32_t pr_gpusmoothing = 1;
int32_t pr_overrideparallax = 0;
float pr_parallaxscale = 0.1f;
float pr_parallaxbias = 0.0f;
int32_t pr_overridespecular = 0;
float pr_specularpower = 15.0f;
float pr_specularfactor = 1.0f;
int32_t pr_ati_fboworkaround = 0;
int32_t pr_ati_nodepthoffset = 0;
int32_t r_pr_maxlightpasses = 5; // value of the cvar (not live value), used to detect changes
GLenum mapvbousage = GL_STREAM_DRAW_ARB;
GLenum modelvbousage = GL_STATIC_DRAW_ARB;
// BUILD DATA
_prsector *prsectors[MAXSECTORS];
_prwall *prwalls[MAXWALLS];
_prplane spriteplane;
_prmaterial mdspritematerial;
static GLfloat vertsprite[4 * 5] =
{
-0.5f, 0.0f, 0.0f,
0.0f, 1.0f,
0.5f, 0.0f, 0.0f,
1.0f, 1.0f,
0.5f, 1.0f, 0.0f,
1.0f, 0.0f,
-0.5f, 1.0f, 0.0f,
0.0f, 0.0f,
};
static GLfloat horizsprite[4 * 5] =
{
-0.5f, 0.0f, 0.5f,
0.0f, 0.0f,
0.5f, 0.0f, 0.5f,
1.0f, 0.0f,
0.5f, 0.0f, -0.5f,
1.0f, 1.0f,
-0.5f, 0.0f, -0.5f,
0.0f, 1.0f,
};
static GLfloat skyboxdata[4 * 5 * 6] =
{
// -ZY
-0.5f, -0.5f, 0.5f,
0.0f, 1.0f,
-0.5f, -0.5f, -0.5f,
1.0f, 1.0f,
-0.5f, 0.5f, -0.5f,
1.0f, 0.0f,
-0.5f, 0.5f, 0.5f,
0.0f, 0.0f,
// XY
-0.5f, -0.5f, -0.5f,
0.0f, 1.0f,
0.5f, -0.5f, -0.5f,
1.0f, 1.0f,
0.5f, 0.5f, -0.5f,
1.0f, 0.0f,
-0.5f, 0.5f, -0.5f,
0.0f, 0.0f,
// ZY
0.5f, -0.5f, -0.5f,
0.0f, 1.0f,
0.5f, -0.5f, 0.5f,
1.0f, 1.0f,
0.5f, 0.5f, 0.5f,
1.0f, 0.0f,
0.5f, 0.5f, -0.5f,
0.0f, 0.0f,
// -XY
0.5f, -0.5f, 0.5f,
0.0f, 1.0f,
-0.5f, -0.5f, 0.5f,
1.0f, 1.0f,
-0.5f, 0.5f, 0.5f,
1.0f, 0.0f,
0.5f, 0.5f, 0.5f,
0.0f, 0.0f,
// XZ
-0.5f, 0.5f, -0.5f,
1.0f, 1.0f,
0.5f, 0.5f, -0.5f,
1.0f, 0.0f,
0.5f, 0.5f, 0.5f,
0.0f, 0.0f,
-0.5f, 0.5f, 0.5f,
0.0f, 1.0f,
// X-Z
-0.5f, -0.5f, 0.5f,
0.0f, 0.0f,
0.5f, -0.5f, 0.5f,
0.0f, 1.0f,
0.5f, -0.5f, -0.5f,
1.0f, 1.0f,
-0.5f, -0.5f, -0.5f,
1.0f, 0.0f,
};
GLuint skyboxdatavbo;
GLfloat artskydata[16];
// LIGHTS
#pragma pack(push,1)
_prlight prlights[PR_MAXLIGHTS];
int32_t lightcount;
int32_t curlight;
_prlight gamelights[PR_MAXLIGHTS];
int32_t gamelightcount;
#pragma pack(pop)
static GLfloat shadowBias[] =
{
0.5, 0.0, 0.0, 0.0,
0.0, 0.5, 0.0, 0.0,
0.0, 0.0, 0.5, 0.0,
0.5, 0.5, 0.5, 1.0
};
// MATERIALS
_prprogrambit prprogrambits[PR_BIT_COUNT] = {
{
1 << PR_BIT_HEADER,
// vert_def
"#version 120\n"
"#extension GL_ARB_texture_rectangle : enable\n"
"\n",
// vert_prog
"",
// frag_def
"#version 120\n"
"#extension GL_ARB_texture_rectangle : enable\n"
"\n",
// frag_prog
"",
},
{
1 << PR_BIT_ANIM_INTERPOLATION,
// vert_def
"attribute vec4 nextFrameData;\n"
"attribute vec4 nextFrameNormal;\n"
"uniform float frameProgress;\n"
"\n",
// vert_prog
" vec4 currentFramePosition;\n"
" vec4 nextFramePosition;\n"
"\n"
" currentFramePosition = curVertex * (1.0 - frameProgress);\n"
" nextFramePosition = nextFrameData * frameProgress;\n"
" curVertex = currentFramePosition + nextFramePosition;\n"
"\n"
" currentFramePosition = vec4(curNormal, 1.0) * (1.0 - frameProgress);\n"
" nextFramePosition = nextFrameNormal * frameProgress;\n"
" curNormal = vec3(currentFramePosition + nextFramePosition);\n"
"\n",
// frag_def
"",
// frag_prog
"",
},
{
1 << PR_BIT_LIGHTING_PASS,
// vert_def
"",
// vert_prog
"",
// frag_def
"",
// frag_prog
" isLightingPass = 1;\n"
" result = vec4(0.0, 0.0, 0.0, 1.0);\n"
"\n",
},
{
1 << PR_BIT_NORMAL_MAP,
// vert_def
"attribute vec3 T;\n"
"attribute vec3 B;\n"
"attribute vec3 N;\n"
"uniform vec3 eyePosition;\n"
"varying vec3 tangentSpaceEyeVec;\n"
"\n",
// vert_prog
" TBN = transpose(mat3(T, B, N));\n"
" tangentSpaceEyeVec = eyePosition - vec3(curVertex);\n"
" tangentSpaceEyeVec = TBN * tangentSpaceEyeVec;\n"
"\n"
" isNormalMapped = 1;\n"
"\n",
// frag_def
"uniform sampler2D normalMap;\n"
"uniform vec2 normalBias;\n"
"varying vec3 tangentSpaceEyeVec;\n"
"\n",
// frag_prog
" vec4 normalStep;\n"
" float biasedHeight;\n"
"\n"
" eyeVec = normalize(tangentSpaceEyeVec);\n"
"\n"
" for (int i = 0; i < 4; i++) {\n"
" normalStep = texture2D(normalMap, commonTexCoord.st);\n"
" biasedHeight = normalStep.a * normalBias.x - normalBias.y;\n"
" commonTexCoord += (biasedHeight - commonTexCoord.z) * normalStep.z * eyeVec;\n"
" }\n"
"\n"
" normalTexel = texture2D(normalMap, commonTexCoord.st);\n"
"\n"
" isNormalMapped = 1;\n"
"\n",
},
{
1 << PR_BIT_DIFFUSE_MAP,
// vert_def
"uniform vec2 diffuseScale;\n"
"\n",
// vert_prog
" gl_TexCoord[0] = vec4(diffuseScale, 1.0, 1.0) * gl_MultiTexCoord0;\n"
"\n",
// frag_def
"uniform sampler2D diffuseMap;\n"
"\n",
// frag_prog
" diffuseTexel = texture2D(diffuseMap, commonTexCoord.st);\n"
" if (isLightingPass == 0)\n"
" result *= diffuseTexel;\n"
"\n",
},
{
1 << PR_BIT_DIFFUSE_DETAIL_MAP,
// vert_def
"uniform vec2 detailScale;\n"
"varying vec2 fragDetailScale;\n"
"\n",
// vert_prog
" fragDetailScale = detailScale;\n"
" if (isNormalMapped == 0)\n"
" gl_TexCoord[1] = vec4(detailScale, 1.0, 1.0) * gl_MultiTexCoord0;\n"
"\n",
// frag_def
"uniform sampler2D detailMap;\n"
"varying vec2 fragDetailScale;\n"
"\n",
// frag_prog
" if (isNormalMapped == 0)\n"
" result *= texture2D(detailMap, gl_TexCoord[1].st);\n"
" else\n"
" result *= texture2D(detailMap, commonTexCoord.st * fragDetailScale);\n"
" result.rgb *= 2.0;\n"
"\n",
},
{
1 << PR_BIT_DIFFUSE_MODULATION,
// vert_def
"",
// vert_prog
" gl_FrontColor = gl_Color;\n"
"\n",
// frag_def
"",
// frag_prog
" if (isLightingPass == 0)\n"
" result *= vec4(gl_Color);\n"
"\n",
},
{
1 << PR_BIT_SPECULAR_MAP,
// vert_def
"",
// vert_prog
"",
// frag_def
"uniform sampler2D specMap;\n"
"\n",
// frag_prog
" specTexel = texture2D(specMap, commonTexCoord.st);\n"
"\n"
" isSpecularMapped = 1;\n"
"\n",
},
{
1 << PR_BIT_SPECULAR_MATERIAL,
// vert_def
"",
// vert_prog
"",
// frag_def
"uniform vec2 specMaterial;\n"
"\n",
// frag_prog
" specularMaterial = specMaterial;\n"
"\n",
},
{
1 << PR_BIT_MIRROR_MAP,
// vert_def
"",
// vert_prog
"",
// frag_def
"uniform sampler2DRect mirrorMap;\n"
"\n",
// frag_prog
" vec4 mirrorTexel;\n"
" vec2 mirrorCoords;\n"
"\n"
" mirrorCoords = gl_FragCoord.st;\n"
" if (isNormalMapped == 1) {\n"
" mirrorCoords += 100.0 * (normalTexel.rg - 0.5);\n"
" }\n"
" mirrorTexel = texture2DRect(mirrorMap, mirrorCoords);\n"
" result = vec4((result.rgb * (1.0 - specTexel.a)) + (mirrorTexel.rgb * specTexel.rgb * specTexel.a), result.a);\n"
"\n",
},
{
1 << PR_BIT_FOG,
// vert_def
"",
// vert_prog
"",
// frag_def
"",
// frag_prog
" float fragDepth;\n"
" float fogFactor;\n"
"\n"
" fragDepth = gl_FragCoord.z / gl_FragCoord.w / 35.0;\n"
" fragDepth *= fragDepth;\n"
" fogFactor = exp2(-gl_Fog.density * gl_Fog.density * fragDepth * 1.442695);\n"
" result.rgb = mix(gl_Fog.color.rgb, result.rgb, fogFactor);\n"
"\n",
},
{
1 << PR_BIT_GLOW_MAP,
// vert_def
"",
// vert_prog
"",
// frag_def
"uniform sampler2D glowMap;\n"
"\n",
// frag_prog
" vec4 glowTexel;\n"
"\n"
" glowTexel = texture2D(glowMap, commonTexCoord.st);\n"
" result = vec4((result.rgb * (1.0 - glowTexel.a)) + (glowTexel.rgb * glowTexel.a), result.a);\n"
"\n",
},
{
1 << PR_BIT_SHADOW_MAP,
// vert_def
"uniform mat4 shadowProjMatrix;\n"
"\n",
// vert_prog
" gl_TexCoord[2] = shadowProjMatrix * curVertex;\n"
"\n",
// frag_def
"uniform sampler2DShadow shadowMap;\n"
"\n",
// frag_prog
" shadowResult = shadow2DProj(shadowMap, gl_TexCoord[2]).a;\n"
"\n",
},
{
1 << PR_BIT_LIGHT_MAP,
// vert_def
"",
// vert_prog
"",
// frag_def
"uniform sampler2D lightMap;\n"
"\n",
// frag_prog
" lightTexel = texture2D(lightMap, gl_TexCoord[2].st / gl_TexCoord[2].q).rgb;\n"
"\n",
},
{
1 << PR_BIT_SPOT_LIGHT,
// vert_def
"",
// vert_prog
"",
// frag_def
"uniform vec3 spotDir;\n"
"uniform vec2 spotRadius;\n"
"\n",
// frag_prog
" spotVector = spotDir;\n"
" spotCosRadius = spotRadius;\n"
" isSpotLight = 1;\n"
"\n",
},
{
1 << PR_BIT_POINT_LIGHT,
// vert_def
"varying vec3 vertexNormal;\n"
"varying vec3 eyeVector;\n"
"varying vec3 lightVector;\n"
"varying vec3 tangentSpaceLightVector;\n"
"\n",
// vert_prog
" vec3 vertexPos;\n"
"\n"
" vertexPos = vec3(gl_ModelViewMatrix * curVertex);\n"
" eyeVector = -vertexPos;\n"
" lightVector = gl_LightSource[0].ambient.rgb - vertexPos;\n"
"\n"
" if (isNormalMapped == 1) {\n"
" tangentSpaceLightVector = gl_LightSource[0].specular.rgb - vec3(curVertex);\n"
" tangentSpaceLightVector = TBN * tangentSpaceLightVector;\n"
" } else\n"
" vertexNormal = normalize(gl_NormalMatrix * curNormal);\n"
"\n",
// frag_def
"varying vec3 vertexNormal;\n"
"varying vec3 eyeVector;\n"
"varying vec3 lightVector;\n"
"varying vec3 tangentSpaceLightVector;\n"
"\n",
// frag_prog
" float pointLightDistance;\n"
" float lightAttenuation;\n"
" float spotAttenuation;\n"
" vec3 N, L, E, R, D;\n"
" vec3 lightDiffuse;\n"
" float lightSpecular;\n"
" float NdotL;\n"
" float spotCosAngle;\n"
"\n"
" L = normalize(lightVector);\n"
"\n"
" pointLightDistance = dot(lightVector,lightVector);\n"
" lightAttenuation = clamp(1.0 - pointLightDistance * gl_LightSource[0].linearAttenuation, 0.0, 1.0);\n"
" spotAttenuation = 1.0;\n"
"\n"
" if (isSpotLight == 1) {\n"
" D = normalize(spotVector);\n"
" spotCosAngle = dot(-L, D);\n"
" spotAttenuation = clamp((spotCosAngle - spotCosRadius.x) * spotCosRadius.y, 0.0, 1.0);\n"
" }\n"
"\n"
" if (isNormalMapped == 1) {\n"
" E = eyeVec;\n"
" N = normalize(2.0 * (normalTexel.rgb - 0.5));\n"
" L = normalize(tangentSpaceLightVector);\n"
" } else {\n"
" E = normalize(eyeVector);\n"
" N = normalize(vertexNormal);\n"
" }\n"
" NdotL = max(dot(N, L), 0.0);\n"
"\n"
" R = reflect(-L, N);\n"
"\n"
" lightDiffuse = gl_Color.a * shadowResult * lightTexel *\n"
" gl_LightSource[0].diffuse.rgb * lightAttenuation * spotAttenuation;\n"
" result += vec4(lightDiffuse * diffuseTexel.a * diffuseTexel.rgb * NdotL, 0.0);\n"
"\n"
" if (isSpecularMapped == 0)\n"
" specTexel.rgb = diffuseTexel.rgb * diffuseTexel.a;\n"
"\n"
" lightSpecular = pow( max(dot(R, E), 0.0), specularMaterial.x * specTexel.a) * specularMaterial.y;\n"
" result += vec4(lightDiffuse * specTexel.rgb * lightSpecular, 0.0);\n"
"\n",
},
{
1 << PR_BIT_FOOTER,
// vert_def
"void main(void)\n"
"{\n"
" vec4 curVertex = gl_Vertex;\n"
" vec3 curNormal = gl_Normal;\n"
" int isNormalMapped = 0;\n"
" mat3 TBN;\n"
"\n"
" gl_TexCoord[0] = gl_MultiTexCoord0;\n"
"\n",
// vert_prog
" gl_Position = gl_ModelViewProjectionMatrix * curVertex;\n"
"}\n",
// frag_def
"void main(void)\n"
"{\n"
" vec3 commonTexCoord = vec3(gl_TexCoord[0].st, 0.0);\n"
" vec4 result = vec4(1.0, 1.0, 1.0, 1.0);\n"
" vec4 diffuseTexel = vec4(1.0, 1.0, 1.0, 1.0);\n"
" vec4 specTexel = vec4(1.0, 1.0, 1.0, 1.0);\n"
" vec4 normalTexel;\n"
" int isLightingPass = 0;\n"
" int isNormalMapped = 0;\n"
" int isSpecularMapped = 0;\n"
" vec3 eyeVec;\n"
" int isSpotLight = 0;\n"
" vec3 spotVector;\n"
" vec2 spotCosRadius;\n"
" float shadowResult = 1.0;\n"
" vec2 specularMaterial = vec2(15.0, 1.0);\n"
" vec3 lightTexel = vec3(1.0, 1.0, 1.0);\n"
"\n",
// frag_prog
" gl_FragColor = result;\n"
"}\n",
}
};
_prprograminfo prprograms[1 << PR_BIT_COUNT];
int32_t overridematerial;
// RENDER TARGETS
_prrt *prrts;
// CONTROL
GLfloat spritemodelview[16];
GLfloat rootmodelviewmatrix[16];
GLfloat *curmodelviewmatrix;
GLfloat rootskymodelviewmatrix[16];
GLfloat *curskymodelviewmatrix;
static int16_t sectorqueue[MAXSECTORS];
static int16_t querydelay[MAXSECTORS];
static GLuint queryid[MAXWALLS];
static int16_t drawingstate[MAXSECTORS];
float horizang;
int16_t viewangle;
int32_t depth;
_prmirror mirrors[10];
GLUtesselator* prtess;
int16_t cursky;
char curskypal;
int8_t curskyshade;
_pranimatespritesinfo asi;
// MEMORY POOL
// nedpool* polymer_pool = NULL;
#define polymer_pool (nedpool *) 0 // take it out of the system pool
void polymer_alt_editorselect(void);
static int32_t m32_numdrawnsprites = 0;
static struct
{
GLfloat verts[4*3];
GLfloat plane[4];
int16_t owner;
int8_t type; // 0: planar sprite, 1: model sprite
} m32_drawnsprites[MAXSPRITESONSCREEN];
// EXTERNAL FUNCTIONS
int32_t polymer_init(void)
{
int32_t i;
if (pr_verbosity >= 1) OSD_Printf("Initializing Polymer subsystem...\n");
if (!glinfo.texnpot ||
!glinfo.depthtex ||
!glinfo.shadow ||
!glinfo.fbos ||
!glinfo.rect ||
!glinfo.multitex ||
!glinfo.vbos ||
!glinfo.occlusionqueries ||
!glinfo.glsl)
{
OSD_Printf("PR : Your video card driver/combo doesn't support the necessary features!\n");
OSD_Printf("PR : Disabling Polymer...\n");
return (0);
}
/*
if (!polymer_pool)
polymer_pool = nedcreatepool(POLYMER_POOL_SIZE, 0);
*/
Bmemset(&prsectors[0], 0, sizeof(prsectors[0]) * MAXSECTORS);
Bmemset(&prwalls[0], 0, sizeof(prwalls[0]) * MAXWALLS);
prtess = bgluNewTess();
if (prtess == 0)
{
OSD_Printf("PR : Tessellation object initialization failed!\n");
return (0);
}
polymer_loadboard();
polymer_initartsky();
skyboxdatavbo = 0;
if (spriteplane.buffer == NULL) {
spriteplane.buffer = nedpmalloc(polymer_pool, 4 * sizeof(GLfloat) * 5);
spriteplane.vertcount = 4;
}
i = 0;
while (i < nextmodelid)
{
if (models[i])
{
md3model_t* m;
m = (md3model_t*)models[i];
m->indices = NULL;
}
i++;
}
i = 0;
while (i < (1 << PR_BIT_COUNT))
{
prprograms[i].handle = 0;
i++;
}
overridematerial = 0xFFFFFFFF;
polymer_initrendertargets(pr_shadowcount + 1);
if (pr_verbosity >= 1) OSD_Printf("PR : Initialization complete.\n");
return (1);
}
void polymer_uninit(void)
{
polymer_freeboard();
/*
if (polymer_pool)
neddestroypool(polymer_pool);
*/
}
void polymer_glinit(void)
{
float aspect;
bglClearColor(0.0f, 0.0f, 0.0f, 1.0f);
bglClearStencil(0);
bglClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
bglViewport(windowx1, yres-(windowy2+1),windowx2-windowx1+1, windowy2-windowy1+1);
// texturing
bglEnable(GL_TEXTURE_2D);
bglTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_REPEAT);
bglTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_REPEAT);
bglEnable(GL_DEPTH_TEST);
bglDepthFunc(GL_LEQUAL);
bglDisable(GL_BLEND);
bglDisable(GL_ALPHA_TEST);
if (pr_wireframe)
bglPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
else
bglPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
if (pr_customaspect != 0.0f)
aspect = pr_customaspect;
else
aspect = (float)(windowx2-windowx1+1) /
(float)(windowy2-windowy1+1);
bglMatrixMode(GL_PROJECTION);
bglLoadIdentity();
bgluPerspective((float)(pr_fov) / (2048.0f / 360.0f), aspect, 0.01f, 100.0f);
bglMatrixMode(GL_MODELVIEW);
bglLoadIdentity();
bglEnableClientState(GL_VERTEX_ARRAY);
bglEnableClientState(GL_TEXTURE_COORD_ARRAY);
bglDisable(GL_FOG);
bglEnable(GL_CULL_FACE);
bglCullFace(GL_BACK);
}
void polymer_loadboard(void)
{
int32_t i;
polymer_freeboard();
nedtrimthreadcache(polymer_pool, 0);
i = 0;
while (i < numsectors)
{
polymer_initsector(i);
polymer_updatesector(i);
i++;
}
i = 0;
while (i < numwalls)
{
polymer_initwall(i);
polymer_updatewall(i);
i++;
}
polymer_getsky();
polymer_resetlights();
if (pr_verbosity >= 1) OSD_Printf("PR : Board loaded.\n");
}
void polymer_drawrooms(int32_t daposx, int32_t daposy, int32_t daposz, int16_t daang, int32_t dahoriz, int16_t dacursectnum)
{
int16_t cursectnum;
int32_t i, cursectflorz, cursectceilz;
float skyhoriz, ang, tiltang;
float pos[3];
pthtyp* pth;
if (!rendmode) return;
begindrawing();
// TODO: support for screen resizing
// frameoffset = frameplace + windowy1*bytesperline + windowx1;
if (pr_verbosity >= 3) OSD_Printf("PR : Drawing rooms...\n");
// fogcalc needs this
gvisibility = ((float)globalvisibility)*FOGSCALE;
ang = (float)(daang) / (2048.0f / 360.0f);
horizang = (float)(-getangle(128, dahoriz-100)) / (2048.0f / 360.0f);
tiltang = (gtang * 90.0f);
// if (searchit == 2) polymer_editorselect();
pos[0] = (float)daposy;
pos[1] = -(float)(daposz) / 16.0f;
pos[2] = -(float)daposx;
polymer_updatelights();
// polymer_resetlights();
// if (pr_lighting)
// polymer_applylights();
depth = 0;
if (pr_shadows && lightcount && (pr_shadowcount > 0))
polymer_prepareshadows();
// hack for parallax skies
skyhoriz = horizang;
if (skyhoriz < -180.0f)
skyhoriz += 360.0f;
drawingskybox = 1;
pth = gltexcache(cursky,0,0);
drawingskybox = 0;
// if it's not a skybox, make the sky parallax
// the angle factor is computed from eyeballed values
// need to recompute it if we ever change the max horiz amplitude
if (!pth || !(pth->flags & 4))
skyhoriz /= 4.3027f;
bglMatrixMode(GL_MODELVIEW);
bglLoadIdentity();
bglRotatef(tiltang, 0.0f, 0.0f, -1.0f);
bglRotatef(skyhoriz, 1.0f, 0.0f, 0.0f);
bglRotatef(ang, 0.0f, 1.0f, 0.0f);
bglScalef(1.0f / 1000.0f, 1.0f / 1000.0f, 1.0f / 1000.0f);
bglTranslatef(-pos[0], -pos[1], -pos[2]);
bglGetFloatv(GL_MODELVIEW_MATRIX, rootskymodelviewmatrix);
curskymodelviewmatrix = rootskymodelviewmatrix;
bglMatrixMode(GL_MODELVIEW);
bglLoadIdentity();
bglRotatef(tiltang, 0.0f, 0.0f, -1.0f);
bglRotatef(horizang, 1.0f, 0.0f, 0.0f);
bglRotatef(ang, 0.0f, 1.0f, 0.0f);
bglScalef(1.0f / 1000.0f, 1.0f / 1000.0f, 1.0f / 1000.0f);
bglTranslatef(-pos[0], -pos[1], -pos[2]);
bglGetFloatv(GL_MODELVIEW_MATRIX, rootmodelviewmatrix);
cursectnum = dacursectnum;
updatesector(daposx, daposy, &cursectnum);
if ((cursectnum >= 0) && (cursectnum < numsectors))
dacursectnum = cursectnum;
// unflag all sectors
i = numsectors-1;
while (i >= 0)
{
prsectors[i]->flags.uptodate = 0;
prsectors[i]->wallsproffset = 0.0f;
prsectors[i]->floorsproffset = 0.0f;
i--;
}
i = numwalls-1;
while (i >= 0)
{
prwalls[i]->flags.uptodate = 0;
i--;
}
getzsofslope(dacursectnum, daposx, daposy, &cursectceilz, &cursectflorz);
// external view (editor)
if ((dacursectnum < 0) || (dacursectnum >= numsectors) ||
(daposz > cursectflorz) ||
(daposz < cursectceilz))
{
i = numsectors-1;
while (i >= 0)
{
polymer_updatesector(i);
polymer_drawsector(i);
polymer_scansprites(i, tsprite, &spritesortcnt);
i--;
}
i = numwalls-1;
while (i >= 0)
{
polymer_updatewall(i);
polymer_drawwall(sectorofwall(i), i);
i--;
}
viewangle = daang;
enddrawing();
return;
}
// GO!
polymer_displayrooms(dacursectnum);
curmodelviewmatrix = rootmodelviewmatrix;
// build globals used by rotatesprite
viewangle = daang;
globalang = (daang&2047);
cosglobalang = sintable[(globalang+512)&2047];
singlobalang = sintable[globalang&2047];
cosviewingrangeglobalang = mulscale16(cosglobalang,viewingrange);
sinviewingrangeglobalang = mulscale16(singlobalang,viewingrange);
// polymost globals used by polymost_dorotatesprite
gcosang = ((double)cosglobalang)/262144.0;
gsinang = ((double)singlobalang)/262144.0;
gcosang2 = gcosang*((double)viewingrange)/65536.0;
gsinang2 = gsinang*((double)viewingrange)/65536.0;
if (pr_verbosity >= 3) OSD_Printf("PR : Rooms drawn.\n");
enddrawing();
}
void polymer_drawmasks(void)
{
bglEnable(GL_ALPHA_TEST);
bglEnable(GL_BLEND);
bglEnable(GL_POLYGON_OFFSET_FILL);
while (spritesortcnt)
{
spritesortcnt--;
tspriteptr[spritesortcnt] = &tsprite[spritesortcnt];
polymer_drawsprite(spritesortcnt);
}
bglDisable(GL_POLYGON_OFFSET_FILL);
bglDisable(GL_BLEND);
bglDisable(GL_ALPHA_TEST);
}
void polymer_rotatesprite(int32_t sx, int32_t sy, int32_t z, int16_t a, int16_t picnum, int8_t dashade, char dapalnum, char dastat, int32_t cx1, int32_t cy1, int32_t cx2, int32_t cy2)
{
UNREFERENCED_PARAMETER(sx);
UNREFERENCED_PARAMETER(sy);
UNREFERENCED_PARAMETER(z);
UNREFERENCED_PARAMETER(a);
UNREFERENCED_PARAMETER(picnum);
UNREFERENCED_PARAMETER(dashade);
UNREFERENCED_PARAMETER(dapalnum);
UNREFERENCED_PARAMETER(dastat);
UNREFERENCED_PARAMETER(cx1);
UNREFERENCED_PARAMETER(cy1);
UNREFERENCED_PARAMETER(cx2);
UNREFERENCED_PARAMETER(cy2);
}
void polymer_drawmaskwall(int32_t damaskwallcnt)
{
sectortype *sec;
walltype *wal;
_prwall *w;
if (pr_verbosity >= 3) OSD_Printf("PR : Masked wall %i...\n", damaskwallcnt);
sec = &sector[sectorofwall(maskwall[damaskwallcnt])];
wal = &wall[maskwall[damaskwallcnt]];
w = prwalls[maskwall[damaskwallcnt]];
fogcalc(wal->shade,sec->visibility,sec->floorpal);
bglFogf(GL_FOG_DENSITY,fogresult);
bglFogfv(GL_FOG_COLOR,fogcol);
bglEnable(GL_CULL_FACE);
polymer_drawplane(&w->mask);
bglDisable(GL_CULL_FACE);
}
void polymer_drawsprite(int32_t snum)
{
int32_t curpicnum, xsize, ysize, tilexoff, tileyoff, xoff, yoff, i, j;
spritetype *tspr;
float xratio, yratio, ang;
float spos[3];
GLfloat *inbuffer;
uint8_t curpriority;
if (pr_verbosity >= 3) OSD_Printf("PR : Sprite %i...\n", snum);
tspr = tspriteptr[snum];
if (tspr->owner < 0 || tspr->picnum < 0) return;
if ((tspr->cstat & 8192) && (depth && !mirrors[depth-1].plane))
return;
if ((tspr->cstat & 16384) && (!depth || mirrors[depth-1].plane))
return;
fogcalc(tspr->shade,sector[tspr->sectnum].visibility,sector[tspr->sectnum].floorpal);
bglFogf(GL_FOG_DENSITY,fogresult);
bglFogfv(GL_FOG_COLOR,fogcol);
if (usemodels && tile2model[Ptile2tile(tspr->picnum,tspr->pal)].modelid >= 0 && tile2model[Ptile2tile(tspr->picnum,tspr->pal)].framenum >= 0)
{
polymer_drawmdsprite(tspr);
return;
}
curpicnum = tspr->picnum;
if (picanm[curpicnum]&192) curpicnum += animateoffs(curpicnum,tspr->owner+32768);
polymer_getbuildmaterial(&spriteplane.material, curpicnum, tspr->pal, tspr->shade);
if (tspr->cstat & 2)
{
if (tspr->cstat & 512)
spriteplane.material.diffusemodulation[3] = 0.33f;
else
spriteplane.material.diffusemodulation[3] = 0.66f;
}
spriteplane.material.diffusemodulation[3] *= (1.0f - spriteext[tspr->owner].alpha);
if (((tspr->cstat>>4) & 3) == 0)
xratio = (float)(tspr->xrepeat) * 0.20f; // 32 / 160
else
xratio = (float)(tspr->xrepeat) * 0.25f;
yratio = (float)(tspr->yrepeat) * 0.25f;
xsize = tilesizx[curpicnum];
ysize = tilesizy[curpicnum];
if (usehightile && h_xsize[curpicnum])
{
xsize = h_xsize[curpicnum];
ysize = h_ysize[curpicnum];
}
xsize = (int32_t)(xsize * xratio);
ysize = (int32_t)(ysize * yratio);
tilexoff = (int32_t)tspr->xoffset;
tileyoff = (int32_t)tspr->yoffset;
tilexoff += (int8_t)((usehightile&&h_xsize[curpicnum])?(h_xoffs[curpicnum]):((picanm[curpicnum]>>8)&255));
tileyoff += (int8_t)((usehightile&&h_xsize[curpicnum])?(h_yoffs[curpicnum]):((picanm[curpicnum]>>16)&255));
xoff = (int32_t)(tilexoff * xratio);
yoff = (int32_t)(tileyoff * yratio);
if ((tspr->cstat & 128) && (((tspr->cstat>>4) & 3) != 2))
yoff -= ysize / 2;
spos[0] = (float)tspr->y;
spos[1] = -(float)(tspr->z) / 16.0f;
spos[2] = -(float)tspr->x;
bglMatrixMode(GL_MODELVIEW);
bglPushMatrix();
bglLoadIdentity();
inbuffer = vertsprite;
if (pr_billboardingmode && !((tspr->cstat>>4) & 3))
{
// do surgery on the face tspr to make it look like a wall sprite
tspr->cstat |= 16;
tspr->ang = (viewangle + 1024) & 2047;
}
switch ((tspr->cstat>>4) & 3)
{
case 0:
ang = (float)((viewangle) & 2047) / (2048.0f / 360.0f);
bglTranslatef(spos[0], spos[1], spos[2]);
bglRotatef(-ang, 0.0f, 1.0f, 0.0f);
bglRotatef(-horizang, 1.0f, 0.0f, 0.0f);
bglTranslatef((float)(-xoff), (float)(yoff), 0.0f);
bglScalef((float)(xsize), (float)(ysize), 1.0f);
// bglPolygonOffset(0.0f, 0.0f);
break;
case 1:
ang = (float)((tspr->ang + 1024) & 2047) / (2048.0f / 360.0f);
bglTranslatef(spos[0], spos[1], spos[2]);
bglRotatef(-ang, 0.0f, 1.0f, 0.0f);
bglTranslatef((float)(-xoff), (float)(yoff), 0.0f);
bglScalef((float)(xsize), (float)(ysize), 1.0f);
prsectors[tspr->sectnum]->wallsproffset += 0.5f;
if (!depth || mirrors[depth-1].plane)
bglPolygonOffset(-1.0f, -1.0f);
break;
case 2:
ang = (float)((tspr->ang + 1024) & 2047) / (2048.0f / 360.0f);
bglTranslatef(spos[0], spos[1], spos[2]);
bglRotatef(-ang, 0.0f, 1.0f, 0.0f);
if (tspr->cstat & 8) {
bglRotatef(-180.0, 0.0f, 0.0f, 1.0f);
spriteplane.material.diffusescale[0] = -spriteplane.material.diffusescale[0];
}
bglTranslatef((float)(-xoff), 1.0f, (float)(yoff));
bglScalef((float)(xsize), 1.0f, (float)(ysize));
inbuffer = horizsprite;
prsectors[tspr->sectnum]->floorsproffset += 0.5f;
if (!depth || mirrors[depth-1].plane)
bglPolygonOffset(-1.0f, -1.0f);
break;
}
if ((tspr->cstat & 4) && (((tspr->cstat>>4) & 3) != 2))
spriteplane.material.diffusescale[0] = -spriteplane.material.diffusescale[0];
if (!(tspr->cstat & 4) && (((tspr->cstat>>4) & 3) == 2))
spriteplane.material.diffusescale[0] = -spriteplane.material.diffusescale[0];
if ((tspr->cstat & 8) && (((tspr->cstat>>4) & 3) != 2))
spriteplane.material.diffusescale[1] = -spriteplane.material.diffusescale[1];
bglGetFloatv(GL_MODELVIEW_MATRIX, spritemodelview);
bglPopMatrix();
Bmemcpy(spriteplane.buffer, inbuffer, sizeof(GLfloat) * 4 * 5);
i = 0;
while (i < 4)
{
polymer_transformpoint(&inbuffer[i * 5], &spriteplane.buffer[i * 5], spritemodelview);
i++;
}
polymer_computeplane(&spriteplane);
if (searchit==2)
{
if (m32_numdrawnsprites<MAXSPRITESONSCREEN)
{
Bmemcpy(&m32_drawnsprites[m32_numdrawnsprites].verts[0], &spriteplane.buffer[0], 3*sizeof(GLfloat));
Bmemcpy(&m32_drawnsprites[m32_numdrawnsprites].verts[3], &spriteplane.buffer[5], 3*sizeof(GLfloat));
Bmemcpy(&m32_drawnsprites[m32_numdrawnsprites].verts[6], &spriteplane.buffer[10], 3*sizeof(GLfloat));
Bmemcpy(&m32_drawnsprites[m32_numdrawnsprites].verts[9], &spriteplane.buffer[15], 3*sizeof(GLfloat));
Bmemcpy(&m32_drawnsprites[m32_numdrawnsprites].plane, spriteplane.plane, 4*sizeof(GLfloat));
m32_drawnsprites[m32_numdrawnsprites].owner = (tspr->owner&(MAXSPRITES-1));
m32_drawnsprites[m32_numdrawnsprites].type = 0;
m32_numdrawnsprites++;
}
}
spriteplane.lightcount = 0;
curpriority = 0;
while ((curpriority < pr_maxlightpriority) && (!depth || mirrors[depth-1].plane))
{
i = j = 0;
while (j < lightcount)
{
while (prlights[i].flags.active == 0) {
i++;
}
if (prlights[i].priority != curpriority) {
i++;
j++;
continue;
}
if (polymer_planeinlight(&spriteplane, &prlights[i]))
{
spriteplane.lights[spriteplane.lightcount] = i;
spriteplane.lightcount++;
}
i++;
j++;
}
curpriority++;
}
if ((tspr->cstat & 64) && ((tspr->cstat>>4) & 3))
bglEnable(GL_CULL_FACE);
if (!pr_ati_nodepthoffset && (!depth || mirrors[depth-1].plane))
bglEnable(GL_POLYGON_OFFSET_FILL);
polymer_drawplane(&spriteplane);
if (!pr_ati_nodepthoffset && (!depth || mirrors[depth-1].plane))
bglDisable(GL_POLYGON_OFFSET_FILL);
if ((tspr->cstat & 64) && ((tspr->cstat>>4) & 3))
bglDisable(GL_CULL_FACE);
}
void polymer_setanimatesprites(animatespritesptr animatesprites, int32_t x, int32_t y, int32_t a, int32_t smoothratio)
{
asi.animatesprites = animatesprites;
asi.x = x;
asi.y = y;
asi.a = a;
asi.smoothratio = smoothratio;
}
int16_t polymer_addlight(_prlight* light)
{
int32_t lighti;
if (lightcount >= PR_MAXLIGHTS || light->priority > pr_maxlightpriority || !pr_lighting)
return (-1);
if ((light->sector == -1) || (light->sector >= numsectors))
return (-1);
lighti = 0;
while ((lighti < PR_MAXLIGHTS) && (prlights[lighti].flags.active)) {
lighti++;
}
if (lighti == PR_MAXLIGHTS)
return (-1);
Bmemcpy(&prlights[lighti], light, sizeof(_prlight));
if (light->radius)
polymer_processspotlight(&prlights[lighti]);
prlights[lighti].flags.isinview = 0;
prlights[lighti].flags.active = 1;
prlights[lighti].planecount = 0;
prlights[lighti].planelist = NULL;
polymer_culllight(lighti);
lightcount++;
return (lighti);
}
void polymer_deletelight(int16_t lighti)
{
if (!prlights[lighti].flags.active)
return;
polymer_removelight(lighti);
prlights[lighti].flags.active = 0;
lightcount--;
}
void polymer_invalidatelights(void)
{
int32_t i = PR_MAXLIGHTS-1;
do
{
if (prlights[i].flags.active)
prlights[i].flags.invalidate = 1;
}
while (i--);
}
void polymer_texinvalidate(void)
{
int32_t i;
if (!prsectors[numsectors-1])
return;
i = numsectors-1;
while (i >= 0)
{
prsectors[i]->flags.invalidtex = 1;
i--;
}
i = numwalls-1;
while (i >= 0)
{
prwalls[i]->flags.invalidtex = 1;
i--;
}
}
// CORE
static void polymer_displayrooms(int16_t dacursectnum)
{
sectortype *sec;
int32_t i;
GLint result;
int16_t doquery;
int32_t front;
int32_t back;
GLfloat localskymodelviewmatrix[16];
GLfloat localmodelviewmatrix[16];
GLfloat localprojectionmatrix[16];
float frustum[5 * 4];
int32_t localspritesortcnt;
spritetype localtsprite[MAXSPRITESONSCREEN];
int16_t localmaskwall[MAXWALLSB];
int16_t localmaskwallcnt;
_prmirror mirrorlist[10];
int mirrorcount;
int32_t gx, gy, gz, px, py, pz;
GLdouble plane[4];
float coeff;
curmodelviewmatrix = localmodelviewmatrix;
bglGetFloatv(GL_MODELVIEW_MATRIX, localmodelviewmatrix);
bglGetFloatv(GL_PROJECTION_MATRIX, localprojectionmatrix);
polymer_extractfrustum(localmodelviewmatrix, localprojectionmatrix, frustum);
Bmemset(querydelay, 0, sizeof(int16_t) * numsectors);
Bmemset(queryid, 0, sizeof(GLuint) * numwalls);
Bmemset(drawingstate, 0, sizeof(int16_t) * numsectors);
front = 0;
back = 1;
sectorqueue[0] = dacursectnum;
drawingstate[dacursectnum] = 1;
localspritesortcnt = localmaskwallcnt = 0;
mirrorcount = 0;
bglDisable(GL_DEPTH_TEST);
bglColor4f(1.0f, 1.0f, 1.0f, 1.0f);
polymer_drawsky(cursky, curskypal, curskyshade);
bglEnable(GL_DEPTH_TEST);
// depth-only occlusion testing pass
// overridematerial = 0;
while (front != back)
{
sec = &sector[sectorqueue[front]];
polymer_pokesector(sectorqueue[front]);
polymer_drawsector(sectorqueue[front]);
polymer_scansprites(sectorqueue[front], localtsprite, &localspritesortcnt);
doquery = 0;
i = sec->wallnum-1;
do
{
// this is a couple of fps faster for me... does it mess anything up?
if (wallvisible(globalposx, globalposy, sec->wallptr + i))
polymer_drawwall(sectorqueue[front], sec->wallptr + i);
// if we have a level boundary somewhere in the sector,
// consider these walls as visportals
if (wall[sec->wallptr + i].nextsector == -1)
doquery = 1;
i--;
}
while (i >= 0);
i = sec->wallnum-1;
while (i >= 0)
{
if ((wall[sec->wallptr + i].nextsector != -1) &&
(wallvisible(globalposx, globalposy, sec->wallptr + i)) &&
(polymer_planeinfrustum(&prwalls[sec->wallptr + i]->mask, frustum)))
{
if ((prwalls[sec->wallptr + i]->mask.vertcount == 4) &&
!(prwalls[sec->wallptr + i]->underover & 4) &&
!(prwalls[sec->wallptr + i]->underover & 8))
{
// early exit for closed sectors
_prwall *w;
w = prwalls[sec->wallptr + i];
if ((w->mask.buffer[(0 * 5) + 1] >= w->mask.buffer[(3 * 5) + 1]) &&
(w->mask.buffer[(1 * 5) + 1] >= w->mask.buffer[(2 * 5) + 1]))
{
i--;
continue;
}
}
if (wall[sec->wallptr + i].cstat & 48)
localmaskwall[localmaskwallcnt++] = sec->wallptr + i;
if (!depth && (overridematerial & prprogrambits[PR_BIT_MIRROR_MAP].bit) &&
wall[sec->wallptr + i].overpicnum == 560 &&
wall[sec->wallptr + i].cstat & 32)
{
mirrorlist[mirrorcount].plane = &prwalls[sec->wallptr + i]->mask;
mirrorlist[mirrorcount].sectnum = sectorqueue[front];
mirrorlist[mirrorcount].wallnum = sec->wallptr + i;
mirrorcount++;
}
if (!(wall[sec->wallptr + i].cstat & 32)) {
if (doquery && (!drawingstate[wall[sec->wallptr + i].nextsector]))
{
float pos[3], sqdist;
int32_t oldoverridematerial;
pos[0] = (float)globalposy;
pos[1] = -(float)(globalposz) / 16.0f;
pos[2] = -(float)globalposx;
sqdist = prwalls[sec->wallptr + i]->mask.plane[0] * pos[0] +
prwalls[sec->wallptr + i]->mask.plane[1] * pos[1] +
prwalls[sec->wallptr + i]->mask.plane[2] * pos[2] +
prwalls[sec->wallptr + i]->mask.plane[3];
// hack to avoid occlusion querying portals that are too close to the viewpoint
// this is needed because of the near z-clipping plane;
if (sqdist < 100)
queryid[sec->wallptr + i] = 0xFFFFFFFF;
else {
_prwall *w;
w = prwalls[sec->wallptr + i];
bglColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
bglDepthMask(GL_FALSE);
bglGenQueriesARB(1, &queryid[sec->wallptr + i]);
bglBeginQueryARB(GL_SAMPLES_PASSED_ARB, queryid[sec->wallptr + i]);
oldoverridematerial = overridematerial;
overridematerial = 0;
if ((w->underover & 4) && (w->underover & 1))
polymer_drawplane(&w->wall);
polymer_drawplane(&w->mask);
if ((w->underover & 8) && (w->underover & 2))
polymer_drawplane(&w->over);
overridematerial = oldoverridematerial;
bglEndQueryARB(GL_SAMPLES_PASSED_ARB);
bglDepthMask(GL_TRUE);
bglColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
}
} else
queryid[sec->wallptr + i] = 1;
}
}
i--;
}
i = sec->wallnum-1;
do
{
if ((queryid[sec->wallptr + i]) &&
(!drawingstate[wall[sec->wallptr + i].nextsector]))
{
// REAP
result = 0;
if (doquery && (queryid[sec->wallptr + i] != 0xFFFFFFFF))
{
bglGetQueryObjectivARB(queryid[sec->wallptr + i],
GL_QUERY_RESULT_ARB,
&result);
bglDeleteQueriesARB(1, &queryid[sec->wallptr + i]);
} else if (queryid[sec->wallptr + i] == 0xFFFFFFFF)
result = 1;
queryid[sec->wallptr + i] = 0;
if (result || !doquery)
{
sectorqueue[back++] = wall[sec->wallptr + i].nextsector;
drawingstate[wall[sec->wallptr + i].nextsector] = 1;
}
}
i--;
}
while (i >= 0);
front++;
}
// do the actual shaded drawing
// overridematerial = 0xFFFFFFFF;
// go through the sector queue again
// front = 0;
// while (front < back)
// {
// sec = &sector[sectorqueue[front]];
//
// polymer_drawsector(sectorqueue[front]);
//
// i = 0;
// while (i < sec->wallnum)
// {
// polymer_drawwall(sectorqueue[front], sec->wallptr + i);
//
// i++;
// }
//
// front++;
// }
i = mirrorcount-1;
while (i >= 0)
{
bglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, prrts[0].fbo);
bglPushAttrib(GL_VIEWPORT_BIT);
bglViewport(windowx1, yres-(windowy2+1),windowx2-windowx1+1, windowy2-windowy1+1);
bglClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
Bmemcpy(localskymodelviewmatrix, curskymodelviewmatrix, sizeof(GLfloat) * 16);
curskymodelviewmatrix = localskymodelviewmatrix;
bglMatrixMode(GL_MODELVIEW);
bglPushMatrix();
plane[0] = mirrorlist[i].plane->plane[0];
plane[1] = mirrorlist[i].plane->plane[1];
plane[2] = mirrorlist[i].plane->plane[2];
plane[3] = mirrorlist[i].plane->plane[3];
bglClipPlane(GL_CLIP_PLANE0, plane);
polymer_inb4mirror(mirrorlist[i].plane->buffer, mirrorlist[i].plane->plane);
bglCullFace(GL_FRONT);
//bglEnable(GL_CLIP_PLANE0);
if (mirrorlist[i].wallnum >= 0)
preparemirror(globalposx, globalposy, 0, globalang, 0,
mirrorlist[i].wallnum, 0, &gx, &gy, &viewangle);
gx = globalposx;
gy = globalposy;
gz = globalposz;
// map the player pos from build to polymer
px = globalposy;
py = -globalposz / 16;
pz = -globalposx;
// calculate new player position on the other side of the mirror
// this way the basic build visibility shit can be used (wallvisible)
coeff = mirrorlist[i].plane->plane[0] * px +
mirrorlist[i].plane->plane[1] * py +
mirrorlist[i].plane->plane[2] * pz +
mirrorlist[i].plane->plane[3];
coeff /= (float)(mirrorlist[i].plane->plane[0] * mirrorlist[i].plane->plane[0] +
mirrorlist[i].plane->plane[1] * mirrorlist[i].plane->plane[1] +
mirrorlist[i].plane->plane[2] * mirrorlist[i].plane->plane[2]);
px = (int32_t)(-coeff*mirrorlist[i].plane->plane[0]*2 + px);
py = (int32_t)(-coeff*mirrorlist[i].plane->plane[1]*2 + py);
pz = (int32_t)(-coeff*mirrorlist[i].plane->plane[2]*2 + pz);
// map back from polymer to build
globalposx = -pz;
globalposy = px;
globalposz = -py * 16;
mirrors[depth++] = mirrorlist[i];
polymer_displayrooms(mirrorlist[i].sectnum);
depth--;
globalposx = gx;
globalposy = gy;
globalposz = gz;
bglDisable(GL_CLIP_PLANE0);
bglCullFace(GL_BACK);
bglMatrixMode(GL_MODELVIEW);
bglPopMatrix();
bglPopAttrib();
bglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
mirrorlist[i].plane->material.mirrormap = prrts[0].color;
polymer_drawplane(mirrorlist[i].plane);
mirrorlist[i].plane->material.mirrormap = 0;
i--;
}
spritesortcnt = localspritesortcnt;
Bmemcpy(tsprite, localtsprite, sizeof(spritetype) * spritesortcnt);
maskwallcnt = localmaskwallcnt;
Bmemcpy(maskwall, localmaskwall, sizeof(int16_t) * maskwallcnt);
if (depth)
{
// drawmasks needs these
cosglobalang = sintable[(viewangle+512)&2047];
singlobalang = sintable[viewangle&2047];
cosviewingrangeglobalang = mulscale16(cosglobalang,viewingrange);
sinviewingrangeglobalang = mulscale16(singlobalang,viewingrange);
if (mirrors[depth - 1].plane)
display_mirror = 1;
polymer_animatesprites();
if (mirrors[depth - 1].plane)
display_mirror = 0;
bglDisable(GL_CULL_FACE);
drawmasks();
bglEnable(GL_CULL_FACE);
}
return;
}
#ifdef M32_SHOWDEBUG
#define QNUM 128
GLfloat qverts[QNUM*3];
GLfloat qcolors[QNUM*3];
int qvertcount = 0;
static void polymer_m32_debug()
{
// debug code for new Mapster32 mouse aim
if (qvertcount > 0)
{
int ii;
bglPushAttrib(GL_ENABLE_BIT);
bglDisable(GL_TEXTURE_2D);
bglDisable(GL_DEPTH_TEST);
bglBegin(GL_LINE_LOOP);
for (ii=0; ii<qvertcount; ii++)
{
if (qverts[3*ii]==0 && qverts[3*ii+1]==0 && qverts[3*ii+2]==0)
{
bglEnd();
bglBegin(GL_LINE_LOOP);
continue;
}
bglColor4f(qcolors[(3*ii)+0],qcolors[(3*ii)+1],qcolors[(3*ii)+2],1.0);
bglVertex3f(qverts[(3*ii)+0],qverts[(3*ii)+1],qverts[(3*ii)+2]);
}
qvertcount=0;
bglEnd();
bglPopAttrib();
}
}
#endif
static void polymer_drawplane(_prplane* plane)
{
int32_t materialbits;
// debug code for drawing plane inverse TBN
// bglDisable(GL_TEXTURE_2D);
// bglBegin(GL_LINES);
// bglColor4f(1.0, 0.0, 0.0, 1.0);
// bglVertex3f(plane->buffer[0],
// plane->buffer[1],
// plane->buffer[2]);
// bglVertex3f(plane->buffer[0] + plane->t[0] * 50,
// plane->buffer[1] + plane->t[1] * 50,
// plane->buffer[2] + plane->t[2] * 50);
// bglColor4f(0.0, 1.0, 0.0, 1.0);
// bglVertex3f(plane->buffer[0],
// plane->buffer[1],
// plane->buffer[2]);
// bglVertex3f(plane->buffer[0] + plane->b[0] * 50,
// plane->buffer[1] + plane->b[1] * 50,
// plane->buffer[2] + plane->b[2] * 50);
// bglColor4f(0.0, 0.0, 1.0, 1.0);
// bglVertex3f(plane->buffer[0],
// plane->buffer[1],
// plane->buffer[2]);
// bglVertex3f(plane->buffer[0] + plane->n[0] * 50,
// plane->buffer[1] + plane->n[1] * 50,
// plane->buffer[2] + plane->n[2] * 50);
// bglEnd();
// bglEnable(GL_TEXTURE_2D);
// debug code for drawing plane normals
// bglDisable(GL_TEXTURE_2D);
// bglBegin(GL_LINES);
// bglColor4f(1.0, 1.0, 1.0, 1.0);
// bglVertex3f(plane->buffer[0],
// plane->buffer[1],
// plane->buffer[2]);
// bglVertex3f(plane->buffer[0] + plane->plane[0] * 50,
// plane->buffer[1] + plane->plane[1] * 50,
// plane->buffer[2] + plane->plane[2] * 50);
// bglEnd();
// bglEnable(GL_TEXTURE_2D);
bglNormal3f((float)(plane->plane[0]), (float)(plane->plane[1]), (float)(plane->plane[2]));
if (plane->vbo && (pr_vbos > 0))
{
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, plane->vbo);
bglVertexPointer(3, GL_FLOAT, 5 * sizeof(GLfloat), NULL);
bglTexCoordPointer(2, GL_FLOAT, 5 * sizeof(GLfloat), (GLfloat*)(3 * sizeof(GLfloat)));
if (plane->indices)
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, plane->ivbo);
} else {
bglVertexPointer(3, GL_FLOAT, 5 * sizeof(GLfloat), plane->buffer);
bglTexCoordPointer(2, GL_FLOAT, 5 * sizeof(GLfloat), &plane->buffer[3]);
}
curlight = 0;
do {
materialbits = polymer_bindmaterial(plane->material, plane->lights, plane->lightcount);
if (materialbits & prprogrambits[PR_BIT_NORMAL_MAP].bit)
{
bglVertexAttrib3fvARB(prprograms[materialbits].attrib_T, plane->t);
bglVertexAttrib3fvARB(prprograms[materialbits].attrib_B, plane->b);
bglVertexAttrib3fvARB(prprograms[materialbits].attrib_N, plane->plane);
}
if (plane->indices)
{
if (plane->vbo && (pr_vbos > 0))
bglDrawElements(GL_TRIANGLES, plane->indicescount, GL_UNSIGNED_SHORT, NULL);
else
bglDrawElements(GL_TRIANGLES, plane->indicescount, GL_UNSIGNED_SHORT, plane->indices);
} else
bglDrawArrays(GL_QUADS, 0, 4);
polymer_unbindmaterial(materialbits);
if (plane->lightcount && (!depth || mirrors[depth-1].plane))
prlights[plane->lights[curlight]].flags.isinview = 1;
curlight++;
} while ((curlight < plane->lightcount) && (curlight < pr_maxlightpasses) && (!depth || mirrors[depth-1].plane));
if (plane->vbo && (pr_vbos > 0))
{
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
if (plane->indices)
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0);
}
}
static inline void polymer_inb4mirror(GLfloat* buffer, GLfloat* plane)
{
float pv;
float reflectionmatrix[16];
pv = buffer[0] * plane[0] +
buffer[1] * plane[1] +
buffer[2] * plane[2];
reflectionmatrix[0] = 1 - (2 * plane[0] * plane[0]);
reflectionmatrix[1] = -2 * plane[0] * plane[1];
reflectionmatrix[2] = -2 * plane[0] * plane[2];
reflectionmatrix[3] = 0;
reflectionmatrix[4] = -2 * plane[0] * plane[1];
reflectionmatrix[5] = 1 - (2 * plane[1] * plane[1]);
reflectionmatrix[6] = -2 * plane[1] * plane[2];
reflectionmatrix[7] = 0;
reflectionmatrix[8] = -2 * plane[0] * plane[2];
reflectionmatrix[9] = -2 * plane[1] * plane[2];
reflectionmatrix[10] = 1 - (2 * plane[2] * plane[2]);
reflectionmatrix[11] = 0;
reflectionmatrix[12] = 2 * pv * plane[0];
reflectionmatrix[13] = 2 * pv * plane[1];
reflectionmatrix[14] = 2 * pv * plane[2];
reflectionmatrix[15] = 1;
bglMultMatrixf(reflectionmatrix);
bglPushMatrix();
bglLoadMatrixf(curskymodelviewmatrix);
bglMultMatrixf(reflectionmatrix);
bglGetFloatv(GL_MODELVIEW_MATRIX, curskymodelviewmatrix);
bglPopMatrix();
}
static void polymer_animatesprites(void)
{
if (asi.animatesprites)
asi.animatesprites(globalposx, globalposy, viewangle, asi.smoothratio);
}
static void polymer_freeboard(void)
{
int32_t i;
i = 0;
while (i < MAXSECTORS)
{
if (prsectors[i])
{
if (prsectors[i]->verts) nedpfree(polymer_pool, prsectors[i]->verts);
if (prsectors[i]->floor.buffer) nedpfree(polymer_pool, prsectors[i]->floor.buffer);
if (prsectors[i]->ceil.buffer) nedpfree(polymer_pool, prsectors[i]->ceil.buffer);
if (prsectors[i]->floor.indices) nedpfree(polymer_pool, prsectors[i]->floor.indices);
if (prsectors[i]->ceil.indices) nedpfree(polymer_pool, prsectors[i]->ceil.indices);
if (prsectors[i]->ceil.vbo) bglDeleteBuffersARB(1, &prsectors[i]->ceil.vbo);
if (prsectors[i]->ceil.ivbo) bglDeleteBuffersARB(1, &prsectors[i]->ceil.ivbo);
if (prsectors[i]->floor.vbo) bglDeleteBuffersARB(1, &prsectors[i]->floor.vbo);
if (prsectors[i]->floor.ivbo) bglDeleteBuffersARB(1, &prsectors[i]->floor.ivbo);
nedpfree(polymer_pool, prsectors[i]);
prsectors[i] = NULL;
}
i++;
}
i = 0;
while (i < MAXWALLS)
{
if (prwalls[i])
{
if (prwalls[i]->bigportal) nedpfree(polymer_pool, prwalls[i]->bigportal);
if (prwalls[i]->mask.buffer) nedpfree(polymer_pool, prwalls[i]->mask.buffer);
if (prwalls[i]->cap) nedpfree(polymer_pool, prwalls[i]->cap);
if (prwalls[i]->wall.buffer) nedpfree(polymer_pool, prwalls[i]->wall.buffer);
if (prwalls[i]->wall.vbo) bglDeleteBuffersARB(1, &prwalls[i]->wall.vbo);
if (prwalls[i]->over.vbo) bglDeleteBuffersARB(1, &prwalls[i]->over.vbo);
if (prwalls[i]->mask.vbo) bglDeleteBuffersARB(1, &prwalls[i]->mask.vbo);
if (prwalls[i]->stuffvbo) bglDeleteBuffersARB(1, &prwalls[i]->stuffvbo);
nedpfree(polymer_pool, prwalls[i]);
prwalls[i] = NULL;
}
i++;
}
}
#if 0
static void polymer_editorselect(void)
{
// int32_t i, n;
double ox, oy, oz, ox2, oy2, oz2, r;
//Polymost supports true look up/down :) Here, we convert horizon to angle.
//gchang&gshang are cos&sin of this angle (respectively)
ghalfx = (double)halfxdimen; grhalfxdown10 = 1.0/(((double)ghalfx)*1024);
ghoriz = (double)globalhoriz;
gvisibility = ((float)globalvisibility)*FOGSCALE;
//global cos/sin height angle
r = (double)((ydimen>>1)-ghoriz);
gshang = r/sqrt(r*r+ghalfx*ghalfx);
gchang = sqrt(1.0-gshang*gshang);
ghoriz = (double)(ydimen>>1);
//global cos/sin tilt angle
gctang = cos(gtang);
gstang = sin(gtang);
if (fabs(gstang) < .001) //This hack avoids nasty precision bugs in domost()
{ gstang = 0; if (gctang > 0) gctang = 1.0; else gctang = -1.0; }
if (searchit == 2)
{
int32_t vx, vy, vz;
int32_t cz, fz;
hitdata_t hitinfo;
vec3_t vect;
ox2 = searchx-ghalfx; oy2 = searchy-ghoriz; oz2 = ghalfx;
//Tilt rotation
ox = ox2*gctang + oy2*gstang;
oy = oy2*gctang - ox2*gstang;
oz = oz2;
//Up/down rotation
ox2 = oz*gchang - oy*gshang;
oy2 = ox;
oz2 = oy*gchang + oz*gshang;
//Standard Left/right rotation
vx = (int32_t)(ox2*((float)cosglobalang) - oy2*((float)singlobalang));
vy = (int32_t)(ox2*((float)singlobalang) + oy2*((float)cosglobalang));
vz = (int32_t)(oz2*16384.0);
vect.x = globalposx;
vect.y = globalposy;
vect.z = globalposz;
hitallsprites = 1;
hitscan((const vec3_t *)&vect,globalcursectnum, //Start position
vx>>12,vy>>12,vz>>8,&hitinfo,0xffff0030);
getzsofslope(hitinfo.hitsect,hitinfo.pos.x,hitinfo.pos.y,&cz,&fz);
hitallsprites = 0;
searchsector = hitinfo.hitsect;
if (hitinfo.pos.z<cz) searchstat = 1; else if (hitinfo.pos.z>fz) searchstat = 2; else if (hitinfo.hitwall >= 0)
{
searchbottomwall = searchwall = hitinfo.hitwall; searchstat = 0;
if (wall[hitinfo.hitwall].nextwall >= 0)
{
int32_t cz, fz;
getzsofslope(wall[hitinfo.hitwall].nextsector,hitinfo.pos.x,hitinfo.pos.y,&cz,&fz);
if (hitinfo.pos.z > fz)
{
if (wall[hitinfo.hitwall].cstat&2) //'2' bottoms of walls
searchbottomwall = wall[hitinfo.hitwall].nextwall;
}
else if ((hitinfo.pos.z > cz) && (wall[hitinfo.hitwall].cstat&(16+32))) //masking or 1-way
searchstat = 4;
}
}
else if (hitinfo.hitsprite >= 0) { searchwall = hitinfo.hitsprite; searchstat = 3; }
else
{
int32_t cz, fz;
getzsofslope(hitinfo.hitsect,hitinfo.pos.x,hitinfo.pos.y,&cz,&fz);
if ((hitinfo.pos.z<<1) < cz+fz) searchstat = 1; else searchstat = 2;
//if (vz < 0) searchstat = 1; else searchstat = 2; //Won't work for slopes :/
}
searchit = 0;
}
}
#endif // 0
// vvv --- improved editor aiming
static inline GLfloat dot2f(GLfloat *v1, GLfloat *v2)
{
return v1[0]*v2[0] + v1[1]*v2[1];
}
static inline GLfloat dot3f(GLfloat *v1, GLfloat *v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
static inline void relvec2f(GLfloat *v1, GLfloat *v2, GLfloat *out)
{
out[0] = v2[0]-v1[0];
out[1] = v2[1]-v1[1];
}
static inline void relvec3f(GLfloat *v1, GLfloat *v2, GLfloat *out)
{
out[0] = v2[0]-v1[0];
out[1] = v2[1]-v1[1];
out[2] = v2[2]-v1[2];
}
static inline void addvec3f(GLfloat *v1, GLfloat *v2, GLfloat *out)
{
out[0] = v1[0]+v2[0];
out[1] = v1[1]+v2[1];
out[2] = v1[2]+v2[2];
}
static void cross3f(GLfloat* va, GLfloat* vb, GLfloat* out)
{
GLfloat out0 = va[1]*vb[2] - va[2]*vb[1];
GLfloat out1 = va[2]*vb[0] - va[0]*vb[2];
GLfloat out2 = va[0]*vb[1] - va[1]*vb[0];
out[0]=out0, out[1]=out1, out[2]=out2;
}
#ifdef M32_SHOWDEBUG
char m32_debugstr[64][128];
int32_t m32_numdebuglines=0;
#endif
void polymer_alt_editorselect(void)
{
int i,j;
GLdouble model[16];
GLdouble proj[16];
GLint view[4];
GLdouble x,y,z;
GLdouble scrx,scry,scrz;
GLfloat scr[3], scrv[3];
GLfloat dadepth;
int8_t bestwhat = -1;
int16_t bestsec = -1;
int16_t bestbottomwall = -1, bestwall = -1;
GLfloat bestdist = FLT_MAX;
#ifdef M32_SHOWDEBUG
GLfloat col1[3]={1.0,0.0,0.0};
GLfloat col2[3]={0.0,1.0,0.0};
GLfloat col3[3]={0.0,0.0,1.0};
GLfloat col4[3]={0.0,1.0,1.0};
GLfloat dummyvert[3] = {0,0,0};
qvertcount=0;
#endif
bglGetDoublev(GL_MODELVIEW_MATRIX, model);
bglGetDoublev(GL_PROJECTION_MATRIX, proj);
bglGetIntegerv(GL_VIEWPORT, view);
bglReadPixels(searchx, ydimen-searchy, 1,1, GL_DEPTH_COMPONENT, GL_FLOAT, &dadepth);
bgluUnProject(searchx, ydimen-searchy, dadepth, model, proj, view, &x, &y, &z);
bgluUnProject(searchx, ydimen-searchy, 0.0, model, proj, view, &scrx, &scry, &scrz);
#ifdef M32_SHOWDEBUG
if (m32_numdebuglines < 64)
Bsprintf(m32_debugstr[m32_numdebuglines++], "x=%.02f, y=%.02f, z/16=%.02f (BUILD)", -z, x, -y);
#endif
scr[0]=scrx, scr[1]=scry, scr[2]=scrz;
scrv[0] = x-scrx;
scrv[1] = y-scry;
scrv[2] = z-scrz;
for (i=0; i<numwalls; i++)
{
_prwall *w = prwalls[i];
walltype *wal = &wall[i];
if (!w->flags.uptodate)
continue;
{
int8_t what;
GLfloat *pl = NULL;
GLfloat nnormsq, nnorm, npl[3];
GLfloat t, svcoeff, dist;
j = 0;
do
{
if (j==0 && (w->underover&1))
pl = w->wall.plane;
else if (j==1 && (w->underover&2))
pl = w->over.plane;
else if (j==2 && ((wal->cstat&16) || (wal->cstat&32)))
pl = w->mask.plane;
j++;
}
while (j<3 && (!pl || dot3f(pl,pl)==0.0));
if (!pl || (nnormsq = dot3f(pl,pl))==0.0)
continue;
nnorm = sqrt(nnormsq);
npl[0]=pl[0]/nnorm;
npl[1]=pl[1]/nnorm;
npl[2]=pl[2]/nnorm;
t = dot3f(pl,scrv);
if (t==0)
continue;
svcoeff = -(dot3f(pl,scr)+pl[3])/t;
if (svcoeff < 0)
continue;
dist = svcoeff * sqrt(dot3f(scrv,scrv));
if (dist > bestdist)
continue;
for (what=(wal->nextsector>=0?2:0); what>=0; what--)
{
GLfloat v1[3], v2[3], v3[3], v4[3], v12[3], v34[3], v1p_r[3], v3p_r[3];
GLfloat v23[3], v41[3], v2p_r[3], v4p_r[3];
GLfloat tp[3];
_prplane *pp;
tp[0] = scrx + svcoeff*scrv[0];
tp[1] = scry + svcoeff*scrv[1];
tp[2] = scrz + svcoeff*scrv[2];
pp=&w->wall;
if (what==0)
{
if (!(w->underover&1))
continue;
}
else if (what==1)
{
if (!(w->underover&2))
continue;
pp=&w->over;
}
else if (what==2)
{
if (!(wal->cstat&16) && !(wal->cstat&32))
continue;
pp=&w->mask;
}
if (-t<0 && !(what==2 && (wal->cstat&16)))
goto nextwall;
Bmemcpy(v1, &pp->buffer[0], 3*sizeof(GLfloat));
Bmemcpy(v2, &pp->buffer[5], 3*sizeof(GLfloat));
Bmemcpy(v3, &pp->buffer[10], 3*sizeof(GLfloat));
Bmemcpy(v4, &pp->buffer[15], 3*sizeof(GLfloat));
relvec3f(v1,v2, v12);
relvec3f(v3,v4, v34);
relvec3f(v1,tp, v1p_r);
relvec3f(v3,tp, v3p_r);
cross3f(npl,v1p_r, v1p_r);
cross3f(npl,v3p_r, v3p_r);
relvec3f(v2,v3, v23);
relvec3f(v4,v1, v41);
relvec3f(v2,tp, v2p_r);
relvec3f(v4,tp, v4p_r);
cross3f(npl,v2p_r, v2p_r);
cross3f(npl,v4p_r, v4p_r);
if (dot3f(v12,v12)>0.25 && dot3f(v34,v34)>0.25
&& (v23[1]<0 || dot3f(v23,v23)<=0.25 || dot3f(v23,v2p_r) <= 0)
&& (dot3f(v41,v41)<=0.25 || dot3f(v41,v4p_r) <= 0)
&& dot3f(v12,v1p_r) <= 0 && dot3f(v34,v3p_r) <= 0)
{
bestwhat = (what==2)?4:0;
bestbottomwall = bestwall = i;
if (what==0 && (wal->cstat&2))
bestbottomwall = wal->nextwall;
bestdist = dist;
#ifdef M32_SHOWDEBUG
if (m32_numdebuglines<64)
{
Bsprintf(m32_debugstr[m32_numdebuglines++], "what=wall %d, dist=%.02f, sec=%d",
bestwall, bestdist, bestsec);
}
if (qvertcount<QNUM-4)
{
Bmemcpy(&qcolors[3*qvertcount],col1,sizeof(col1));
Bmemcpy(&qverts[3*qvertcount++],v1, 3*sizeof(GLfloat));
Bmemcpy(&qcolors[3*qvertcount],col2,sizeof(col2));
Bmemcpy(&qverts[3*qvertcount++],v2, 3*sizeof(GLfloat));
Bmemcpy(&qcolors[3*qvertcount],col3,sizeof(col3));
Bmemcpy(&qverts[3*qvertcount++],v3, 3*sizeof(GLfloat));
Bmemcpy(&qcolors[3*qvertcount],col4,sizeof(col4));
Bmemcpy(&qverts[3*qvertcount++],v4, 3*sizeof(GLfloat));
Bmemcpy(&qverts[3*qvertcount++],dummyvert, 3*sizeof(GLfloat));
}
#endif
}
}
}
nextwall:;
}
for (i=0; i<numsectors; i++)
{
_prsector *s = prsectors[i];
sectortype *sec = &sector[i];
_prplane *cfp;
int8_t what = 1;
if (!s->flags.uptodate)
continue;
for (what=1; what<=2; what++)
{
GLfloat *pl;
GLfloat t, svcoeff, dist, p[2];
if (what==1)
cfp = &s->ceil;
else
cfp = &s->floor;
pl = cfp->plane;
t = dot3f(pl,scrv);
if (-t<=0)
continue;
svcoeff = -(dot3f(pl,scr)+pl[3])/t;
if (svcoeff < 0)
continue;
dist = svcoeff * sqrt(dot3f(scrv,scrv));
if (dist > bestdist)
continue;
// point on plane (x and z)
p[0] = scrx + svcoeff*scrv[0];
p[1] = scrz + svcoeff*scrv[2];
// implementation using a loop over all triangles
for (j=0; j<s->indicescount; j+=3)
{
GLushort idx[3] = {cfp->indices[j], cfp->indices[j+1], cfp->indices[j+2]};
GLfloat v1[2] = {cfp->buffer[(idx[0]*5)], cfp->buffer[(idx[0]*5)+2]};
GLfloat v2[2] = {cfp->buffer[(idx[1]*5)], cfp->buffer[(idx[1]*5)+2]};
GLfloat v3[2] = {cfp->buffer[(idx[2]*5)], cfp->buffer[(idx[2]*5)+2]};
GLfloat v12[2] = {v2[0]-v1[0], v2[1]-v1[1]};
GLfloat v23[2] = {v3[0]-v2[0], v3[1]-v2[1]};
GLfloat v31[2] = {v1[0]-v3[0], v1[1]-v3[1]};
int rotsign = (what==1)?-1:1;
GLfloat v1p_r[2] = {rotsign*(p[1]-v1[1]), -rotsign*(p[0]-v1[0])};
GLfloat v2p_r[2] = {rotsign*(p[1]-v2[1]), -rotsign*(p[0]-v2[0])};
GLfloat v3p_r[2] = {rotsign*(p[1]-v3[1]), -rotsign*(p[0]-v3[0])};
if (dot2f(v12,v12)>0.25 && dot2f(v23,v23)>0.25 && dot2f(v31,v31)>0.25
&& dot2f(v12,v1p_r) < 0 && dot2f(v23,v2p_r) < 0 && dot2f(v31,v3p_r) < 0)
{
bestwhat = what;
bestsec = i;
bestdist = dist;
#ifdef M32_SHOWDEBUG
if (qvertcount<QNUM-3)
{
Bmemcpy(&qcolors[3*qvertcount],col1,sizeof(col1));
qverts[(3*qvertcount)+0] = v1[0];
qverts[(3*qvertcount)+1] = cfp->buffer[(idx[0]*5+1)];
qverts[(3*qvertcount)+2] = v1[1];
qvertcount++;
Bmemcpy(&qcolors[3*qvertcount],col2,sizeof(col1));
qverts[(3*qvertcount)+0] = v2[0];
qverts[(3*qvertcount)+1] = cfp->buffer[(idx[1]*5+1)];
qverts[(3*qvertcount)+2] = v2[1];
qvertcount++;
Bmemcpy(&qcolors[3*qvertcount],col3,sizeof(col1));
qverts[(3*qvertcount)+0] = v3[0];
qverts[(3*qvertcount)+1] = cfp->buffer[(idx[2]*5+1)];
qverts[(3*qvertcount)+2] = v3[1];
qvertcount++;
Bmemcpy(&qverts[3*qvertcount++],dummyvert, 3*sizeof(GLfloat));
}
#endif
goto nextsector;
}
} // loop over triangles
/*
// implementation using inside() (less precise)
if (inside(-p[1],p[0],i))
{
bestwhat = what;
bestsec = i;
bestdist = dist;
}
*/
nextsector:
if (bestsec==i)
{
int16_t k, bestk=0;
GLfloat bestwdistsq = FLT_MAX, wdistsq;
GLfloat w1[2], w2[2], w21[2], pw1[2], pw2[2];
GLfloat ptonline[2];
GLfloat scrvxz[2]={scrv[0],scrv[2]};
GLfloat scrvxznorm, scrvxzn[2], scrpxz[2];
GLfloat w1d, w2d;
walltype *wal = &wall[sec->wallptr];
for (k=0; k<sec->wallnum; k++)
{
w1[1] = -(float)wal[k].x;
w1[0] = (float)wal[k].y;
w2[1] = -(float)wall[wal[k].point2].x;
w2[0] = (float)wall[wal[k].point2].y;
scrvxznorm = sqrt(dot2f(scrvxz,scrvxz));
scrvxzn[0] = scrvxz[1]/scrvxznorm;
scrvxzn[1] = -scrvxz[0]/scrvxznorm;
relvec2f(p,w1, pw1);
relvec2f(p,w2, pw2);
relvec2f(w2,w1, w21);
w1d = dot2f(scrvxzn,pw1);
w2d = dot2f(scrvxzn,pw2);
w2d = -w2d;
if (w1d <= 0 || w2d <= 0)
continue;
ptonline[0] = w2[0]+(w2d/(w1d+w2d))*w21[0];
ptonline[1] = w2[1]+(w2d/(w1d+w2d))*w21[1];
relvec2f(p,ptonline, scrpxz);
if (dot2f(scrvxz,scrpxz)<0)
continue;
wdistsq = dot2f(scrpxz,scrpxz);
if (wdistsq < bestwdistsq)
{
bestk = k;
bestwdistsq = wdistsq;
}
}
bestwall = sec->wallptr+bestk;
#ifdef M32_SHOWDEBUG
if (m32_numdebuglines<64)
Bsprintf(m32_debugstr[m32_numdebuglines++], "what=sec %d, dist=%.02f, wall=%d", bestsec, bestdist, bestwall);
#endif
} // determine searchwall
} // ceiling or floor
} // loop over sectors
for (i=0; i<m32_numdrawnsprites; i++)
{
if (m32_drawnsprites[i].type == 0)
{
GLfloat *pl = m32_drawnsprites[i].plane;
GLfloat t, svcoeff, dist;
int16_t sn = m32_drawnsprites[i].owner;
t = dot3f(pl,scrv);
if (t==0 || ((sprite[sn].cstat&64) && -t<0))
continue;
svcoeff = -(dot3f(pl,scr)+pl[3])/t;
if (svcoeff < 0)
continue;
dist = svcoeff * sqrt(dot3f(scrv,scrv));
if (dist > bestdist+1.01)
continue;
{
GLfloat *v = m32_drawnsprites[i].verts;
GLfloat v12_r[3], v23_r[3], v34_r[3], v41_r[3];
GLfloat v1p[3], v2p[3], v3p[3], v4p[3];
GLfloat tp[3];
tp[0] = scrx + svcoeff*scrv[0];
tp[1] = scry + svcoeff*scrv[1];
tp[2] = scrz + svcoeff*scrv[2];
relvec3f(&v[3*3],&v[0*3], v12_r);
relvec3f(&v[0*3],&v[1*3], v23_r);
relvec3f(&v[1*3],&v[2*3], v34_r);
relvec3f(&v[2*3],&v[3*3], v41_r);
relvec3f(&v[0*3],tp, v1p);
relvec3f(&v[1*3],tp, v2p);
relvec3f(&v[2*3],tp, v3p);
relvec3f(&v[3*3],tp, v4p);
if (dot3f(v1p,v12_r)<=0 && dot3f(v2p,v23_r)<=0
&& dot3f(v3p,v34_r)<=0 && dot3f(v4p,v41_r)<=0)
{
bestwhat = 3;
bestdist = dist;
bestwall = m32_drawnsprites[i].owner;
#ifdef M32_SHOWDEBUG
if (m32_numdebuglines<64)
{
Bsprintf(m32_debugstr[m32_numdebuglines++], "what=spr %d, dist=%.02f",
bestwall, bestdist);
}
if (qvertcount<QNUM-4)
{
Bmemcpy(&qcolors[3*qvertcount],col1,sizeof(col1));
Bmemcpy(&qcolors[3*(qvertcount+1)],col2,sizeof(col1));
Bmemcpy(&qcolors[3*(qvertcount+2)],col3,sizeof(col1));
Bmemcpy(&qcolors[3*(qvertcount+3)],col4,sizeof(col1));
Bmemcpy(&qverts[3*qvertcount],v, 3*4*sizeof(GLfloat));
qvertcount += 4;
Bmemcpy(&qverts[3*qvertcount++],dummyvert, 3*sizeof(GLfloat));
}
#endif
}
}
}
else if (m32_drawnsprites[i].type == 1)
{
GLfloat pl[4], nnorm;
GLfloat *verts = m32_drawnsprites[i].verts;
GLfloat t, svcoeff, dist;
for (j=1; j<=3; j++)
{
relvec3f(&verts[0], &verts[3*j], pl);
nnorm = sqrt(dot3f(pl,pl));
if (nnorm == 0)
continue;
pl[0]/=nnorm, pl[1]/=nnorm, pl[2]/=nnorm;
t = dot3f(pl,scrv);
if (t == 0)
continue;
if (-t > 0)
pl[3] = -dot3f(pl, &verts[3*j]);
else
pl[3] = -dot3f(pl, &verts[0]);
svcoeff = -(dot3f(pl,scr)+pl[3])/t;
if (svcoeff < 0)
continue;
dist = svcoeff * sqrt(dot3f(scrv,scrv));
if (dist > bestdist)
continue;
{
GLfloat vrel[3*2];
GLfloat v[3*4];
GLfloat v1p[3], v2p[3], v3p[3], v4p[3];
GLfloat tp[3];
int k, l=0;
for (k=1; k<=3; k++)
{
if (k==j)
continue;
relvec3f(&verts[0], &verts[3*k], &vrel[3*l]);
l++;
}
if (-t > 0)
Bmemcpy(&v[0], &verts[3*j], 3*sizeof(GLfloat));
else
Bmemcpy(&v[0], &verts[0], 3*sizeof(GLfloat));
addvec3f(&v[3*0], &vrel[3*0], &v[3*1]);
addvec3f(&v[3*1], &vrel[3*1], &v[3*2]);
relvec3f(&vrel[0], &v[3*2], &v[3*3]);
tp[0] = scrx + svcoeff*scrv[0];
tp[1] = scry + svcoeff*scrv[1];
tp[2] = scrz + svcoeff*scrv[2];
relvec3f(&v[0*3],tp, v1p);
relvec3f(&v[1*3],tp, v2p);
relvec3f(&v[2*3],tp, v3p);
relvec3f(&v[3*3],tp, v4p);
if (dot3f(&vrel[3*1], v1p)>0 && dot3f(&vrel[3*1], v3p)<0
&& dot3f(&vrel[0], v2p)<0 && dot3f(&vrel[0], v4p)>0)
{
bestwhat = 3;
bestdist = dist;
bestwall = m32_drawnsprites[i].owner;
#ifdef M32_SHOWDEBUG
if (m32_numdebuglines<64)
{
Bsprintf(m32_debugstr[m32_numdebuglines++], "what=spr %d (model), dist=%.02f",
bestwall, bestdist);
}
if (qvertcount<QNUM-4)
{
Bmemcpy(&qcolors[3*qvertcount],col1,sizeof(col1));
Bmemcpy(&qverts[3*qvertcount++],&v[0],3*sizeof(GLfloat));
Bmemcpy(&qcolors[3*qvertcount],col2,sizeof(col1));
Bmemcpy(&qverts[3*qvertcount++],&v[3],3*sizeof(GLfloat));
Bmemcpy(&qcolors[3*qvertcount],col3,sizeof(col1));
Bmemcpy(&qverts[3*qvertcount++],&v[6],3*sizeof(GLfloat));
Bmemcpy(&qcolors[3*qvertcount],col4,sizeof(col1));
Bmemcpy(&qverts[3*qvertcount++],&v[9],3*sizeof(GLfloat));
Bmemcpy(&qverts[3*qvertcount++],dummyvert, 3*sizeof(GLfloat));
}
#endif
}
}
}
}
}
m32_numdrawnsprites = 0;
if (bestwhat >= 0)
{
searchstat = bestwhat;
searchwall = bestwall;
searchbottomwall = bestbottomwall;
if (searchstat==0 || searchstat==4)
searchsector = sectorofwall(searchwall);
else
searchsector = bestsec;
searchit = 0;
}
#ifdef M32_SHOWDEBUG
polymer_m32_debug();
#endif
}
// SECTORS
static int32_t polymer_initsector(int16_t sectnum)
{
sectortype *sec;
_prsector* s;
if (pr_verbosity >= 2) OSD_Printf("PR : Initalizing sector %i...\n", sectnum);
sec = &sector[sectnum];
s = nedpcalloc(polymer_pool, 1, sizeof(_prsector));
if (s == NULL)
{
if (pr_verbosity >= 1) OSD_Printf("PR : Cannot initialize sector %i : Bmalloc failed.\n", sectnum);
return (0);
}
s->verts = nedpcalloc(polymer_pool, sec->wallnum, sizeof(GLdouble) * 3);
s->floor.buffer = nedpcalloc(polymer_pool, sec->wallnum, sizeof(GLfloat) * 5);
s->floor.vertcount = sec->wallnum;
s->ceil.buffer = nedpcalloc(polymer_pool, sec->wallnum, sizeof(GLfloat) * 5);
s->ceil.vertcount = sec->wallnum;
if ((s->verts == NULL) || (s->floor.buffer == NULL) || (s->ceil.buffer == NULL))
{
if (pr_verbosity >= 1) OSD_Printf("PR : Cannot initialize geometry of sector %i : Bmalloc failed.\n", sectnum);
return (0);
}
bglGenBuffersARB(1, &s->floor.vbo);
bglGenBuffersARB(1, &s->ceil.vbo);
bglGenBuffersARB(1, &s->floor.ivbo);
bglGenBuffersARB(1, &s->ceil.ivbo);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, s->floor.vbo);
bglBufferDataARB(GL_ARRAY_BUFFER_ARB, sec->wallnum * sizeof(GLfloat) * 5, NULL, mapvbousage);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, s->ceil.vbo);
bglBufferDataARB(GL_ARRAY_BUFFER_ARB, sec->wallnum * sizeof(GLfloat) * 5, NULL, mapvbousage);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
s->flags.empty = 1; // let updatesector know that everything needs to go
prsectors[sectnum] = s;
if (pr_verbosity >= 2) OSD_Printf("PR : Initalized sector %i.\n", sectnum);
return (1);
}
static int32_t polymer_updatesector(int16_t sectnum)
{
_prsector* s;
sectortype *sec;
walltype *wal;
int32_t i, j;
int32_t ceilz, florz;
int32_t tex, tey, heidiff;
float secangcos, secangsin, scalecoef, xpancoef, ypancoef;
int32_t ang, needfloor, wallinvalidate;
int16_t curstat, curpicnum, floorpicnum, ceilingpicnum;
char curxpanning, curypanning;
GLfloat* curbuffer;
s = prsectors[sectnum];
sec = &sector[sectnum];
secangcos = secangsin = 2;
if (s == NULL)
{
if (pr_verbosity >= 1) OSD_Printf("PR : Can't update uninitialized sector %i.\n", sectnum);
return (-1);
}
needfloor = wallinvalidate = 0;
// geometry
wal = &wall[sec->wallptr];
i = 0;
while (i < sec->wallnum)
{
if ((-wal->x != s->verts[(i*3)+2]))
{
s->verts[(i*3)+2] = s->floor.buffer[(i*5)+2] = s->ceil.buffer[(i*5)+2] = -(float)wal->x;
needfloor = wallinvalidate = 1;
}
if ((wal->y != s->verts[i*3]))
{
s->verts[i*3] = s->floor.buffer[i*5] = s->ceil.buffer[i*5] = (float)wal->y;
needfloor = wallinvalidate = 1;
}
i++;
wal = &wall[sec->wallptr + i];
}
if ((s->flags.empty) ||
needfloor ||
(sec->floorz != s->floorz) ||
(sec->ceilingz != s->ceilingz) ||
(sec->floorheinum != s->floorheinum) ||
(sec->ceilingheinum != s->ceilingheinum))
{
wallinvalidate = 1;
wal = &wall[sec->wallptr];
i = 0;
while (i < sec->wallnum)
{
getzsofslope(sectnum, wal->x, wal->y, &ceilz, &florz);
s->floor.buffer[(i*5)+1] = -(float)(florz) / 16.0f;
s->ceil.buffer[(i*5)+1] = -(float)(ceilz) / 16.0f;
i++;
wal = &wall[sec->wallptr + i];
}
s->floorz = sec->floorz;
s->ceilingz = sec->ceilingz;
s->floorheinum = sec->floorheinum;
s->ceilingheinum = sec->ceilingheinum;
}
floorpicnum = sec->floorpicnum;
if (picanm[floorpicnum]&192) floorpicnum += animateoffs(floorpicnum,sectnum);
ceilingpicnum = sec->ceilingpicnum;
if (picanm[ceilingpicnum]&192) ceilingpicnum += animateoffs(ceilingpicnum,sectnum);
if ((!s->flags.empty) && (!needfloor) &&
(sec->floorstat == s->floorstat) &&
(sec->ceilingstat == s->ceilingstat) &&
(floorpicnum == s->floorpicnum) &&
(ceilingpicnum == s->ceilingpicnum) &&
(sec->floorxpanning == s->floorxpanning) &&
(sec->ceilingxpanning == s->ceilingxpanning) &&
(sec->floorypanning == s->floorypanning) &&
(sec->ceilingypanning == s->ceilingypanning))
goto attributes;
wal = &wall[sec->wallptr];
i = 0;
while (i < sec->wallnum)
{
j = 2;
curstat = sec->floorstat;
curbuffer = s->floor.buffer;
curpicnum = floorpicnum;
curxpanning = sec->floorxpanning;
curypanning = sec->floorypanning;
while (j)
{
if (j == 1)
{
curstat = sec->ceilingstat;
curbuffer = s->ceil.buffer;
curpicnum = ceilingpicnum;
curxpanning = sec->ceilingxpanning;
curypanning = sec->ceilingypanning;
}
if (!waloff[curpicnum])
loadtile(curpicnum);
if (((sec->floorstat & 64) || (sec->ceilingstat & 64)) &&
((secangcos == 2) && (secangsin == 2)))
{
ang = (getangle(wall[wal->point2].x - wal->x, wall[wal->point2].y - wal->y) + 512) & 2047;
secangcos = (float)(sintable[(ang+512)&2047]) / 16383.0f;
secangsin = (float)(sintable[ang&2047]) / 16383.0f;
}
// relative texturing
if (curstat & 64)
{
xpancoef = (float)(wal->x - wall[sec->wallptr].x);
ypancoef = (float)(wall[sec->wallptr].y - wal->y);
tex = (int32_t)(xpancoef * secangsin + ypancoef * secangcos);
tey = (int32_t)(xpancoef * secangcos - ypancoef * secangsin);
} else {
tex = wal->x;
tey = -wal->y;
}
if ((curstat & (2+64)) == (2+64))
{
heidiff = (int32_t)(curbuffer[(i*5)+1] - curbuffer[1]);
// don't forget the sign, tey could be negative with concave sectors
if (tey >= 0)
tey = (int32_t)sqrt((tey * tey) + (heidiff * heidiff));
else
tey = -(int32_t)sqrt((tey * tey) + (heidiff * heidiff));
}
if (curstat & 4)
swaplong(&tex, &tey);
if (curstat & 16) tex = -tex;
if (curstat & 32) tey = -tey;
scalecoef = (curstat & 8) ? 8.0f : 16.0f;
if (curxpanning)
{
xpancoef = (float)(pow2long[picsiz[curpicnum] & 15]);
xpancoef *= (float)(curxpanning) / (256.0f * (float)(tilesizx[curpicnum]));
}
else
xpancoef = 0;
if (curypanning)
{
ypancoef = (float)(pow2long[picsiz[curpicnum] >> 4]);
ypancoef *= (float)(curypanning) / (256.0f * (float)(tilesizy[curpicnum]));
}
else
ypancoef = 0;
curbuffer[(i*5)+3] = ((float)(tex) / (scalecoef * tilesizx[curpicnum])) + xpancoef;
curbuffer[(i*5)+4] = ((float)(tey) / (scalecoef * tilesizy[curpicnum])) + ypancoef;
j--;
}
i++;
wal = &wall[sec->wallptr + i];
}
s->floorstat = sec->floorstat;
s->ceilingstat = sec->ceilingstat;
s->floorxpanning = sec->floorxpanning;
s->ceilingxpanning = sec->ceilingxpanning;
s->floorypanning = sec->floorypanning;
s->ceilingypanning = sec->ceilingypanning;
i = -1;
attributes:
if ((pr_vbos > 0) && ((i == -1) || (wallinvalidate)))
{
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, s->floor.vbo);
bglBufferSubDataARB(GL_ARRAY_BUFFER_ARB, 0, sec->wallnum * sizeof(GLfloat) * 5, s->floor.buffer);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, s->ceil.vbo);
bglBufferSubDataARB(GL_ARRAY_BUFFER_ARB, 0, sec->wallnum * sizeof(GLfloat) * 5, s->ceil.buffer);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
}
if ((!s->flags.empty) && (!s->flags.invalidtex) &&
(sec->floorshade == s->floorshade) &&
(sec->floorpal == s->floorpal) &&
(floorpicnum == s->floorpicnum) &&
(ceilingpicnum == s->ceilingpicnum))
goto finish;
polymer_getbuildmaterial(&s->floor.material, floorpicnum, sec->floorpal, sec->floorshade);
polymer_getbuildmaterial(&s->ceil.material, ceilingpicnum, sec->ceilingpal, sec->ceilingshade);
s->flags.invalidtex = 0;
s->floorshade = sec->floorshade;
s->floorpal = sec->floorpal;
s->floorpicnum = floorpicnum;
s->ceilingpicnum = ceilingpicnum;
finish:
if (needfloor)
{
polymer_buildfloor(sectnum);
if ((pr_vbos > 0))
{
if (s->oldindicescount < s->indicescount)
{
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, s->floor.ivbo);
bglBufferDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, s->indicescount * sizeof(GLushort), NULL, mapvbousage);
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, s->ceil.ivbo);
bglBufferDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, s->indicescount * sizeof(GLushort), NULL, mapvbousage);
s->oldindicescount = s->indicescount;
}
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, s->floor.ivbo);
bglBufferSubDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0, s->indicescount * sizeof(GLushort), s->floor.indices);
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, s->ceil.ivbo);
bglBufferSubDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0, s->indicescount * sizeof(GLushort), s->ceil.indices);
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0);
}
}
if (wallinvalidate)
{
s->invalidid++;
polymer_computeplane(&s->floor);
polymer_computeplane(&s->ceil);
}
s->flags.empty = 0;
s->flags.uptodate = 1;
if (pr_verbosity >= 3) OSD_Printf("PR : Updated sector %i.\n", sectnum);
return (0);
}
void PR_CALLBACK polymer_tesserror(GLenum error)
{
/* This callback is called by the tesselator whenever it raises an error.
GLU_TESS_ERROR6 is the "no error"/"null" error spam in e1l1 and others. */
if (pr_verbosity >= 1 && error != GLU_TESS_ERROR6) OSD_Printf("PR : Tesselation error number %i reported : %s.\n", error, bgluErrorString(errno));
}
void PR_CALLBACK polymer_tessedgeflag(GLenum error)
{
// Passing an edgeflag callback forces the tesselator to output a triangle list
UNREFERENCED_PARAMETER(error);
return;
}
void PR_CALLBACK polymer_tessvertex(void* vertex, void* sector)
{
_prsector* s;
s = (_prsector*)sector;
if (s->curindice >= s->indicescount)
{
if (pr_verbosity >= 2) OSD_Printf("PR : Indice overflow, extending the indices list... !\n");
s->indicescount++;
s->floor.indices = nedprealloc(polymer_pool, s->floor.indices, s->indicescount * sizeof(GLushort));
s->ceil.indices = nedprealloc(polymer_pool, s->ceil.indices, s->indicescount * sizeof(GLushort));
}
s->ceil.indices[s->curindice] = (intptr_t)vertex;
s->curindice++;
}
static int32_t polymer_buildfloor(int16_t sectnum)
{
// This function tesselates the floor/ceiling of a sector and stores the triangles in a display list.
_prsector* s;
sectortype *sec;
intptr_t i;
if (pr_verbosity >= 2) OSD_Printf("PR : Tesselating floor of sector %i...\n", sectnum);
s = prsectors[sectnum];
sec = &sector[sectnum];
if (s == NULL)
return (-1);
if (s->floor.indices == NULL)
{
s->indicescount = (sec->wallnum - 2) * 3;
s->floor.indices = nedpcalloc(polymer_pool, s->indicescount, sizeof(GLushort));
s->ceil.indices = nedpcalloc(polymer_pool, s->indicescount, sizeof(GLushort));
}
s->curindice = 0;
bgluTessCallback(prtess, GLU_TESS_VERTEX_DATA, polymer_tessvertex);
bgluTessCallback(prtess, GLU_TESS_EDGE_FLAG, polymer_tessedgeflag);
bgluTessCallback(prtess, GLU_TESS_ERROR, polymer_tesserror);
bgluTessProperty(prtess, GLU_TESS_WINDING_RULE, GLU_TESS_WINDING_POSITIVE);
bgluTessBeginPolygon(prtess, s);
bgluTessBeginContour(prtess);
i = 0;
while (i < sec->wallnum)
{
bgluTessVertex(prtess, s->verts + (3 * i), (void *)i);
if ((i != (sec->wallnum - 1)) && ((sec->wallptr + i) > wall[sec->wallptr + i].point2))
{
bgluTessEndContour(prtess);
bgluTessBeginContour(prtess);
}
i++;
}
bgluTessEndContour(prtess);
bgluTessEndPolygon(prtess);
i = 0;
while (i < s->indicescount)
{
s->floor.indices[s->indicescount - i - 1] = s->ceil.indices[i];
i++;
}
s->floor.indicescount = s->ceil.indicescount = s->indicescount;
if (pr_verbosity >= 2) OSD_Printf("PR : Tesselated floor of sector %i.\n", sectnum);
return (1);
}
static void polymer_drawsector(int16_t sectnum)
{
sectortype *sec;
_prsector* s;
if (pr_verbosity >= 3) OSD_Printf("PR : Drawing sector %i...\n", sectnum);
sec = &sector[sectnum];
s = prsectors[sectnum];
fogcalc(sec->floorshade,sec->visibility,sec->floorpal);
bglFogf(GL_FOG_DENSITY,fogresult);
bglFogfv(GL_FOG_COLOR,fogcol);
if (!(sec->floorstat & 1))
polymer_drawplane(&s->floor);
fogcalc(sec->ceilingshade,sec->visibility,sec->ceilingpal);
bglFogf(GL_FOG_DENSITY,fogresult);
bglFogfv(GL_FOG_COLOR,fogcol);
if (!(sec->ceilingstat & 1))
polymer_drawplane(&s->ceil);
if (pr_verbosity >= 3) OSD_Printf("PR : Finished drawing sector %i...\n", sectnum);
}
// WALLS
static int32_t polymer_initwall(int16_t wallnum)
{
_prwall *w;
if (pr_verbosity >= 2) OSD_Printf("PR : Initalizing wall %i...\n", wallnum);
w = nedpcalloc(polymer_pool, 1, sizeof(_prwall));
if (w == NULL)
{
if (pr_verbosity >= 1) OSD_Printf("PR : Cannot initialize wall %i : Bmalloc failed.\n", wallnum);
return (0);
}
if (w->mask.buffer == NULL) {
w->mask.buffer = nedpmalloc(polymer_pool, 4 * sizeof(GLfloat) * 5);
w->mask.vertcount = 4;
}
if (w->bigportal == NULL)
w->bigportal = nedpmalloc(polymer_pool, 4 * sizeof(GLfloat) * 5);
if (w->cap == NULL)
w->cap = nedpmalloc(polymer_pool, 4 * sizeof(GLfloat) * 3);
bglGenBuffersARB(1, &w->wall.vbo);
bglGenBuffersARB(1, &w->over.vbo);
bglGenBuffersARB(1, &w->mask.vbo);
bglGenBuffersARB(1, &w->stuffvbo);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, w->wall.vbo);
bglBufferDataARB(GL_ARRAY_BUFFER_ARB, 4 * sizeof(GLfloat) * 5, NULL, mapvbousage);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, w->over.vbo);
bglBufferDataARB(GL_ARRAY_BUFFER_ARB, 4 * sizeof(GLfloat) * 5, NULL, mapvbousage);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, w->mask.vbo);
bglBufferDataARB(GL_ARRAY_BUFFER_ARB, 4 * sizeof(GLfloat) * 5, NULL, mapvbousage);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, w->stuffvbo);
bglBufferDataARB(GL_ARRAY_BUFFER_ARB, 8 * sizeof(GLfloat) * 5, NULL, mapvbousage);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
w->flags.empty = 1;
prwalls[wallnum] = w;
if (pr_verbosity >= 2) OSD_Printf("PR : Initalized wall %i.\n", wallnum);
return (1);
}
static void polymer_updatewall(int16_t wallnum)
{
int16_t nwallnum, nnwallnum, curpicnum, wallpicnum, walloverpicnum, nwallpicnum;
char curxpanning, curypanning, underwall, overwall, curpal;
int8_t curshade;
walltype *wal;
sectortype *sec, *nsec;
_prwall *w;
_prsector *s, *ns;
int32_t xref, yref;
float ypancoef, dist;
int32_t i;
uint32_t invalid;
int32_t sectofwall = sectorofwall(wallnum);
// yes, this function is messy and unefficient
// it also works, bitches
sec = &sector[sectofwall];
if (sectofwall < 0 || sectofwall > numsectors || wallnum < 0 || wallnum > numwalls || sec->wallptr > wallnum)
return; // yay, corrupt map
wal = &wall[wallnum];
nwallnum = wal->nextwall;
w = prwalls[wallnum];
s = prsectors[sectofwall];
invalid = s->invalidid;
if (nwallnum >= 0 && nwallnum < numwalls)
{
ns = prsectors[wal->nextsector];
invalid += ns->invalidid;
nsec = &sector[wal->nextsector];
}
else
{
ns = NULL;
nsec = NULL;
}
if (w->wall.buffer == NULL) {
w->wall.buffer = nedpmalloc(polymer_pool, 4 * sizeof(GLfloat) * 5);
w->wall.vertcount = 4;
}
wallpicnum = wal->picnum;
if (picanm[wallpicnum]&192) wallpicnum += animateoffs(wallpicnum,wallnum+16384);
walloverpicnum = wal->overpicnum;
if (picanm[walloverpicnum]&192) walloverpicnum += animateoffs(walloverpicnum,wallnum+16384);
if (nwallnum >= 0 && nwallnum < numwalls)
{
nwallpicnum = wall[nwallnum].picnum;
if (picanm[nwallpicnum]&192) nwallpicnum += animateoffs(nwallpicnum,wallnum+16384);
}
else
nwallpicnum = 0;
if ((!w->flags.empty) && (!w->flags.invalidtex) &&
(w->invalidid == invalid) &&
(wal->cstat == w->cstat) &&
(wallpicnum == w->picnum) &&
(wal->pal == w->pal) &&
(wal->xpanning == w->xpanning) &&
(wal->ypanning == w->ypanning) &&
(wal->xrepeat == w->xrepeat) &&
(wal->yrepeat == w->yrepeat) &&
(walloverpicnum == w->overpicnum) &&
(wal->shade == w->shade) &&
((nwallnum < 0 || nwallnum > numwalls) ||
((nwallpicnum == w->nwallpicnum) &&
(wall[nwallnum].xpanning == w->nwallxpanning) &&
(wall[nwallnum].ypanning == w->nwallypanning) &&
(wall[nwallnum].cstat == w->nwallcstat))))
{
w->flags.uptodate = 1;
return; // screw you guys I'm going home
}
else
{
if (w->invalidid != invalid)
polymer_invalidatesectorlights(sectofwall);
w->invalidid = invalid;
w->cstat = wal->cstat;
w->picnum = wallpicnum;
w->pal = wal->pal;
w->xpanning = wal->xpanning;
w->ypanning = wal->ypanning;
w->xrepeat = wal->xrepeat;
w->yrepeat = wal->yrepeat;
w->overpicnum = walloverpicnum;
w->shade = wal->shade;
if (nwallnum >= 0 && nwallnum < numwalls)
{
w->nwallpicnum = nwallpicnum;
w->nwallxpanning = wall[nwallnum].xpanning;
w->nwallypanning = wall[nwallnum].ypanning;
w->nwallcstat = wall[nwallnum].cstat;
}
}
w->underover = underwall = overwall = 0;
if (wal->cstat & 8)
xref = 1;
else
xref = 0;
if (wal->nextsector < 0 || wal->nextsector > numsectors)
{
Bmemcpy(w->wall.buffer, &s->floor.buffer[(wallnum - sec->wallptr) * 5], sizeof(GLfloat) * 3);
Bmemcpy(&w->wall.buffer[5], &s->floor.buffer[(wal->point2 - sec->wallptr) * 5], sizeof(GLfloat) * 3);
Bmemcpy(&w->wall.buffer[10], &s->ceil.buffer[(wal->point2 - sec->wallptr) * 5], sizeof(GLfloat) * 3);
Bmemcpy(&w->wall.buffer[15], &s->ceil.buffer[(wallnum - sec->wallptr) * 5], sizeof(GLfloat) * 3);
if (wal->nextsector == -1)
curpicnum = wallpicnum;
else
curpicnum = walloverpicnum;
polymer_getbuildmaterial(&w->wall.material, curpicnum, wal->pal, wal->shade);
if (wal->cstat & 4)
yref = sec->floorz;
else
yref = sec->ceilingz;
if ((wal->cstat & 32) && (wal->nextsector != -1))
{
if ((!(wal->cstat & 2) && (wal->cstat & 4)) || ((wal->cstat & 2) && (wall[nwallnum].cstat & 4)))
yref = sec->ceilingz;
else
yref = nsec->floorz;
}
if (wal->ypanning)
{
ypancoef = (float)(pow2long[picsiz[curpicnum] >> 4]);
if (ypancoef < tilesizy[curpicnum])
ypancoef *= 2;
ypancoef *= (float)(wal->ypanning) / (256.0f * (float)(tilesizy[curpicnum]));
}
else
ypancoef = 0;
i = 0;
while (i < 4)
{
if ((i == 0) || (i == 3))
dist = (float)xref;
else
dist = (float)(xref == 0);
w->wall.buffer[(i * 5) + 3] = ((dist * 8.0f * wal->xrepeat) + wal->xpanning) / (float)(tilesizx[curpicnum]);
w->wall.buffer[(i * 5) + 4] = (-(float)(yref + (w->wall.buffer[(i * 5) + 1] * 16)) / ((tilesizy[curpicnum] * 2048.0f) / (float)(wal->yrepeat))) + ypancoef;
if (wal->cstat & 256) w->wall.buffer[(i * 5) + 4] = -w->wall.buffer[(i * 5) + 4];
i++;
}
w->underover |= 1;
}
else
{
nnwallnum = wall[nwallnum].point2;
if ((s->floor.buffer[((wallnum - sec->wallptr) * 5) + 1] < ns->floor.buffer[((nnwallnum - nsec->wallptr) * 5) + 1]) ||
(s->floor.buffer[((wal->point2 - sec->wallptr) * 5) + 1] < ns->floor.buffer[((nwallnum - nsec->wallptr) * 5) + 1]))
underwall = 1;
if ((underwall) || (wal->cstat & 16) || (wal->cstat & 32))
{
if (s->floor.buffer[((wallnum - sec->wallptr) * 5) + 1] < ns->floor.buffer[((nnwallnum - nsec->wallptr) * 5) + 1])
Bmemcpy(w->wall.buffer, &s->floor.buffer[(wallnum - sec->wallptr) * 5], sizeof(GLfloat) * 3);
else
Bmemcpy(w->wall.buffer, &ns->floor.buffer[(nnwallnum - nsec->wallptr) * 5], sizeof(GLfloat) * 3);
Bmemcpy(&w->wall.buffer[5], &s->floor.buffer[(wal->point2 - sec->wallptr) * 5], sizeof(GLfloat) * 3);
Bmemcpy(&w->wall.buffer[10], &ns->floor.buffer[(nwallnum - nsec->wallptr) * 5], sizeof(GLfloat) * 3);
Bmemcpy(&w->wall.buffer[15], &ns->floor.buffer[(nnwallnum - nsec->wallptr) * 5], sizeof(GLfloat) * 3);
if (wal->cstat & 2)
{
curpicnum = nwallpicnum;
curpal = wall[nwallnum].pal;
curshade = wall[nwallnum].shade;
curxpanning = wall[nwallnum].xpanning;
curypanning = wall[nwallnum].ypanning;
}
else
{
curpicnum = wallpicnum;
curpal = wal->pal;
curshade = wal->shade;
curxpanning = wal->xpanning;
curypanning = wal->ypanning;
}
polymer_getbuildmaterial(&w->wall.material, curpicnum, curpal, curshade);
if ((!(wal->cstat & 2) && (wal->cstat & 4)) || ((wal->cstat & 2) && (wall[nwallnum].cstat & 4)))
yref = sec->ceilingz;
else
yref = nsec->floorz;
if (curypanning)
{
ypancoef = (float)(pow2long[picsiz[curpicnum] >> 4]);
if (ypancoef < tilesizy[curpicnum])
ypancoef *= 2;
ypancoef *= (float)(curypanning) / (256.0f * (float)(tilesizy[curpicnum]));
}
else
ypancoef = 0;
i = 0;
while (i < 4)
{
if ((i == 0) || (i == 3))
dist = (float)xref;
else
dist = (float)(xref == 0);
w->wall.buffer[(i * 5) + 3] = ((dist * 8.0f * wal->xrepeat) + curxpanning) / (float)(tilesizx[curpicnum]);
w->wall.buffer[(i * 5) + 4] = (-(float)(yref + (w->wall.buffer[(i * 5) + 1] * 16)) / ((tilesizy[curpicnum] * 2048.0f) / (float)(wal->yrepeat))) + ypancoef;
if ((!(wal->cstat & 2) && (wal->cstat & 256)) ||
((wal->cstat & 2) && (wall[nwallnum].cstat & 256)))
w->wall.buffer[(i * 5) + 4] = -w->wall.buffer[(i * 5) + 4];
i++;
}
if (underwall)
{
w->underover |= 1;
if ((sec->floorstat & 1) && (nsec->floorstat & 1))
w->underover |= 4;
}
Bmemcpy(w->mask.buffer, &w->wall.buffer[15], sizeof(GLfloat) * 5);
Bmemcpy(&w->mask.buffer[5], &w->wall.buffer[10], sizeof(GLfloat) * 5);
}
else
{
Bmemcpy(w->mask.buffer, &s->floor.buffer[(wallnum - sec->wallptr) * 5], sizeof(GLfloat) * 5);
Bmemcpy(&w->mask.buffer[5], &s->floor.buffer[(wal->point2 - sec->wallptr) * 5], sizeof(GLfloat) * 5);
}
if ((s->ceil.buffer[((wallnum - sec->wallptr) * 5) + 1] > ns->ceil.buffer[((nnwallnum - nsec->wallptr) * 5) + 1]) ||
(s->ceil.buffer[((wal->point2 - sec->wallptr) * 5) + 1] > ns->ceil.buffer[((nwallnum - nsec->wallptr) * 5) + 1]))
overwall = 1;
if ((overwall) || (wal->cstat & 16) || (wal->cstat & 32))
{
if (w->over.buffer == NULL) {
w->over.buffer = nedpmalloc(polymer_pool, 4 * sizeof(GLfloat) * 5);
w->over.vertcount = 4;
}
Bmemcpy(w->over.buffer, &ns->ceil.buffer[(nnwallnum - nsec->wallptr) * 5], sizeof(GLfloat) * 3);
Bmemcpy(&w->over.buffer[5], &ns->ceil.buffer[(nwallnum - nsec->wallptr) * 5], sizeof(GLfloat) * 3);
if (s->ceil.buffer[((wal->point2 - sec->wallptr) * 5) + 1] > ns->ceil.buffer[((nwallnum - nsec->wallptr) * 5) + 1])
Bmemcpy(&w->over.buffer[10], &s->ceil.buffer[(wal->point2 - sec->wallptr) * 5], sizeof(GLfloat) * 3);
else
Bmemcpy(&w->over.buffer[10], &ns->ceil.buffer[(nwallnum - nsec->wallptr) * 5], sizeof(GLfloat) * 3);
Bmemcpy(&w->over.buffer[15], &s->ceil.buffer[(wallnum - sec->wallptr) * 5], sizeof(GLfloat) * 3);
if ((wal->cstat & 16) || (wal->overpicnum == 0))
curpicnum = wallpicnum;
else
curpicnum = wallpicnum;
polymer_getbuildmaterial(&w->over.material, curpicnum, wal->pal, wal->shade);
if ((wal->cstat & 16) || (wal->cstat & 32))
{
// mask
polymer_getbuildmaterial(&w->mask.material, walloverpicnum, wal->pal, wal->shade);
if (wal->cstat & 128)
{
if (wal->cstat & 512)
w->mask.material.diffusemodulation[3] = 0.33f;
else
w->mask.material.diffusemodulation[3] = 0.66f;
}
}
if (wal->cstat & 4)
yref = sec->ceilingz;
else
yref = nsec->ceilingz;
if (wal->ypanning)
{
ypancoef = (float)(pow2long[picsiz[curpicnum] >> 4]);
if (ypancoef < tilesizy[curpicnum])
ypancoef *= 2;
ypancoef *= (float)(wal->ypanning) / (256.0f * (float)(tilesizy[curpicnum]));
}
else
ypancoef = 0;
i = 0;
while (i < 4)
{
if ((i == 0) || (i == 3))
dist = (float)xref;
else
dist = (float)(xref == 0);
w->over.buffer[(i * 5) + 3] = ((dist * 8.0f * wal->xrepeat) + wal->xpanning) / (float)(tilesizx[curpicnum]);
w->over.buffer[(i * 5) + 4] = (-(float)(yref + (w->over.buffer[(i * 5) + 1] * 16)) / ((tilesizy[curpicnum] * 2048.0f) / (float)(wal->yrepeat))) + ypancoef;
if (wal->cstat & 256) w->over.buffer[(i * 5) + 4] = -w->over.buffer[(i * 5) + 4];
i++;
}
if (overwall)
{
w->underover |= 2;
if ((sec->ceilingstat & 1) && (nsec->ceilingstat & 1))
w->underover |= 8;
}
Bmemcpy(&w->mask.buffer[10], &w->over.buffer[5], sizeof(GLfloat) * 5);
Bmemcpy(&w->mask.buffer[15], &w->over.buffer[0], sizeof(GLfloat) * 5);
if ((wal->cstat & 16) || (wal->cstat & 32))
{
// mask wall pass
if (wal->cstat & 4)
yref = min(sec->floorz, nsec->floorz);
else
yref = max(sec->ceilingz, nsec->ceilingz);
if (wal->cstat & 32)
{
if ((!(wal->cstat & 2) && (wal->cstat & 4)) || ((wal->cstat & 2) && (wall[nwallnum].cstat & 4)))
yref = sec->ceilingz;
else
yref = nsec->ceilingz;
}
curpicnum = walloverpicnum;
if (wal->ypanning)
{
ypancoef = (float)(pow2long[picsiz[curpicnum] >> 4]);
if (ypancoef < tilesizy[curpicnum])
ypancoef *= 2;
ypancoef *= (float)(wal->ypanning) / (256.0f * (float)(tilesizy[curpicnum]));
}
else
ypancoef = 0;
i = 0;
while (i < 4)
{
if ((i == 0) || (i == 3))
dist = (float)xref;
else
dist = (float)(xref == 0);
w->mask.buffer[(i * 5) + 3] = ((dist * 8.0f * wal->xrepeat) + wal->xpanning) / (float)(tilesizx[curpicnum]);
w->mask.buffer[(i * 5) + 4] = (-(float)(yref + (w->mask.buffer[(i * 5) + 1] * 16)) / ((tilesizy[curpicnum] * 2048.0f) / (float)(wal->yrepeat))) + ypancoef;
if (wal->cstat & 256) w->mask.buffer[(i * 5) + 4] = -w->mask.buffer[(i * 5) + 4];
i++;
}
}
}
else
{
Bmemcpy(&w->mask.buffer[10], &s->ceil.buffer[(wal->point2 - sec->wallptr) * 5], sizeof(GLfloat) * 5);
Bmemcpy(&w->mask.buffer[15], &s->ceil.buffer[(wallnum - sec->wallptr) * 5], sizeof(GLfloat) * 5);
}
}
if (wal->nextsector == -1)
Bmemcpy(w->mask.buffer, w->wall.buffer, sizeof(GLfloat) * 4 * 5);
Bmemcpy(w->bigportal, &s->floor.buffer[(wallnum - sec->wallptr) * 5], sizeof(GLfloat) * 3);
Bmemcpy(&w->bigportal[5], &s->floor.buffer[(wal->point2 - sec->wallptr) * 5], sizeof(GLfloat) * 3);
Bmemcpy(&w->bigportal[10], &s->ceil.buffer[(wal->point2 - sec->wallptr) * 5], sizeof(GLfloat) * 3);
Bmemcpy(&w->bigportal[15], &s->ceil.buffer[(wallnum - sec->wallptr) * 5], sizeof(GLfloat) * 3);
Bmemcpy(&w->cap[0], &s->ceil.buffer[(wallnum - sec->wallptr) * 5], sizeof(GLfloat) * 3);
Bmemcpy(&w->cap[3], &s->ceil.buffer[(wal->point2 - sec->wallptr) * 5], sizeof(GLfloat) * 3);
Bmemcpy(&w->cap[6], &s->ceil.buffer[(wal->point2 - sec->wallptr) * 5], sizeof(GLfloat) * 3);
Bmemcpy(&w->cap[9], &s->ceil.buffer[(wallnum - sec->wallptr) * 5], sizeof(GLfloat) * 3);
w->cap[7] += 1048576; // this number is the result of 1048574 + 2
w->cap[10] += 1048576; // this one is arbitrary
if (w->underover & 1)
polymer_computeplane(&w->wall);
if (w->underover & 2)
polymer_computeplane(&w->over);
polymer_computeplane(&w->mask);
if ((pr_vbos > 0))
{
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, w->wall.vbo);
bglBufferSubDataARB(GL_ARRAY_BUFFER_ARB, 0, 4 * sizeof(GLfloat) * 5, w->wall.buffer);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, w->over.vbo);
bglBufferSubDataARB(GL_ARRAY_BUFFER_ARB, 0, 4 * sizeof(GLfloat) * 5, w->over.buffer);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, w->mask.vbo);
bglBufferSubDataARB(GL_ARRAY_BUFFER_ARB, 0, 4 * sizeof(GLfloat) * 5, w->mask.buffer);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, w->stuffvbo);
bglBufferSubDataARB(GL_ARRAY_BUFFER_ARB, 0, 4 * sizeof(GLfloat) * 5, w->bigportal);
bglBufferSubDataARB(GL_ARRAY_BUFFER_ARB, 4 * sizeof(GLfloat) * 5, 4 * sizeof(GLfloat) * 3, w->cap);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
}
w->flags.empty = 0;
w->flags.uptodate = 1;
w->flags.invalidtex = 0;
if (pr_verbosity >= 3) OSD_Printf("PR : Updated wall %i.\n", wallnum);
}
static void polymer_drawwall(int16_t sectnum, int16_t wallnum)
{
sectortype *sec;
walltype *wal;
_prwall *w;
if (pr_verbosity >= 3) OSD_Printf("PR : Drawing wall %i...\n", wallnum);
sec = &sector[sectnum];
wal = &wall[wallnum];
w = prwalls[wallnum];
fogcalc(wal->shade,sec->visibility,sec->floorpal);
bglFogf(GL_FOG_DENSITY,fogresult);
bglFogfv(GL_FOG_COLOR,fogcol);
if ((w->underover & 1) && !(w->underover & 4))
{
polymer_drawplane(&w->wall);
}
if ((w->underover & 2) && !(w->underover & 8))
{
polymer_drawplane(&w->over);
}
if ((wall[wallnum].cstat & 32) && (wall[wallnum].nextsector != -1))
polymer_drawplane(&w->mask);
if ((sector[sectnum].ceilingstat & 1) &&
((wall[wallnum].nextsector == -1) ||
!(sector[wall[wallnum].nextsector].ceilingstat & 1)))
{
bglColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
if (pr_vbos)
{
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, w->stuffvbo);
bglVertexPointer(3, GL_FLOAT, 0, (const GLvoid*)(4 * sizeof(GLfloat) * 5));
}
else
bglVertexPointer(3, GL_FLOAT, 0, w->cap);
bglDrawArrays(GL_QUADS, 0, 4);
if (pr_vbos)
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
bglColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
}
if (pr_verbosity >= 3) OSD_Printf("PR : Finished drawing wall %i...\n", wallnum);
}
#define INDICE(n) ((p->indices) ? (p->indices[i+n]*5) : ((i+n)*5))
// HSR
static void polymer_computeplane(_prplane* p)
{
GLfloat vec1[5], vec2[5], norm, r;// BxN[3], NxT[3], TxB[3];
int32_t i;
GLfloat* buffer;
GLfloat* t;
GLfloat* b;
GLfloat* n;
GLfloat* plane;
if (p->indices && (p->indicescount < 3))
return; // corrupt sector (E3L4, I'm looking at you)
buffer = p->buffer;
t = p->t;
b = p->b;
n = p->n;
plane = p->plane;
i = 0;
do
{
vec1[0] = buffer[(INDICE(1)) + 0] - buffer[(INDICE(0)) + 0]; //x1
vec1[1] = buffer[(INDICE(1)) + 1] - buffer[(INDICE(0)) + 1]; //y1
vec1[2] = buffer[(INDICE(1)) + 2] - buffer[(INDICE(0)) + 2]; //z1
vec1[3] = buffer[(INDICE(1)) + 3] - buffer[(INDICE(0)) + 3]; //s1
vec1[4] = buffer[(INDICE(1)) + 4] - buffer[(INDICE(0)) + 4]; //t1
vec2[0] = buffer[(INDICE(2)) + 0] - buffer[(INDICE(1)) + 0]; //x2
vec2[1] = buffer[(INDICE(2)) + 1] - buffer[(INDICE(1)) + 1]; //y2
vec2[2] = buffer[(INDICE(2)) + 2] - buffer[(INDICE(1)) + 2]; //z2
vec2[3] = buffer[(INDICE(2)) + 3] - buffer[(INDICE(1)) + 3]; //s2
vec2[4] = buffer[(INDICE(2)) + 4] - buffer[(INDICE(1)) + 4]; //t2
polymer_crossproduct(vec2, vec1, plane);
norm = plane[0] * plane[0] + plane[1] * plane[1] + plane[2] * plane[2];
// hack to work around a precision issue with slopes
if ((norm >= 15000) ||
(((p->indices) ? p->indices[i+2] : i+2) >= p->vertcount))
{
// normalize the normal/plane equation and calculate its plane norm
norm = -sqrt(norm);
norm = 1.0 / norm;
plane[0] *= norm;
plane[1] *= norm;
plane[2] *= norm;
plane[3] = -(plane[0] * buffer[0] + plane[1] * buffer[1] + plane[2] * buffer[2]);
// calculate T and B
r = 1.0 / (vec1[3] * vec2[4] - vec2[3] * vec1[4]);
// tangent
t[0] = (vec2[4] * vec1[0] - vec1[4] * vec2[0]) * r;
t[1] = (vec2[4] * vec1[1] - vec1[4] * vec2[1]) * r;
t[2] = (vec2[4] * vec1[2] - vec1[4] * vec2[2]) * r;
// bitangent
b[0] = (vec1[3] * vec2[0] - vec2[3] * vec1[0]) * r;
b[1] = (vec1[3] * vec2[1] - vec2[3] * vec1[1]) * r;
b[2] = (vec1[3] * vec2[2] - vec2[3] * vec1[2]) * r;
// // invert T, B and N
// r = 1.0f / ((t[0] * b[1] * plane[2] - t[2] * b[1] * plane[0]) +
// (b[0] * plane[1] * t[2] - b[2] * plane[1] * t[0]) +
// (plane[0] * t[1] * b[2] - plane[2] * t[1] * b[0]));
//
// polymer_crossproduct(b, plane, BxN);
// polymer_crossproduct(plane, t, NxT);
// polymer_crossproduct(t, b, TxB);
//
// // GLSL matrix constructors are in column-major order
// t[0] = BxN[0] * r;
// t[1] = -NxT[0] * r;
// t[2] = TxB[0] * r;
//
// b[0] = -BxN[1] * r;
// b[1] = NxT[1] * r;
// b[2] = -TxB[1] * r;
//
// n[0] = BxN[2] * r;
// n[1] = -NxT[2] * r;
// n[2] = TxB[2] * r;
// normalize T, B and N
norm = t[0] * t[0] + t[1] * t[1] + t[2] * t[2];
norm = sqrt(norm);
norm = 1.0 / norm;
t[0] *= norm;
t[1] *= norm;
t[2] *= norm;
norm = b[0] * b[0] + b[1] * b[1] + b[2] * b[2];
norm = sqrt(norm);
norm = 1.0 / norm;
b[0] *= norm;
b[1] *= norm;
b[2] *= norm;
norm = n[0] * n[0] + n[1] * n[1] + n[2] * n[2];
norm = sqrt(norm);
norm = 1.0 / norm;
n[0] *= norm;
n[1] *= norm;
n[2] *= norm;
break;
}
i+= 1;
}
while ((i + 2) < p->indicescount);
}
static inline void polymer_crossproduct(GLfloat* in_a, GLfloat* in_b, GLfloat* out)
{
out[0] = in_a[1] * in_b[2] - in_a[2] * in_b[1];
out[1] = in_a[2] * in_b[0] - in_a[0] * in_b[2];
out[2] = in_a[0] * in_b[1] - in_a[1] * in_b[0];
}
static inline void polymer_transformpoint(float* inpos, float* pos, float* matrix)
{
pos[0] = inpos[0] * matrix[0] +
inpos[1] * matrix[4] +
inpos[2] * matrix[8] +
+ matrix[12];
pos[1] = inpos[0] * matrix[1] +
inpos[1] * matrix[5] +
inpos[2] * matrix[9] +
+ matrix[13];
pos[2] = inpos[0] * matrix[2] +
inpos[1] * matrix[6] +
inpos[2] * matrix[10] +
+ matrix[14];
}
static inline void polymer_pokesector(int16_t sectnum)
{
sectortype *sec = &sector[sectnum];
_prsector *s = prsectors[sectnum];
walltype *wal = &wall[sec->wallptr];
int32_t i = 0;
if (!s->flags.uptodate)
polymer_updatesector(sectnum);
do
{
if ((wal->nextsector != -1) && (!prsectors[wal->nextsector]->flags.uptodate))
polymer_updatesector(wal->nextsector);
if (!prwalls[sec->wallptr + i]->flags.uptodate)
polymer_updatewall(sec->wallptr + i);
i++;
wal = &wall[sec->wallptr + i];
}
while (i < sec->wallnum);
}
static void polymer_extractfrustum(GLfloat* modelview, GLfloat* projection, float* frustum)
{
GLfloat matrix[16];
int32_t i;
bglMatrixMode(GL_TEXTURE);
bglLoadMatrixf(projection);
bglMultMatrixf(modelview);
bglGetFloatv(GL_TEXTURE_MATRIX, matrix);
bglLoadIdentity();
bglMatrixMode(GL_MODELVIEW);
i = 0;
do
{
frustum[i] = matrix[(4 * i) + 3] + matrix[4 * i]; // left
frustum[i + 4] = matrix[(4 * i) + 3] - matrix[4 * i]; // right
frustum[i + 8] = matrix[(4 * i) + 3] - matrix[(4 * i) + 1]; // top
frustum[i + 12] = matrix[(4 * i) + 3] + matrix[(4 * i) + 1]; // bottom
frustum[i + 16] = matrix[(4 * i) + 3] - matrix[(4 * i) + 2]; // far
i++;
}
while (i < 4);
if (pr_verbosity >= 3) OSD_Printf("PR : Frustum extracted.\n");
}
static inline int32_t polymer_planeinfrustum(_prplane *plane, float* frustum)
{
int32_t i, j, k;
i = 4;
do
{
j = k = plane->vertcount - 1;
do
{
k -= ((frustum[(i << 2) + 0] * plane->buffer[j + (j << 2) + 0] +
frustum[(i << 2) + 1] * plane->buffer[j + (j << 2) + 1] +
frustum[(i << 2) + 2] * plane->buffer[j + (j << 2) + 2] +
frustum[(i << 2) + 3]) < 0.f);
}
while (j--);
if (k == -1)
return (0); // OUT !
}
while (i--);
return (1);
}
static inline void polymer_scansprites(int16_t sectnum, spritetype* localtsprite, int32_t* localspritesortcnt)
{
int32_t i;
spritetype *spr;
for (i = headspritesect[sectnum];i >=0;i = nextspritesect[i])
{
spr = &sprite[i];
if ((((spr->cstat&0x8000) == 0) || (showinvisibility)) &&
(spr->xrepeat > 0) && (spr->yrepeat > 0) &&
(*localspritesortcnt < MAXSPRITESONSCREEN))
{
copybufbyte(spr,&localtsprite[*localspritesortcnt],sizeof(spritetype));
localtsprite[(*localspritesortcnt)++].owner = i;
}
}
}
// SKIES
static void polymer_getsky(void)
{
int32_t i;
i = 0;
while (i < numsectors)
{
if (sector[i].ceilingstat & 1)
{
cursky = sector[i].ceilingpicnum;
curskypal = sector[i].ceilingpal;
curskyshade = sector[i].ceilingshade;
return;
}
i++;
}
}
static void polymer_drawsky(int16_t tilenum, char palnum, int8_t shade)
{
float pos[3];
pthtyp* pth;
pos[0] = (float)globalposy;
pos[1] = -(float)(globalposz) / 16.0f;
pos[2] = -(float)globalposx;
bglPushMatrix();
bglLoadIdentity();
bglLoadMatrixf(curskymodelviewmatrix);
bglTranslatef(pos[0], pos[1], pos[2]);
bglScalef(1000.0f, 1000.0f, 1000.0f);
drawingskybox = 1;
pth = gltexcache(tilenum,0,0);
drawingskybox = 0;
if (pth && (pth->flags & 4))
polymer_drawskybox(tilenum, palnum, shade);
else
polymer_drawartsky(tilenum, palnum, shade);
bglPopMatrix();
}
static void polymer_initartsky(void)
{
GLfloat halfsqrt2 = 0.70710678f;
artskydata[0] = -1.0f; artskydata[1] = 0.0f; // 0
artskydata[2] = -halfsqrt2; artskydata[3] = halfsqrt2; // 1
artskydata[4] = 0.0f; artskydata[5] = 1.0f; // 2
artskydata[6] = halfsqrt2; artskydata[7] = halfsqrt2; // 3
artskydata[8] = 1.0f; artskydata[9] = 0.0f; // 4
artskydata[10] = halfsqrt2; artskydata[11] = -halfsqrt2; // 5
artskydata[12] = 0.0f; artskydata[13] = -1.0f; // 6
artskydata[14] = -halfsqrt2; artskydata[15] = -halfsqrt2; // 7
}
static void polymer_drawartsky(int16_t tilenum, char palnum, int8_t shade)
{
pthtyp* pth;
GLuint glpics[5];
GLfloat glcolors[5][3];
int32_t i, j;
GLfloat height = 2.45f / 2.0f;
int16_t picnum;
i = 0;
while (i < 5)
{
picnum = tilenum + i;
if (picanm[picnum]&192) picnum += animateoffs(picnum,0);
if (!waloff[picnum])
loadtile(picnum);
pth = gltexcache(picnum, palnum, 0);
glpics[i] = pth ? pth->glpic : 0;
glcolors[i][0] = glcolors[i][1] = glcolors[i][2] =
((float)(numpalookups-min(max(shade*shadescale,0),numpalookups)))/((float)numpalookups);
if (pth && (pth->flags & 2))
{
if (pth->palnum != palnum)
{
glcolors[i][0] *= (float)hictinting[palnum].r / 255.0;
glcolors[i][1] *= (float)hictinting[palnum].g / 255.0;
glcolors[i][2] *= (float)hictinting[palnum].b / 255.0;
}
if (hictinting[MAXPALOOKUPS-1].r != 255 ||
hictinting[MAXPALOOKUPS-1].g != 255 ||
hictinting[MAXPALOOKUPS-1].b != 255)
{
glcolors[i][0] *= (float)hictinting[MAXPALOOKUPS-1].r / 255.0;
glcolors[i][1] *= (float)hictinting[MAXPALOOKUPS-1].g / 255.0;
glcolors[i][2] *= (float)hictinting[MAXPALOOKUPS-1].b / 255.0;
}
}
i++;
}
i = 0;
j = (1<<pskybits);
while (i < j)
{
bglColor4f(glcolors[pskyoff[i]][0], glcolors[pskyoff[i]][1], glcolors[pskyoff[i]][2], 1.0f);
bglBindTexture(GL_TEXTURE_2D, glpics[pskyoff[i]]);
polymer_drawartskyquad(i, (i + 1) & (j - 1), height);
i++;
}
}
static void polymer_drawartskyquad(int32_t p1, int32_t p2, GLfloat height)
{
bglBegin(GL_QUADS);
bglTexCoord2f(0.0f, 0.0f);
//OSD_Printf("PR: drawing %f %f %f\n", skybox[(p1 * 2) + 1], height, skybox[p1 * 2]);
bglVertex3f(artskydata[(p1 * 2) + 1], height, artskydata[p1 * 2]);
bglTexCoord2f(0.0f, 1.0f);
//OSD_Printf("PR: drawing %f %f %f\n", skybox[(p1 * 2) + 1], -height, skybox[p1 * 2]);
bglVertex3f(artskydata[(p1 * 2) + 1], -height, artskydata[p1 * 2]);
bglTexCoord2f(1.0f, 1.0f);
//OSD_Printf("PR: drawing %f %f %f\n", skybox[(p2 * 2) + 1], -height, skybox[p2 * 2]);
bglVertex3f(artskydata[(p2 * 2) + 1], -height, artskydata[p2 * 2]);
bglTexCoord2f(1.0f, 0.0f);
//OSD_Printf("PR: drawing %f %f %f\n", skybox[(p2 * 2) + 1], height, skybox[p2 * 2]);
bglVertex3f(artskydata[(p2 * 2) + 1], height, artskydata[p2 * 2]);
bglEnd();
}
static void polymer_drawskybox(int16_t tilenum, char palnum, int8_t shade)
{
pthtyp* pth;
int32_t i;
GLfloat color[3];
if ((pr_vbos > 0) && (skyboxdatavbo == 0))
{
bglGenBuffersARB(1, &skyboxdatavbo);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, skyboxdatavbo);
bglBufferDataARB(GL_ARRAY_BUFFER_ARB, 4 * sizeof(GLfloat) * 5 * 6, skyboxdata, modelvbousage);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
}
if (pr_vbos > 0)
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, skyboxdatavbo);
if (picanm[tilenum]&192) tilenum += animateoffs(tilenum,0);
i = 0;
while (i < 6)
{
drawingskybox = i + 1;
pth = gltexcache(tilenum, palnum, 4);
color[0] = color[1] = color[2] =
((float)(numpalookups-min(max(shade*shadescale,0),numpalookups)))/((float)numpalookups);
if (pth && (pth->flags & 2))
{
if (pth->palnum != palnum)
{
color[0] *= (float)hictinting[palnum].r / 255.0;
color[1] *= (float)hictinting[palnum].g / 255.0;
color[2] *= (float)hictinting[palnum].b / 255.0;
}
if (hictinting[MAXPALOOKUPS-1].r != 255 ||
hictinting[MAXPALOOKUPS-1].g != 255 ||
hictinting[MAXPALOOKUPS-1].b != 255)
{
color[0] *= (float)hictinting[MAXPALOOKUPS-1].r / 255.0;
color[1] *= (float)hictinting[MAXPALOOKUPS-1].g / 255.0;
color[2] *= (float)hictinting[MAXPALOOKUPS-1].b / 255.0;
}
}
bglColor4f(color[0], color[1], color[2], 1.0);
bglBindTexture(GL_TEXTURE_2D, pth ? pth->glpic : 0);
if (pr_vbos > 0)
{
bglVertexPointer(3, GL_FLOAT, 5 * sizeof(GLfloat), (GLfloat*)(4 * 5 * i * sizeof(GLfloat)));
bglTexCoordPointer(2, GL_FLOAT, 5 * sizeof(GLfloat), (GLfloat*)(((4 * 5 * i) + 3) * sizeof(GLfloat)));
} else {
bglVertexPointer(3, GL_FLOAT, 5 * sizeof(GLfloat), &skyboxdata[4 * 5 * i]);
bglTexCoordPointer(2, GL_FLOAT, 5 * sizeof(GLfloat), &skyboxdata[3 + (4 * 5 * i)]);
}
bglDrawArrays(GL_QUADS, 0, 4);
i++;
}
drawingskybox = 0;
if (pr_vbos > 0)
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
return;
}
// MDSPRITES
static void polymer_drawmdsprite(spritetype *tspr)
{
md3model_t* m;
mdskinmap_t* sk;
float *v0, *v1;
md3surf_t *s;
char lpal;
float spos[3], tspos[3], lpos[3], tlpos[3], vec[3];
float ang;
float scale;
int32_t surfi, i, j;
GLfloat* color;
int32_t materialbits;
float sradius, lradius;
int16_t modellights[PR_MAXLIGHTS];
char modellightcount;
uint8_t curpriority;
m = (md3model_t*)models[tile2model[Ptile2tile(tspr->picnum,sprite[tspr->owner].pal)].modelid];
updateanimation((md2model_t *)m,tspr);
lpal = (tspr->owner >= MAXSPRITES) ? tspr->pal : sprite[tspr->owner].pal;
if ((pr_vbos > 1) && (m->indices == NULL))
polymer_loadmodelvbos(m);
spos[0] = (float)tspr->y;
spos[1] = -(float)(tspr->z) / 16.0f;
spos[2] = -(float)tspr->x;
ang = (float)((tspr->ang+spriteext[tspr->owner].angoff) & 2047) / (2048.0f / 360.0f);
ang -= 90.0f;
if (((tspr->cstat>>4) & 3) == 2)
ang -= 90.0f;
bglMatrixMode(GL_MODELVIEW);
bglPushMatrix();
bglLoadIdentity();
scale = (1.0/4.0);
scale *= m->scale;
scale *= m->bscale;
bglTranslatef(spos[0], spos[1], spos[2]);
bglRotatef(-ang, 0.0f, 1.0f, 0.0f);
if (((tspr->cstat>>4) & 3) == 2)
{
bglTranslatef(0.0f, 0.0, -(float)(tilesizy[tspr->picnum] * tspr->yrepeat) / 8.0f);
bglRotatef(90.0f, 0.0f, 0.0f, 1.0f);
}
else
bglRotatef(-90.0f, 1.0f, 0.0f, 0.0f);
if ((tspr->cstat & 128) && (((tspr->cstat>>4) & 3) != 2))
bglTranslatef(0.0f, 0.0, -(float)(tilesizy[tspr->picnum] * tspr->yrepeat) / 8.0f);
if (tspr->cstat & 8)
{
bglTranslatef(0.0f, 0.0, (float)(tilesizy[tspr->picnum] * tspr->yrepeat) / 4.0f);
bglScalef(1.0f, 1.0f, -1.0f);
}
if (tspr->cstat & 4)
bglScalef(1.0f, -1.0f, 1.0f);
bglScalef(scale * tspr->xrepeat, scale * tspr->xrepeat, scale * tspr->yrepeat);
bglTranslatef(0.0f, 0.0, m->zadd * 64);
// scripted model rotation
if (spriteext[tspr->owner].pitch || spriteext[tspr->owner].roll)
{
float pitchang, rollang, offsets[3];
pitchang = (float)(spriteext[tspr->owner].pitch) / (2048.0f / 360.0f);
rollang = (float)(spriteext[tspr->owner].roll) / (2048.0f / 360.0f);
offsets[0] = -spriteext[tspr->owner].xoff / (scale * tspr->xrepeat);
offsets[1] = -spriteext[tspr->owner].yoff / (scale * tspr->xrepeat);
offsets[2] = (float)(spriteext[tspr->owner].zoff) / 16.0f / (scale * tspr->yrepeat);
bglTranslatef(-offsets[0], -offsets[1], -offsets[2]);
bglRotatef(pitchang, 0.0f, 1.0f, 0.0f);
bglRotatef(rollang, -1.0f, 0.0f, 0.0f);
bglTranslatef(offsets[0], offsets[1], offsets[2]);
}
bglGetFloatv(GL_MODELVIEW_MATRIX, spritemodelview);
bglPopMatrix();
bglPushMatrix();
bglMultMatrixf(spritemodelview);
// debug code for drawing the model bounding sphere
// bglDisable(GL_TEXTURE_2D);
// bglBegin(GL_LINES);
// bglColor4f(1.0, 0.0, 0.0, 1.0);
// bglVertex3f(m->head.frames[m->cframe].cen.x,
// m->head.frames[m->cframe].cen.y,
// m->head.frames[m->cframe].cen.z);
// bglVertex3f(m->head.frames[m->cframe].cen.x + m->head.frames[m->cframe].r,
// m->head.frames[m->cframe].cen.y,
// m->head.frames[m->cframe].cen.z);
// bglColor4f(0.0, 1.0, 0.0, 1.0);
// bglVertex3f(m->head.frames[m->cframe].cen.x,
// m->head.frames[m->cframe].cen.y,
// m->head.frames[m->cframe].cen.z);
// bglVertex3f(m->head.frames[m->cframe].cen.x,
// m->head.frames[m->cframe].cen.y + m->head.frames[m->cframe].r,
// m->head.frames[m->cframe].cen.z);
// bglColor4f(0.0, 0.0, 1.0, 1.0);
// bglVertex3f(m->head.frames[m->cframe].cen.x,
// m->head.frames[m->cframe].cen.y,
// m->head.frames[m->cframe].cen.z);
// bglVertex3f(m->head.frames[m->cframe].cen.x,
// m->head.frames[m->cframe].cen.y,
// m->head.frames[m->cframe].cen.z + m->head.frames[m->cframe].r);
// bglEnd();
// bglEnable(GL_TEXTURE_2D);
if (searchit == 2)
{
if (m32_numdrawnsprites < MAXSPRITESONSCREEN)
{
point3d *mi = &m->head.frames[m->cframe].min;
point3d *ma = &m->head.frames[m->cframe].max;
float fverts[3*4] = {mi->x,mi->y,mi->z, ma->x,mi->y,mi->z,
mi->x,ma->y,mi->z, mi->x,mi->y,ma->z};
float tfverts[3*4];
GLfloat gtfverts[3*4];
int i;
for (i=0; i<4; i++)
polymer_transformpoint(&fverts[i*3], &tfverts[i*3], spritemodelview);
for (i=0; i<12; i++)
gtfverts[i] = tfverts[i];
Bmemcpy(m32_drawnsprites[m32_numdrawnsprites].verts, gtfverts, 12*sizeof(GLfloat));
m32_drawnsprites[m32_numdrawnsprites].type = 1;
m32_drawnsprites[m32_numdrawnsprites].owner = (tspr->owner&(MAXSPRITES-1));
m32_numdrawnsprites++;
}
}
polymer_getscratchmaterial(&mdspritematerial);
color = mdspritematerial.diffusemodulation;
color[0] = color[1] = color[2] =
((float)(numpalookups-min(max((tspr->shade*shadescale)+m->shadeoff,0),numpalookups)))/((float)numpalookups);
if (!(hictinting[tspr->pal].f&4))
{
if (!(m->flags&1) || (!(tspr->owner >= MAXSPRITES) && sector[sprite[tspr->owner].sectnum].floorpal!=0))
{
color[0] *= (float)hictinting[tspr->pal].r / 255.0;
color[1] *= (float)hictinting[tspr->pal].g / 255.0;
color[2] *= (float)hictinting[tspr->pal].b / 255.0;
}
else globalnoeffect=1; //mdloadskin reads this
}
// fullscreen tint on global palette change
if (hictinting[MAXPALOOKUPS-1].r != 255 ||
hictinting[MAXPALOOKUPS-1].g != 255 ||
hictinting[MAXPALOOKUPS-1].b != 255)
{
color[0] *= hictinting[MAXPALOOKUPS-1].r / 255.0;
color[1] *= hictinting[MAXPALOOKUPS-1].g / 255.0;
color[2] *= hictinting[MAXPALOOKUPS-1].b / 255.0;
}
if (tspr->cstat & 2)
{
if (!(tspr->cstat&512))
color[3] = 0.66f;
else
color[3] = 0.33f;
} else
color[3] = 1.0f;
color[3] *= (1.0f - spriteext[tspr->owner].alpha);
if (tspr->cstat & 16384) color[3] = 0.0f;
if (pr_gpusmoothing)
mdspritematerial.frameprogress = m->interpol;
mdspritematerial.mdspritespace = GL_TRUE;
modellightcount = 0;
curpriority = 0;
// light culling
if (lightcount && (!depth || mirrors[depth-1].plane))
{
sradius = (m->head.frames[m->cframe].r * (1 - m->interpol)) +
(m->head.frames[m->nframe].r * m->interpol);
sradius *= max(scale * tspr->xrepeat, scale * tspr->yrepeat);
sradius /= 1000.0f;
spos[0] = (m->head.frames[m->cframe].cen.x * (1 - m->interpol)) +
(m->head.frames[m->nframe].cen.x * m->interpol);
spos[1] = (m->head.frames[m->cframe].cen.y * (1 - m->interpol)) +
(m->head.frames[m->nframe].cen.y * m->interpol);
spos[2] = (m->head.frames[m->cframe].cen.z * (1 - m->interpol)) +
(m->head.frames[m->nframe].cen.z * m->interpol);
polymer_transformpoint(spos, tspos, spritemodelview);
polymer_transformpoint(tspos, spos, rootmodelviewmatrix);
while (curpriority < pr_maxlightpriority)
{
i = j = 0;
while (j < lightcount)
{
while (prlights[i].flags.active == 0) {
i++;
}
if (prlights[i].priority != curpriority) {
i++;
j++;
continue;
}
lradius = prlights[i].range / 1000.0f;
lpos[0] = (float)prlights[i].y;
lpos[1] = -(float)prlights[i].z / 16.0f;
lpos[2] = -(float)prlights[i].x;
polymer_transformpoint(lpos, tlpos, rootmodelviewmatrix);
vec[0] = tlpos[0] - spos[0];
vec[0] *= vec[0];
vec[1] = tlpos[1] - spos[1];
vec[1] *= vec[1];
vec[2] = tlpos[2] - spos[2];
vec[2] *= vec[2];
if ((vec[0] + vec[1] + vec[2]) <=
((sradius+lradius) * (sradius+lradius)))
{
modellights[modellightcount] = i;
modellightcount++;
}
i++;
j++;
}
curpriority++;
}
}
for (surfi=0;surfi<m->head.numsurfs;surfi++)
{
s = &m->head.surfs[surfi];
v0 = &s->geometry[m->cframe*s->numverts*6];
v1 = &s->geometry[m->nframe*s->numverts*6];
// debug code for drawing model normals
// bglDisable(GL_TEXTURE_2D);
// bglBegin(GL_LINES);
// bglColor4f(1.0, 1.0, 1.0, 1.0);
//
// int i = 0;
// while (i < s->numverts)
// {
// bglVertex3f(v0[(i * 6) + 0],
// v0[(i * 6) + 1],
// v0[(i * 6) + 2]);
// bglVertex3f(v0[(i * 6) + 0] + v0[(i * 6) + 3] * 100,
// v0[(i * 6) + 1] + v0[(i * 6) + 4] * 100,
// v0[(i * 6) + 2] + v0[(i * 6) + 5] * 100);
// i++;
// }
// bglEnd();
// bglEnable(GL_TEXTURE_2D);
mdspritematerial.diffusemap =
mdloadskin((md2model_t *)m,tile2model[Ptile2tile(tspr->picnum,lpal)].skinnum,tspr->pal,surfi);
if (!mdspritematerial.diffusemap)
continue;
if (!(tspr->cstat&1024))
{
mdspritematerial.detailmap =
mdloadskin((md2model_t *)m,tile2model[Ptile2tile(tspr->picnum,lpal)].skinnum,DETAILPAL,surfi);
for (sk = m->skinmap; sk; sk = sk->next)
if ((int32_t)sk->palette == DETAILPAL &&
sk->skinnum == tile2model[Ptile2tile(tspr->picnum,lpal)].skinnum &&
sk->surfnum == surfi)
mdspritematerial.detailscale[0] = mdspritematerial.detailscale[1] = sk->param;
}
for (sk = m->skinmap; sk; sk = sk->next)
if ((int32_t)sk->palette == tspr->pal &&
sk->skinnum == tile2model[Ptile2tile(tspr->picnum,lpal)].skinnum &&
sk->surfnum == surfi)
{
if (sk->specpower != 1.0)
mdspritematerial.specmaterial[0] = sk->specpower;
mdspritematerial.specmaterial[1] = sk->specfactor;
}
if (!(tspr->cstat&1024))
{
mdspritematerial.glowmap =
mdloadskin((md2model_t *)m,tile2model[Ptile2tile(tspr->picnum,lpal)].skinnum,GLOWPAL,surfi);
}
bglEnableClientState(GL_NORMAL_ARRAY);
if (pr_vbos > 1)
{
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, m->texcoords[surfi]);
bglTexCoordPointer(2, GL_FLOAT, 0, 0);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, m->geometry[surfi]);
bglVertexPointer(3, GL_FLOAT, sizeof(float) * 6, (GLfloat*)(m->cframe * s->numverts * sizeof(float) * 6));
bglNormalPointer(GL_FLOAT, sizeof(float) * 6, (GLfloat*)(m->cframe * s->numverts * sizeof(float) * 6) + 3);
if (pr_gpusmoothing)
{
mdspritematerial.nextframedata = (GLfloat*)(m->nframe * s->numverts * sizeof(float) * 6);
mdspritematerial.nextframedatastride = sizeof(float) * 6;
}
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, m->indices[surfi]);
curlight = 0;
do {
materialbits = polymer_bindmaterial(mdspritematerial, modellights, modellightcount);
bglDrawElements(GL_TRIANGLES, s->numtris * 3, GL_UNSIGNED_INT, 0);
polymer_unbindmaterial(materialbits);
curlight++;
} while ((curlight < modellightcount) && (curlight < pr_maxlightpasses));
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
}
else
{
bglVertexPointer(3, GL_FLOAT, sizeof(float) * 6, v0);
bglNormalPointer(GL_FLOAT, sizeof(float) * 6, v0 + 3);
bglTexCoordPointer(2, GL_FLOAT, 0, s->uv);
if (pr_gpusmoothing)
{
mdspritematerial.nextframedata = (GLfloat*)(v1);
mdspritematerial.nextframedatastride = sizeof(float) * 6;
}
curlight = 0;
do {
materialbits = polymer_bindmaterial(mdspritematerial, modellights, modellightcount);
bglDrawElements(GL_TRIANGLES, s->numtris * 3, GL_UNSIGNED_INT, s->tris);
polymer_unbindmaterial(materialbits);
curlight++;
} while ((curlight < modellightcount) && (curlight < pr_maxlightpasses));
}
bglDisableClientState(GL_NORMAL_ARRAY);
}
bglPopMatrix();
globalnoeffect=0;
}
static void polymer_loadmodelvbos(md3model_t* m)
{
int32_t i;
md3surf_t *s;
m->indices = nedpmalloc(polymer_pool, m->head.numsurfs * sizeof(GLuint));
m->texcoords = nedpmalloc(polymer_pool, m->head.numsurfs * sizeof(GLuint));
m->geometry = nedpmalloc(polymer_pool, m->head.numsurfs * sizeof(GLuint));
bglGenBuffersARB(m->head.numsurfs, m->indices);
bglGenBuffersARB(m->head.numsurfs, m->texcoords);
bglGenBuffersARB(m->head.numsurfs, m->geometry);
i = 0;
while (i < m->head.numsurfs)
{
s = &m->head.surfs[i];
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, m->indices[i]);
bglBufferDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, s->numtris * sizeof(md3tri_t), s->tris, modelvbousage);
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, m->texcoords[i]);
bglBufferDataARB(GL_ARRAY_BUFFER_ARB, s->numverts * sizeof(md3uv_t), s->uv, modelvbousage);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, m->geometry[i]);
bglBufferDataARB(GL_ARRAY_BUFFER_ARB, s->numframes * s->numverts * sizeof(float) * 6, s->geometry, modelvbousage);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
i++;
}
}
// MATERIALS
static void polymer_getscratchmaterial(_prmaterial* material)
{
// this function returns a material that won't validate any bits
// make sure to keep it up to date with the validation logic in bindmaterial
// PR_BIT_ANIM_INTERPOLATION
material->frameprogress = 0.0f;
material->nextframedata = NULL;
material->nextframedatastride = 0;
// PR_BIT_NORMAL_MAP
material->normalmap = 0;
material->normalbias[0] = material->normalbias[1] = 0.0f;
// PR_BIT_DIFFUSE_MAP
material->diffusemap = 0;
material->diffusescale[0] = material->diffusescale[1] = 1.0f;
// PR_BIT_DIFFUSE_DETAIL_MAP
material->detailmap = 0;
material->detailscale[0] = material->detailscale[1] = 1.0f;
// PR_BIT_DIFFUSE_MODULATION
material->diffusemodulation[0] =
material->diffusemodulation[1] =
material->diffusemodulation[2] =
material->diffusemodulation[3] = 1.0f;
// PR_BIT_SPECULAR_MAP
material->specmap = 0;
// PR_BIT_SPECULAR_MATERIAL
material->specmaterial[0] = 15.0f;
material->specmaterial[1] = 1.0f;
// PR_BIT_MIRROR_MAP
material->mirrormap = 0;
// PR_BIT_GLOW_MAP
material->glowmap = 0;
// PR_BIT_SHADOW_MAP
material->mdspritespace = GL_FALSE;
}
static void polymer_getbuildmaterial(_prmaterial* material, int16_t tilenum, char pal, int8_t shade)
{
pthtyp* pth;
pthtyp* detailpth;
pthtyp* glowpth;
polymer_getscratchmaterial(material);
// PR_BIT_NORMAL_MAP
if (hicfindsubst(tilenum, NORMALPAL, 0))
{
glowpth = NULL;
glowpth = gltexcache(tilenum, NORMALPAL, 0);
if (glowpth && glowpth->hicr && (glowpth->hicr->palnum == NORMALPAL)) {
material->normalmap = glowpth->glpic;
material->normalbias[0] = glowpth->hicr->specpower;
material->normalbias[1] = glowpth->hicr->specfactor;
}
}
// PR_BIT_DIFFUSE_MAP
if (!waloff[tilenum])
loadtile(tilenum);
pth = NULL;
pth = gltexcache(tilenum, pal, 0);
if (pth)
material->diffusemap = pth->glpic;
if (pth->hicr)
{
material->diffusescale[0] = pth->hicr->xscale;
material->diffusescale[1] = pth->hicr->yscale;
}
// PR_BIT_DIFFUSE_DETAIL_MAP
if (hicfindsubst(tilenum, DETAILPAL, 0))
{
detailpth = NULL;
detailpth = gltexcache(tilenum, DETAILPAL, 0);
if (detailpth && detailpth->hicr && (detailpth->hicr->palnum == DETAILPAL))
{
material->detailmap = detailpth->glpic;
material->detailscale[0] = detailpth->hicr->xscale;
material->detailscale[1] = detailpth->hicr->yscale;
}
}
// PR_BIT_DIFFUSE_MODULATION
material->diffusemodulation[0] =
material->diffusemodulation[1] =
material->diffusemodulation[2] =
((float)(numpalookups-min(max(shade*shadescale,0),numpalookups)))/((float)numpalookups);
if (pth && (pth->flags & 2))
{
if (pth->palnum != pal)
{
material->diffusemodulation[0] *= (float)hictinting[pal].r / 255.0;
material->diffusemodulation[1] *= (float)hictinting[pal].g / 255.0;
material->diffusemodulation[2] *= (float)hictinting[pal].b / 255.0;
}
// fullscreen tint on global palette change
if (hictinting[MAXPALOOKUPS-1].r != 255 ||
hictinting[MAXPALOOKUPS-1].g != 255 ||
hictinting[MAXPALOOKUPS-1].b != 255)
{
material->diffusemodulation[0] *= hictinting[MAXPALOOKUPS-1].r / 255.0;
material->diffusemodulation[1] *= hictinting[MAXPALOOKUPS-1].g / 255.0;
material->diffusemodulation[2] *= hictinting[MAXPALOOKUPS-1].b / 255.0;
}
}
// PR_BIT_SPECULAR_MAP
if (hicfindsubst(tilenum, SPECULARPAL, 0))
{
glowpth = NULL;
glowpth = gltexcache(tilenum, SPECULARPAL, 0);
if (glowpth && glowpth->hicr && (glowpth->hicr->palnum == SPECULARPAL))
material->specmap = glowpth->glpic;
}
// PR_BIT_SPECULAR_MATERIAL
if (pth->hicr)
{
if (pth->hicr->specpower != 1.0f)
material->specmaterial[0] = pth->hicr->specpower;
material->specmaterial[1] = pth->hicr->specfactor;
}
// PR_BIT_GLOW_MAP
if (r_fullbrights && pth && pth->flags & 16)
material->glowmap = pth->ofb->glpic;
if (hicfindsubst(tilenum, GLOWPAL, 0))
{
glowpth = NULL;
glowpth = gltexcache(tilenum, GLOWPAL, 0);
if (glowpth && glowpth->hicr && (glowpth->hicr->palnum == GLOWPAL))
material->glowmap = glowpth->glpic;
}
}
static int32_t polymer_bindmaterial(_prmaterial material, int16_t* lights, int matlightcount)
{
int32_t programbits;
int32_t texunit;
programbits = 0;
// --------- bit validation
// PR_BIT_ANIM_INTERPOLATION
if (material.nextframedatastride)
programbits |= prprogrambits[PR_BIT_ANIM_INTERPOLATION].bit;
// PR_BIT_LIGHTING_PASS
if (curlight && matlightcount)
programbits |= prprogrambits[PR_BIT_LIGHTING_PASS].bit;
// PR_BIT_NORMAL_MAP
if (pr_normalmapping && material.normalmap)
programbits |= prprogrambits[PR_BIT_NORMAL_MAP].bit;
// PR_BIT_DIFFUSE_MAP
if (material.diffusemap)
programbits |= prprogrambits[PR_BIT_DIFFUSE_MAP].bit;
// PR_BIT_DIFFUSE_DETAIL_MAP
if (!curlight && r_detailmapping && material.detailmap)
programbits |= prprogrambits[PR_BIT_DIFFUSE_DETAIL_MAP].bit;
// PR_BIT_DIFFUSE_MODULATION
programbits |= prprogrambits[PR_BIT_DIFFUSE_MODULATION].bit;
// PR_BIT_SPECULAR_MAP
if (pr_specularmapping && material.specmap)
programbits |= prprogrambits[PR_BIT_SPECULAR_MAP].bit;
// PR_BIT_SPECULAR_MATERIAL
if ((material.specmaterial[0] != 15.0) || (material.specmaterial[1] != 1.0) || pr_overridespecular)
programbits |= prprogrambits[PR_BIT_SPECULAR_MATERIAL].bit;
// PR_BIT_MIRROR_MAP
if (!curlight && material.mirrormap)
programbits |= prprogrambits[PR_BIT_MIRROR_MAP].bit;
// PR_BIT_FOG
if (!material.mirrormap)
programbits |= prprogrambits[PR_BIT_FOG].bit;
// PR_BIT_GLOW_MAP
if (!curlight && r_glowmapping && material.glowmap)
programbits |= prprogrambits[PR_BIT_GLOW_MAP].bit;
// PR_BIT_POINT_LIGHT
if (matlightcount) {
programbits |= prprogrambits[PR_BIT_POINT_LIGHT].bit;
// PR_BIT_SPOT_LIGHT
if (prlights[lights[curlight]].radius) {
programbits |= prprogrambits[PR_BIT_SPOT_LIGHT].bit;
// PR_BIT_SHADOW_MAP
if (prlights[lights[curlight]].rtindex != -1) {
programbits |= prprogrambits[PR_BIT_SHADOW_MAP].bit;
// PR_BIT_LIGHT_MAP
if (prlights[lights[curlight]].lightmap)
programbits |= prprogrambits[PR_BIT_LIGHT_MAP].bit;
}
}
}
// material override
programbits &= overridematerial;
programbits |= prprogrambits[PR_BIT_HEADER].bit;
programbits |= prprogrambits[PR_BIT_FOOTER].bit;
// --------- program compiling
if (!prprograms[programbits].handle)
polymer_compileprogram(programbits);
bglUseProgramObjectARB(prprograms[programbits].handle);
// --------- bit setup
texunit = 0;
// PR_BIT_ANIM_INTERPOLATION
if (programbits & prprogrambits[PR_BIT_ANIM_INTERPOLATION].bit)
{
bglEnableVertexAttribArrayARB(prprograms[programbits].attrib_nextFrameData);
if (prprograms[programbits].attrib_nextFrameNormal != -1)
bglEnableVertexAttribArrayARB(prprograms[programbits].attrib_nextFrameNormal);
bglVertexAttribPointerARB(prprograms[programbits].attrib_nextFrameData,
3, GL_FLOAT, GL_FALSE,
material.nextframedatastride,
material.nextframedata);
if (prprograms[programbits].attrib_nextFrameNormal != -1)
bglVertexAttribPointerARB(prprograms[programbits].attrib_nextFrameNormal,
3, GL_FLOAT, GL_FALSE,
material.nextframedatastride,
material.nextframedata + 3);
bglUniform1fARB(prprograms[programbits].uniform_frameProgress, material.frameprogress);
}
// PR_BIT_LIGHTING_PASS
if (programbits & prprogrambits[PR_BIT_LIGHTING_PASS].bit)
{
bglEnable(GL_BLEND);
bglBlendFunc(GL_ONE, GL_ONE);
}
// PR_BIT_NORMAL_MAP
if (programbits & prprogrambits[PR_BIT_NORMAL_MAP].bit)
{
float pos[3], bias[2];
pos[0] = (float)globalposy;
pos[1] = -(float)(globalposz) / 16.0f;
pos[2] = -(float)globalposx;
bglActiveTextureARB(texunit + GL_TEXTURE0_ARB);
bglBindTexture(GL_TEXTURE_2D, material.normalmap);
bglUniform3fvARB(prprograms[programbits].uniform_eyePosition, 1, pos);
bglUniform1iARB(prprograms[programbits].uniform_normalMap, texunit);
if (pr_overrideparallax) {
bias[0] = pr_parallaxscale;
bias[1] = pr_parallaxbias;
bglUniform2fvARB(prprograms[programbits].uniform_normalBias, 1, bias);
} else
bglUniform2fvARB(prprograms[programbits].uniform_normalBias, 1, material.normalbias);
texunit++;
}
// PR_BIT_DIFFUSE_MAP
if (programbits & prprogrambits[PR_BIT_DIFFUSE_MAP].bit)
{
bglActiveTextureARB(texunit + GL_TEXTURE0_ARB);
bglBindTexture(GL_TEXTURE_2D, material.diffusemap);
bglUniform1iARB(prprograms[programbits].uniform_diffuseMap, texunit);
bglUniform2fvARB(prprograms[programbits].uniform_diffuseScale, 1, material.diffusescale);
texunit++;
}
// PR_BIT_DIFFUSE_DETAIL_MAP
if (programbits & prprogrambits[PR_BIT_DIFFUSE_DETAIL_MAP].bit)
{
float scale[2];
// scale by the diffuse map scale if we're not doing normal mapping
if (!(programbits & prprogrambits[PR_BIT_NORMAL_MAP].bit))
{
scale[0] = material.diffusescale[0] * material.detailscale[0];
scale[1] = material.diffusescale[1] * material.detailscale[1];
} else {
scale[0] = material.detailscale[0];
scale[1] = material.detailscale[1];
}
bglActiveTextureARB(texunit + GL_TEXTURE0_ARB);
bglBindTexture(GL_TEXTURE_2D, material.detailmap);
bglUniform1iARB(prprograms[programbits].uniform_detailMap, texunit);
bglUniform2fvARB(prprograms[programbits].uniform_detailScale, 1, scale);
texunit++;
}
// PR_BIT_DIFFUSE_MODULATION
if (programbits & prprogrambits[PR_BIT_DIFFUSE_MODULATION].bit)
{
bglColor4f(material.diffusemodulation[0],
material.diffusemodulation[1],
material.diffusemodulation[2],
material.diffusemodulation[3]);
}
// PR_BIT_SPECULAR_MAP
if (programbits & prprogrambits[PR_BIT_SPECULAR_MAP].bit)
{
bglActiveTextureARB(texunit + GL_TEXTURE0_ARB);
bglBindTexture(GL_TEXTURE_2D, material.specmap);
bglUniform1iARB(prprograms[programbits].uniform_specMap, texunit);
texunit++;
}
// PR_BIT_SPECULAR_MATERIAL
if (programbits & prprogrambits[PR_BIT_SPECULAR_MATERIAL].bit)
{
float specmaterial[2];
if (pr_overridespecular) {
specmaterial[0] = pr_specularpower;
specmaterial[1] = pr_specularfactor;
bglUniform2fvARB(prprograms[programbits].uniform_specMaterial, 1, specmaterial);
} else
bglUniform2fvARB(prprograms[programbits].uniform_specMaterial, 1, material.specmaterial);
}
// PR_BIT_MIRROR_MAP
if (programbits & prprogrambits[PR_BIT_MIRROR_MAP].bit)
{
bglActiveTextureARB(texunit + GL_TEXTURE0_ARB);
bglBindTexture(GL_TEXTURE_RECTANGLE, material.mirrormap);
bglUniform1iARB(prprograms[programbits].uniform_mirrorMap, texunit);
texunit++;
}
// PR_BIT_GLOW_MAP
if (programbits & prprogrambits[PR_BIT_GLOW_MAP].bit)
{
bglActiveTextureARB(texunit + GL_TEXTURE0_ARB);
bglBindTexture(GL_TEXTURE_2D, material.glowmap);
bglUniform1iARB(prprograms[programbits].uniform_glowMap, texunit);
texunit++;
}
// PR_BIT_POINT_LIGHT
if (programbits & prprogrambits[PR_BIT_POINT_LIGHT].bit)
{
float inpos[4], pos[4];
float range[2];
float color[4];
inpos[0] = (float)prlights[lights[curlight]].y;
inpos[1] = -(float)prlights[lights[curlight]].z / 16.0f;
inpos[2] = -(float)prlights[lights[curlight]].x;
polymer_transformpoint(inpos, pos, curmodelviewmatrix);
// PR_BIT_SPOT_LIGHT
if (programbits & prprogrambits[PR_BIT_SPOT_LIGHT].bit)
{
float sinang, cosang, sinhorizang, coshorizangs;
float indir[3], dir[3];
cosang = (float)(sintable[(-prlights[lights[curlight]].angle+1024)&2047]) / 16383.0f;
sinang = (float)(sintable[(-prlights[lights[curlight]].angle+512)&2047]) / 16383.0f;
coshorizangs = (float)(sintable[(getangle(128, prlights[lights[curlight]].horiz-100)+1024)&2047]) / 16383.0f;
sinhorizang = (float)(sintable[(getangle(128, prlights[lights[curlight]].horiz-100)+512)&2047]) / 16383.0f;
indir[0] = inpos[0] + sinhorizang * cosang;
indir[1] = inpos[1] - coshorizangs;
indir[2] = inpos[2] - sinhorizang * sinang;
polymer_transformpoint(indir, dir, curmodelviewmatrix);
dir[0] -= pos[0];
dir[1] -= pos[1];
dir[2] -= pos[2];
indir[0] = (float)(sintable[(prlights[lights[curlight]].radius+512)&2047]) / 16383.0f;
indir[1] = (float)(sintable[(prlights[lights[curlight]].faderadius+512)&2047]) / 16383.0f;
indir[1] = 1.0 / (indir[1] - indir[0]);
bglUniform3fvARB(prprograms[programbits].uniform_spotDir, 1, dir);
bglUniform2fvARB(prprograms[programbits].uniform_spotRadius, 1, indir);
// PR_BIT_SHADOW_MAP
if (programbits & prprogrambits[PR_BIT_SHADOW_MAP].bit)
{
GLfloat matrix[16];
bglMatrixMode(GL_TEXTURE);
bglLoadMatrixf(shadowBias);
bglMultMatrixf(prlights[lights[curlight]].proj);
bglMultMatrixf(prlights[lights[curlight]].transform);
if (material.mdspritespace == GL_TRUE)
bglMultMatrixf(spritemodelview);
bglGetFloatv(GL_TEXTURE_MATRIX, matrix);
bglLoadIdentity();
bglMatrixMode(GL_MODELVIEW);
bglActiveTextureARB(texunit + GL_TEXTURE0_ARB);
bglBindTexture(prrts[prlights[lights[curlight]].rtindex].target, prrts[prlights[lights[curlight]].rtindex].z);
bglUniform1iARB(prprograms[programbits].uniform_shadowMap, texunit);
bglUniformMatrix4fvARB(prprograms[programbits].uniform_shadowProjMatrix, 1, GL_FALSE, matrix);
texunit++;
// PR_BIT_LIGHT_MAP
if (programbits & prprogrambits[PR_BIT_LIGHT_MAP].bit)
{
bglActiveTextureARB(texunit + GL_TEXTURE0_ARB);
bglBindTexture(GL_TEXTURE_2D, prlights[lights[curlight]].lightmap);
bglUniform1iARB(prprograms[programbits].uniform_lightMap, texunit);
texunit++;
}
}
}
range[0] = prlights[lights[curlight]].range / 1000.0f;
range[1] = 1 / (range[0] * range[0]);
color[0] = prlights[lights[curlight]].color[0] / 255.0f;
color[1] = prlights[lights[curlight]].color[1] / 255.0f;
color[2] = prlights[lights[curlight]].color[2] / 255.0f;
bglLightfv(GL_LIGHT0, GL_AMBIENT, pos);
bglLightfv(GL_LIGHT0, GL_DIFFUSE, color);
bglLightfv(GL_LIGHT0, GL_SPECULAR, inpos);
bglLightfv(GL_LIGHT0, GL_LINEAR_ATTENUATION, &range[1]);
}
bglActiveTextureARB(GL_TEXTURE0_ARB);
return (programbits);
}
static void polymer_unbindmaterial(int32_t programbits)
{
// repair any dirty GL state here
// PR_BIT_ANIM_INTERPOLATION
if (programbits & prprogrambits[PR_BIT_ANIM_INTERPOLATION].bit)
{
if (prprograms[programbits].attrib_nextFrameNormal != -1)
bglDisableVertexAttribArrayARB(prprograms[programbits].attrib_nextFrameNormal);
bglDisableVertexAttribArrayARB(prprograms[programbits].attrib_nextFrameData);
}
// PR_BIT_LIGHTING_PASS
if (programbits & prprogrambits[PR_BIT_LIGHTING_PASS].bit)
{
bglDisable(GL_BLEND);
bglBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
bglUseProgramObjectARB(0);
}
static void polymer_compileprogram(int32_t programbits)
{
int32_t i, enabledbits;
GLhandleARB vert, frag, program;
GLcharARB* source[PR_BIT_COUNT * 2];
GLcharARB infobuffer[PR_INFO_LOG_BUFFER_SIZE];
GLint linkstatus;
// --------- VERTEX
vert = bglCreateShaderObjectARB(GL_VERTEX_SHADER_ARB);
enabledbits = i = 0;
while (i < PR_BIT_COUNT)
{
if (programbits & prprogrambits[i].bit)
source[enabledbits++] = prprogrambits[i].vert_def;
i++;
}
i = 0;
while (i < PR_BIT_COUNT)
{
if (programbits & prprogrambits[i].bit)
source[enabledbits++] = prprogrambits[i].vert_prog;
i++;
}
bglShaderSourceARB(vert, enabledbits, (const GLcharARB**)source, NULL);
bglCompileShaderARB(vert);
// --------- FRAGMENT
frag = bglCreateShaderObjectARB(GL_FRAGMENT_SHADER_ARB);
enabledbits = i = 0;
while (i < PR_BIT_COUNT)
{
if (programbits & prprogrambits[i].bit)
source[enabledbits++] = prprogrambits[i].frag_def;
i++;
}
i = 0;
while (i < PR_BIT_COUNT)
{
if (programbits & prprogrambits[i].bit)
source[enabledbits++] = prprogrambits[i].frag_prog;
i++;
}
bglShaderSourceARB(frag, enabledbits, (const GLcharARB**)source, NULL);
bglCompileShaderARB(frag);
// --------- PROGRAM
program = bglCreateProgramObjectARB();
bglAttachObjectARB(program, vert);
bglAttachObjectARB(program, frag);
bglLinkProgramARB(program);
bglGetObjectParameterivARB(program, GL_OBJECT_LINK_STATUS_ARB, &linkstatus);
bglGetInfoLogARB(program, PR_INFO_LOG_BUFFER_SIZE, NULL, infobuffer);
prprograms[programbits].handle = program;
if (pr_verbosity >= 1) OSD_Printf("PR : Compiling GPU program with bits %i...\n", programbits);
if (!linkstatus) {
OSD_Printf("PR : Failed to compile GPU program with bits %i!\n", programbits);
if (pr_verbosity >= 1) OSD_Printf("PR : Compilation log:\n%s\n", infobuffer);
bglGetShaderSourceARB(vert, PR_INFO_LOG_BUFFER_SIZE, NULL, infobuffer);
if (pr_verbosity >= 1) OSD_Printf("PR : Vertex source dump:\n%s\n", infobuffer);
bglGetShaderSourceARB(frag, PR_INFO_LOG_BUFFER_SIZE, NULL, infobuffer);
if (pr_verbosity >= 1) OSD_Printf("PR : Fragment source dump:\n%s\n", infobuffer);
}
// --------- ATTRIBUTE/UNIFORM LOCATIONS
// PR_BIT_ANIM_INTERPOLATION
if (programbits & prprogrambits[PR_BIT_ANIM_INTERPOLATION].bit)
{
prprograms[programbits].attrib_nextFrameData = bglGetAttribLocationARB(program, "nextFrameData");
prprograms[programbits].attrib_nextFrameNormal = bglGetAttribLocationARB(program, "nextFrameNormal");
prprograms[programbits].uniform_frameProgress = bglGetUniformLocationARB(program, "frameProgress");
}
// PR_BIT_NORMAL_MAP
if (programbits & prprogrambits[PR_BIT_NORMAL_MAP].bit)
{
prprograms[programbits].attrib_T = bglGetAttribLocationARB(program, "T");
prprograms[programbits].attrib_B = bglGetAttribLocationARB(program, "B");
prprograms[programbits].attrib_N = bglGetAttribLocationARB(program, "N");
prprograms[programbits].uniform_eyePosition = bglGetUniformLocationARB(program, "eyePosition");
prprograms[programbits].uniform_normalMap = bglGetUniformLocationARB(program, "normalMap");
prprograms[programbits].uniform_normalBias = bglGetUniformLocationARB(program, "normalBias");
}
// PR_BIT_DIFFUSE_MAP
if (programbits & prprogrambits[PR_BIT_DIFFUSE_MAP].bit)
{
prprograms[programbits].uniform_diffuseMap = bglGetUniformLocationARB(program, "diffuseMap");
prprograms[programbits].uniform_diffuseScale = bglGetUniformLocationARB(program, "diffuseScale");
}
// PR_BIT_DIFFUSE_DETAIL_MAP
if (programbits & prprogrambits[PR_BIT_DIFFUSE_DETAIL_MAP].bit)
{
prprograms[programbits].uniform_detailMap = bglGetUniformLocationARB(program, "detailMap");
prprograms[programbits].uniform_detailScale = bglGetUniformLocationARB(program, "detailScale");
}
// PR_BIT_SPECULAR_MAP
if (programbits & prprogrambits[PR_BIT_SPECULAR_MAP].bit)
{
prprograms[programbits].uniform_specMap = bglGetUniformLocationARB(program, "specMap");
}
// PR_BIT_SPECULAR_MATERIAL
if (programbits & prprogrambits[PR_BIT_SPECULAR_MATERIAL].bit)
{
prprograms[programbits].uniform_specMaterial = bglGetUniformLocationARB(program, "specMaterial");
}
// PR_BIT_MIRROR_MAP
if (programbits & prprogrambits[PR_BIT_MIRROR_MAP].bit)
{
prprograms[programbits].uniform_mirrorMap = bglGetUniformLocationARB(program, "mirrorMap");
}
// PR_BIT_GLOW_MAP
if (programbits & prprogrambits[PR_BIT_GLOW_MAP].bit)
{
prprograms[programbits].uniform_glowMap = bglGetUniformLocationARB(program, "glowMap");
}
// PR_BIT_SHADOW_MAP
if (programbits & prprogrambits[PR_BIT_SHADOW_MAP].bit)
{
prprograms[programbits].uniform_shadowMap = bglGetUniformLocationARB(program, "shadowMap");
prprograms[programbits].uniform_shadowProjMatrix = bglGetUniformLocationARB(program, "shadowProjMatrix");
}
// PR_BIT_LIGHT_MAP
if (programbits & prprogrambits[PR_BIT_LIGHT_MAP].bit)
{
prprograms[programbits].uniform_lightMap = bglGetUniformLocationARB(program, "lightMap");
}
// PR_BIT_SPOT_LIGHT
if (programbits & prprogrambits[PR_BIT_SPOT_LIGHT].bit)
{
prprograms[programbits].uniform_spotDir = bglGetUniformLocationARB(program, "spotDir");
prprograms[programbits].uniform_spotRadius = bglGetUniformLocationARB(program, "spotRadius");
}
}
// LIGHTS
static void polymer_removelight(int16_t lighti)
{
_prplanelist* oldhead;
while (prlights[lighti].planelist)
{
polymer_deleteplanelight(prlights[lighti].planelist->plane, lighti);
oldhead = prlights[lighti].planelist;
prlights[lighti].planelist = prlights[lighti].planelist->n;
nedpfree(polymer_pool, oldhead);
}
prlights[lighti].planecount = 0;
prlights[lighti].planelist = NULL;
}
static void polymer_updatelights(void)
{
int32_t i = 0;
while (i < PR_MAXLIGHTS)
{
if (prlights[i].flags.active && prlights[i].flags.invalidate) {
// highly suboptimal
polymer_removelight(i);
if (prlights[i].radius)
polymer_processspotlight(&prlights[i]);
polymer_culllight(i);
prlights[i].flags.invalidate = 0;
}
if (prlights[i].flags.active)
prlights[i].rtindex = -1;
i++;
}
}
static void polymer_resetlights(void)
{
int32_t i;
_prsector *s;
_prwall *w;
i = 0;
while (i < numsectors)
{
s = prsectors[i];
polymer_resetplanelights(&s->floor);
polymer_resetplanelights(&s->ceil);
i++;
}
i = 0;
while (i < numwalls)
{
w = prwalls[i];
polymer_resetplanelights(&w->wall);
polymer_resetplanelights(&w->over);
polymer_resetplanelights(&w->mask);
i++;
}
i = 0;
while (i < PR_MAXLIGHTS)
{
prlights[i].flags.active = 0;
i++;
}
lightcount = 0;
}
static inline void polymer_resetplanelights(_prplane* plane)
{
Bmemset(&plane->lights[0], -1, sizeof(plane->lights[0]) * plane->lightcount);
plane->lightcount = 0;
}
static void polymer_addplanelight(_prplane* plane, int16_t lighti)
{
int32_t i = 0;
_prplanelist* oldhead;
if (plane->lightcount == PR_MAXLIGHTS - 1)
return;
if (plane->lightcount)
{
while (i < plane->lightcount && prlights[plane->lights[i]].priority < prlights[lighti].priority)
i++;
memmove(&plane->lights[i+1], &plane->lights[i], sizeof(int16_t) * (plane->lightcount - i));
}
plane->lights[i] = lighti;
plane->lightcount++;
oldhead = prlights[lighti].planelist;
prlights[lighti].planelist = nedpmalloc(polymer_pool, sizeof(_prplanelist));
prlights[lighti].planelist->n = oldhead;
prlights[lighti].planelist->plane = plane;
prlights[lighti].planecount++;
}
static inline void polymer_deleteplanelight(_prplane* plane, int16_t lighti)
{
int32_t i = plane->lightcount-1;
while (i >= 0)
{
if (plane->lights[i] == lighti)
{
memmove(&plane->lights[i], &plane->lights[i+1], sizeof(int16_t) * (plane->lightcount - i));
plane->lightcount--;
return;
}
i--;
}
}
static int32_t polymer_planeinlight(_prplane* plane, _prlight* light)
{
float lightpos[3];
int32_t i, j, k, l;
if (!plane->vertcount)
return 0;
if (light->radius)
return polymer_planeinfrustum(plane, light->frustum);
lightpos[0] = (float)light->y;
lightpos[1] = -(float)light->z / 16.0f;
lightpos[2] = -(float)light->x;
i = 0;
do
{
j = k = l = 0;
do
{
if (plane->buffer[(j * 5) + i] > (lightpos[i] + light->range)) k++;
if (plane->buffer[(j * 5) + i] < (lightpos[i] - light->range)) l++;
j++;
}
while (j < plane->vertcount);
if ((k == plane->vertcount) || (l == plane->vertcount))
return 0;
i++;
}
while (i < 3);
return 1;
}
static void polymer_invalidateplanelights(_prplane* plane)
{
int32_t i = 0;
while (i < plane->lightcount)
{
if (plane && (plane->lights[i] != -1) && (prlights[plane->lights[i]].flags.active))
prlights[plane->lights[i]].flags.invalidate = 1;
i++;
}
}
static void polymer_invalidatesectorlights(int16_t sectnum)
{
int32_t i;
_prsector *s = prsectors[sectnum];
_prwall *w;
sectortype *sec = &sector[sectnum];
if (!s)
return;
polymer_invalidateplanelights(&s->floor);
polymer_invalidateplanelights(&s->ceil);
i = 0;
while (i < sec->wallnum)
{
w = prwalls[sec->wallptr + i];
if (!w) {
i++;
continue;
}
polymer_invalidateplanelights(&w->wall);
polymer_invalidateplanelights(&w->over);
polymer_invalidateplanelights(&w->mask);
i++;
}
}
static void polymer_processspotlight(_prlight* light)
{
float radius, ang, horizang, lightpos[3];
pthtyp* pth;
// hack to avoid lights beams perpendicular to walls
if ((light->horiz <= 100) && (light->horiz > 90))
light->horiz = 90;
if ((light->horiz > 100) && (light->horiz < 110))
light->horiz = 110;
lightpos[0] = (float)light->y;
lightpos[1] = -(float)light->z / 16.0f;
lightpos[2] = -(float)light->x;
// calculate the spot light transformations and matrices
radius = (float)(light->radius) / (2048.0f / 360.0f);
ang = (float)(light->angle) / (2048.0f / 360.0f);
horizang = (float)(-getangle(128, light->horiz-100)) / (2048.0f / 360.0f);
bglMatrixMode(GL_PROJECTION);
bglPushMatrix();
bglLoadIdentity();
bgluPerspective(radius * 2, 1, 0.1f, light->range / 1000.0f);
bglGetFloatv(GL_PROJECTION_MATRIX, light->proj);
bglPopMatrix();
bglMatrixMode(GL_MODELVIEW);
bglPushMatrix();
bglLoadIdentity();
bglRotatef(horizang, 1.0f, 0.0f, 0.0f);
bglRotatef(ang, 0.0f, 1.0f, 0.0f);
bglScalef(1.0f / 1000.0f, 1.0f / 1000.0f, 1.0f / 1000.0f);
bglTranslatef(-lightpos[0], -lightpos[1], -lightpos[2]);
bglGetFloatv(GL_MODELVIEW_MATRIX, light->transform);
bglPopMatrix();
polymer_extractfrustum(light->transform, light->proj, light->frustum);
light->rtindex = -1;
// get the texture handle for the lightmap
light->lightmap = 0;
if (light->tilenum > 0)
{
if (!waloff[light->tilenum])
loadtile(light->tilenum);
pth = NULL;
pth = gltexcache(light->tilenum, 0, 0);
if (pth)
light->lightmap = pth->glpic;
}
}
static inline void polymer_culllight(int16_t lighti)
{
_prlight* light = &prlights[lighti];
int32_t front = 0;
int32_t back = 1;
int32_t i;
int32_t j;
int32_t zdiff;
_prsector *s;
_prwall *w;
sectortype *sec;
Bmemset(drawingstate, 0, sizeof(int16_t) * numsectors);
drawingstate[light->sector] = 1;
sectorqueue[0] = light->sector;
while (front != back)
{
s = prsectors[sectorqueue[front]];
sec = &sector[sectorqueue[front]];
polymer_pokesector(sectorqueue[front]);
zdiff = light->z - s->floorz;
if (zdiff < 0)
zdiff = -zdiff;
zdiff >>= 4;
if (!light->radius && !(sec->floorstat & 1)) {
if (zdiff < light->range)
polymer_addplanelight(&s->floor, lighti);
} else if (polymer_planeinlight(&s->floor, light))
polymer_addplanelight(&s->floor, lighti);
zdiff = light->z - s->ceilingz;
if (zdiff < 0)
zdiff = -zdiff;
zdiff >>= 4;
if (!light->radius && !(sec->ceilingstat & 1)) {
if (zdiff < light->range)
polymer_addplanelight(&s->ceil, lighti);
} else if (polymer_planeinlight(&s->ceil, light))
polymer_addplanelight(&s->ceil, lighti);
i = 0;
while (i < sec->wallnum)
{
w = prwalls[sec->wallptr + i];
j = 0;
if (polymer_planeinlight(&w->wall, light)) {
polymer_addplanelight(&w->wall, lighti);
j++;
}
if (polymer_planeinlight(&w->over, light)) {
polymer_addplanelight(&w->over, lighti);
j++;
}
// assume the light hits the middle section if it hits the top and bottom
if (wallvisible(light->x, light->y, sec->wallptr + i) &&
(j == 2 || polymer_planeinlight(&w->mask, light))) {
if ((w->mask.vertcount == 4) &&
(w->mask.buffer[(0 * 5) + 1] >= w->mask.buffer[(3 * 5) + 1]) &&
(w->mask.buffer[(1 * 5) + 1] >= w->mask.buffer[(2 * 5) + 1]))
{
i++;
continue;
}
polymer_addplanelight(&w->mask, lighti);
if ((wall[sec->wallptr + i].nextsector != -1) &&
(!drawingstate[wall[sec->wallptr + i].nextsector])) {
drawingstate[wall[sec->wallptr + i].nextsector] = 1;
sectorqueue[back] = wall[sec->wallptr + i].nextsector;
back++;
}
}
i++;
}
front++;
}
}
static void polymer_prepareshadows(void)
{
int16_t oviewangle, oglobalang;
int32_t ocosglobalang, osinglobalang;
int32_t ocosviewingrangeglobalang, osinviewingrangeglobalang;
int32_t i, j, k;
int32_t gx, gy, gz;
int32_t oldoverridematerial;
// for wallvisible()
gx = globalposx;
gy = globalposy;
gz = globalposz;
// build globals used by drawmasks
oviewangle = viewangle;
oglobalang = globalang;
ocosglobalang = cosglobalang;
osinglobalang = singlobalang;
ocosviewingrangeglobalang = cosviewingrangeglobalang;
osinviewingrangeglobalang = sinviewingrangeglobalang;
i = j = k = 0;
while ((k < lightcount) && (j < pr_shadowcount))
{
while (prlights[i].flags.active == 0) {
i++;
}
if (prlights[i].radius && prlights[i].flags.isinview)
{
prlights[i].flags.isinview = 0;
prlights[i].rtindex = j + 1;
if (pr_verbosity >= 3) OSD_Printf("PR : Drawing shadow %i...\n", i);
bglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, prrts[prlights[i].rtindex].fbo);
bglPushAttrib(GL_VIEWPORT_BIT);
bglViewport(0, 0, prrts[prlights[i].rtindex].xdim, prrts[prlights[i].rtindex].ydim);
bglClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
bglMatrixMode(GL_PROJECTION);
bglPushMatrix();
bglLoadMatrixf(prlights[i].proj);
bglMatrixMode(GL_MODELVIEW);
bglLoadMatrixf(prlights[i].transform);
bglEnable(GL_POLYGON_OFFSET_FILL);
bglPolygonOffset(5, SHADOW_DEPTH_OFFSET);
globalposx = prlights[i].x;
globalposy = prlights[i].y;
globalposz = prlights[i].z;
// build globals used by rotatesprite
viewangle = prlights[i].angle;
globalang = (prlights[i].angle&2047);
cosglobalang = sintable[(globalang+512)&2047];
singlobalang = sintable[globalang&2047];
cosviewingrangeglobalang = mulscale16(cosglobalang,viewingrange);
sinviewingrangeglobalang = mulscale16(singlobalang,viewingrange);
oldoverridematerial = overridematerial;
// smooth model shadows
overridematerial = prprogrambits[PR_BIT_ANIM_INTERPOLATION].bit;
// used by alpha-testing for sprite silhouette
overridematerial |= prprogrambits[PR_BIT_DIFFUSE_MAP].bit;
// to force sprite drawing
mirrors[depth++].plane = NULL;
polymer_displayrooms(prlights[i].sector);
depth--;
overridematerial = oldoverridematerial;
bglDisable(GL_POLYGON_OFFSET_FILL);
bglMatrixMode(GL_PROJECTION);
bglPopMatrix();
bglPopAttrib();
bglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
j++;
}
i++;
k++;
}
globalposx = gx;
globalposy = gy;
globalposz = gz;
viewangle = oviewangle;
globalang = oglobalang;
cosglobalang = ocosglobalang;
singlobalang = osinglobalang;
cosviewingrangeglobalang = ocosviewingrangeglobalang;
sinviewingrangeglobalang = osinviewingrangeglobalang;
}
// RENDER TARGETS
static void polymer_initrendertargets(int32_t count)
{
int32_t i;
prrts = nedpcalloc(polymer_pool, count, sizeof(_prrt));
i = 0;
while (i < count)
{
if (!i) {
prrts[i].target = GL_TEXTURE_RECTANGLE;
prrts[i].xdim = xdim;
prrts[i].ydim = ydim;
bglGenTextures(1, &prrts[i].color);
bglBindTexture(prrts[i].target, prrts[i].color);
bglTexImage2D(prrts[i].target, 0, GL_RGB, prrts[i].xdim, prrts[i].ydim, 0, GL_RGB, GL_SHORT, NULL);
bglTexParameteri(prrts[i].target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
bglTexParameteri(prrts[i].target, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
bglTexParameteri(prrts[i].target, GL_TEXTURE_WRAP_S, glinfo.clamptoedge?GL_CLAMP_TO_EDGE:GL_CLAMP);
bglTexParameteri(prrts[i].target, GL_TEXTURE_WRAP_T, glinfo.clamptoedge?GL_CLAMP_TO_EDGE:GL_CLAMP);
} else {
prrts[i].target = GL_TEXTURE_2D;
prrts[i].xdim = 128 << pr_shadowdetail;
prrts[i].ydim = 128 << pr_shadowdetail;
prrts[i].color = 0;
if (pr_ati_fboworkaround) {
bglGenTextures(1, &prrts[i].color);
bglBindTexture(prrts[i].target, prrts[i].color);
bglTexImage2D(prrts[i].target, 0, GL_RGB, prrts[i].xdim, prrts[i].ydim, 0, GL_RGB, GL_SHORT, NULL);
bglTexParameteri(prrts[i].target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
bglTexParameteri(prrts[i].target, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
bglTexParameteri(prrts[i].target, GL_TEXTURE_WRAP_S, glinfo.clamptoedge?GL_CLAMP_TO_EDGE:GL_CLAMP);
bglTexParameteri(prrts[i].target, GL_TEXTURE_WRAP_T, glinfo.clamptoedge?GL_CLAMP_TO_EDGE:GL_CLAMP);
}
}
bglGenTextures(1, &prrts[i].z);
bglBindTexture(prrts[i].target, prrts[i].z);
bglTexImage2D(prrts[i].target, 0, GL_DEPTH_COMPONENT, prrts[i].xdim, prrts[i].ydim, 0, GL_DEPTH_COMPONENT, GL_SHORT, NULL);
bglTexParameteri(prrts[i].target, GL_TEXTURE_MIN_FILTER, pr_shadowfiltering ? GL_LINEAR : GL_NEAREST);
bglTexParameteri(prrts[i].target, GL_TEXTURE_MAG_FILTER, pr_shadowfiltering ? GL_LINEAR : GL_NEAREST);
bglTexParameteri(prrts[i].target, GL_TEXTURE_WRAP_S, glinfo.clamptoedge?GL_CLAMP_TO_EDGE:GL_CLAMP);
bglTexParameteri(prrts[i].target, GL_TEXTURE_WRAP_T, glinfo.clamptoedge?GL_CLAMP_TO_EDGE:GL_CLAMP);
bglTexParameteri(prrts[i].target, GL_TEXTURE_COMPARE_MODE_ARB, GL_COMPARE_R_TO_TEXTURE_ARB);
bglTexParameteri(prrts[i].target, GL_TEXTURE_COMPARE_FUNC_ARB, GL_LEQUAL);
bglTexParameteri(prrts[i].target, GL_DEPTH_TEXTURE_MODE_ARB, GL_ALPHA);
bglGenFramebuffersEXT(1, &prrts[i].fbo);
bglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, prrts[i].fbo);
if (prrts[i].color)
bglFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,
prrts[i].target, prrts[i].color, 0);
else {
bglDrawBuffer(GL_NONE);
bglReadBuffer(GL_NONE);
}
bglFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, prrts[i].target, prrts[i].z, 0);
if (bglCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT) != GL_FRAMEBUFFER_COMPLETE_EXT)
{
OSD_Printf("PR : FBO #%d initialization failed.\n", i);
}
bglBindTexture(prrts[i].target, 0);
bglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
i++;
}
}
#endif