raze/source/core/gamefuncs.cpp

623 lines
18 KiB
C++

//-------------------------------------------------------------------------
/*
Copyright (C) 2021 Christoph Oelckers & Mitchell Richters
This is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
//-------------------------------------------------------------------------
#include "gamefuncs.h"
#include "gamestruct.h"
#include "intvec.h"
#include "coreactor.h"
#include "interpolate.h"
IntRect viewport3d;
//---------------------------------------------------------------------------
//
// Unified chasecam function for all games.
//
//---------------------------------------------------------------------------
int cameradist, cameraclock;
bool calcChaseCamPos(int* px, int* py, int* pz, DCoreActor* act, sectortype** psect, DAngle ang, fixedhoriz horiz, double const smoothratio)
{
HitInfoBase hitinfo;
DAngle daang;
int newdist;
if (!*psect) return false;
// Calculate new pos to shoot backwards, using averaged values from the big three.
vec3_t np = gi->chaseCamPos(ang, horiz);
auto bakcstat = act->spr.cstat;
act->spr.cstat &= ~CSTAT_SPRITE_BLOCK_ALL;
updatesectorz(*px, *py, *pz, psect);
hitscan({ *px, *py, *pz }, *psect, np, hitinfo, CLIPMASK1);
act->spr.cstat = bakcstat;
int hx = hitinfo.hitpos.X - *px;
int hy = hitinfo.hitpos.Y - *py;
if (*psect == nullptr)
{
return false;
}
// If something is in the way, make pp->camera_dist lower if necessary
if (abs(np.X) + abs(np.Y) > abs(hx) + abs(hy))
{
if (hitinfo.hitWall != nullptr)
{
// Push you a little bit off the wall
*psect = hitinfo.hitSector;
daang = VecToAngle(hitinfo.hitWall->point2Wall()->pos.X - hitinfo.hitWall->pos.X,
hitinfo.hitWall->point2Wall()->pos.Y - hitinfo.hitWall->pos.Y);
newdist = int(np.X * daang.Sin() * (1 << BUILDSINBITS) + np.Y * -daang.Cos() * (1 << BUILDSINBITS));
if (abs(np.X) > abs(np.Y))
hx -= MulScale(np.X, newdist, 28);
else
hy -= MulScale(np.Y, newdist, 28);
}
else if (hitinfo.hitActor == nullptr)
{
// Push you off the ceiling/floor
*psect = hitinfo.hitSector;
if (abs(np.X) > abs(np.Y))
hx -= (np.X >> 5);
else
hy -= (np.Y >> 5);
}
else
{
// If you hit a sprite that's not a wall sprite - try again.
auto hit = hitinfo.hitActor;
if (!(hit->spr.cstat & CSTAT_SPRITE_ALIGNMENT_WALL))
{
bakcstat = hit->spr.cstat;
hit->spr.cstat &= ~(CSTAT_SPRITE_BLOCK | CSTAT_SPRITE_BLOCK_HITSCAN);
calcChaseCamPos(px, py, pz, act, psect, ang, horiz, smoothratio);
hit->spr.cstat = bakcstat;
return false;
}
else
{
// same as wall calculation.
daang = DAngle::fromBuild(act->int_ang() - 512);
newdist = int(np.X * daang.Sin() * (1 << BUILDSINBITS) + np.Y * -daang.Cos() * (1 << BUILDSINBITS));
if (abs(np.X) > abs(np.Y))
hx -= MulScale(np.X, newdist, 28);
else
hy -= MulScale(np.Y, newdist, 28);
}
}
if (abs(np.X) > abs(np.Y))
newdist = DivScale(hx, np.X, 16);
else
newdist = DivScale(hy, np.Y, 16);
if (newdist < cameradist)
cameradist = newdist;
}
// Actually move you! (Camerdist is 65536 if nothing is in the way)
*px += MulScale(np.X, cameradist, 16);
*py += MulScale(np.Y, cameradist, 16);
*pz += MulScale(np.Z, cameradist, 16);
// Caculate clock using GameTicRate so it increases the same rate on all speed computers.
int myclock = PlayClock + MulScale(120 / GameTicRate, int(smoothratio), 16);
if (cameraclock == INT_MIN)
{
// Third person view was just started.
cameraclock = myclock;
}
// Slowly increase cameradist until it reaches 65536.
cameradist = min(cameradist + ((myclock - cameraclock) << 10), 65536);
cameraclock = myclock;
// Make sure psectnum is correct.
updatesectorz(*px, *py, *pz, psect);
return true;
}
//==========================================================================
//
// consolidated slope calculation
//
//==========================================================================
void calcSlope(const sectortype* sec, float xpos, float ypos, float* pceilz, float* pflorz)
{
int bits = 0;
if (pceilz)
{
bits |= sec->ceilingstat;
*pceilz = float(sec->int_ceilingz());
}
if (pflorz)
{
bits |= sec->floorstat;
*pflorz = float(sec->int_floorz());
}
if ((bits & CSTAT_SECTOR_SLOPE) == CSTAT_SECTOR_SLOPE)
{
auto wal = sec->firstWall();
int len = wal->Length();
if (len != 0)
{
float fac = (wal->deltax() * (float(ypos - wal->wall_int_pos().Y)) - wal->deltay() * (float(xpos - wal->wall_int_pos().X))) * (1.f / 256.f) / len;
if (pceilz && sec->ceilingstat & CSTAT_SECTOR_SLOPE) *pceilz += (sec->ceilingheinum * fac);
if (pflorz && sec->floorstat & CSTAT_SECTOR_SLOPE) *pflorz += (sec->floorheinum * fac);
}
}
}
//==========================================================================
//
// for the renderer
//
//==========================================================================
void PlanesAtPoint(const sectortype* sec, float dax, float day, float* pceilz, float* pflorz)
{
calcSlope(sec, dax * worldtoint, day * worldtoint, pceilz, pflorz);
if (pceilz) *pceilz *= -(1 / 256.f);
if (pflorz) *pflorz *= -(1 / 256.f);
}
//==========================================================================
//
// for the games (these are not inlined so that they can inline calcSlope)
//
//==========================================================================
int getceilzofslopeptr(const sectortype* sec, int dax, int day)
{
float z;
calcSlope(sec, dax, day, &z, nullptr);
return int(z);
}
int getflorzofslopeptr(const sectortype* sec, int dax, int day)
{
float z;
calcSlope(sec, dax, day, nullptr, &z);
return int(z);
}
void getzsofslopeptr(const sectortype* sec, int dax, int day, int* ceilz, int* florz)
{
float c, f;
calcSlope(sec, dax, day, &c, &f);
*ceilz = int(c);
*florz = int(f);
}
void getzsofslopeptr(const sectortype* sec, double dax, double day, double* ceilz, double* florz)
{
float c, f;
calcSlope(sec, dax * worldtoint, day * worldtoint, &c, &f);
*ceilz = c * zinttoworld;
*florz = f * zinttoworld;
}
void getcorrectzsofslope(int sectnum, int dax, int day, int* ceilz, int* florz)
{
DVector2 closestv;
SquareDistToSector(dax * inttoworld, day * inttoworld, &sector[sectnum], &closestv);
float ffloorz, fceilz;
calcSlope(&sector[sectnum], closestv.X * worldtoint, closestv.Y * worldtoint, &fceilz, &ffloorz);
if (ceilz) *ceilz = int(fceilz);
if (florz) *florz = int(ffloorz);
}
//==========================================================================
//
//
//
//==========================================================================
int getslopeval(sectortype* sect, int x, int y, int z, int basez)
{
auto wal = sect->firstWall();
auto delta = wal->delta();
int i = (y - wal->wall_int_pos().Y) * delta.X - (x - wal->wall_int_pos().X) * delta.Y;
return i == 0? 0 : Scale((z - basez) << 8, wal->Length(), i);
}
//==========================================================================
//
// Calculate the distance to the closest point in the given sector
//
//==========================================================================
double SquareDistToSector(double px, double py, const sectortype* sect, DVector2* point)
{
if (inside(px, py, sect))
{
if (point)
*point = { px, py };
return 0;
}
double bestdist = DBL_MAX;
DVector2 bestpt = { px, py };
for (auto& wal : wallsofsector(sect))
{
DVector2 pt;
auto dist = SquareDistToWall(px, py, &wal, &pt);
if (dist < bestdist)
{
bestdist = dist;
bestpt = pt;
}
}
if (point) *point = bestpt;
return bestdist;
}
//==========================================================================
//
// Calculate the position of a wall sprite in the world
//
//==========================================================================
void GetWallSpritePosition(const tspritetype* spr, vec2_t pos, vec2_t* out, bool render)
{
auto tex = tileGetTexture(spr->picnum);
int width, leftofs;
if (render && hw_hightile && TileFiles.tiledata[spr->picnum].hiofs.xsize)
{
width = TileFiles.tiledata[spr->picnum].hiofs.xsize;
leftofs = (TileFiles.tiledata[spr->picnum].hiofs.xoffs + spr->xoffset);
}
else
{
width = (int)tex->GetDisplayWidth();
leftofs = ((int)tex->GetDisplayLeftOffset() + spr->xoffset);
}
int x = bsin(spr->int_ang()) * spr->xrepeat;
int y = -bcos(spr->int_ang()) * spr->xrepeat;
int xoff = leftofs;
if (spr->cstat & CSTAT_SPRITE_XFLIP) xoff = -xoff;
int origin = (width >> 1) + xoff;
out[0].X = pos.X - MulScale(x, origin, 16);
out[0].Y = pos.Y - MulScale(y, origin, 16);
out[1].X = out[0].X + MulScale(x, width, 16);
out[1].Y = out[0].Y + MulScale(y, width, 16);
}
//==========================================================================
//
// Calculate the position of a wall sprite in the world
//
//==========================================================================
void TGetFlatSpritePosition(const spritetypebase* spr, vec2_t pos, vec2_t* out, int* outz, int heinum, bool render)
{
auto tex = tileGetTexture(spr->picnum);
int width, height, leftofs, topofs;
int ratio = ksqrt(heinum * heinum + 4096 * 4096);
int xo = heinum ? 0 : spr->xoffset;
int yo = heinum ? 0 : spr->yoffset;
if (render && hw_hightile && TileFiles.tiledata[spr->picnum].hiofs.xsize)
{
width = TileFiles.tiledata[spr->picnum].hiofs.xsize * spr->xrepeat;
height = TileFiles.tiledata[spr->picnum].hiofs.ysize * spr->yrepeat;
leftofs = (TileFiles.tiledata[spr->picnum].hiofs.xoffs + xo) * spr->xrepeat;
topofs = (TileFiles.tiledata[spr->picnum].hiofs.yoffs + yo) * spr->yrepeat;
}
else
{
width = (int)tex->GetDisplayWidth() * spr->xrepeat;
height = (int)tex->GetDisplayHeight() * spr->yrepeat;
leftofs = ((int)tex->GetDisplayLeftOffset() + xo) * spr->xrepeat;
topofs = ((int)tex->GetDisplayTopOffset() + yo) * spr->yrepeat;
}
if (spr->cstat & CSTAT_SPRITE_XFLIP) leftofs = -leftofs;
if (spr->cstat & CSTAT_SPRITE_YFLIP) topofs = -topofs;
int sprcenterx = (width >> 1) + leftofs;
int sprcentery = (height >> 1) + topofs;
int cosang = bcos(spr->int_ang());
int sinang = bsin(spr->int_ang());
int cosangslope = DivScale(cosang, ratio, 12);
int sinangslope = DivScale(sinang, ratio, 12);
out[0].X = pos.X + DMulScale(sinang, sprcenterx, cosangslope, sprcentery, 16);
out[0].Y = pos.Y + DMulScale(sinangslope, sprcentery, -cosang, sprcenterx, 16);
out[1].X = out[0].X - MulScale(sinang, width, 16);
out[1].Y = out[0].Y + MulScale(cosang, width, 16);
vec2_t sub = { MulScale(cosangslope, height, 16), MulScale(sinangslope, height, 16) };
out[2] = out[1] - sub;
out[3] = out[0] - sub;
if (outz)
{
if (!heinum) outz[3] = outz[2] = outz[1] = outz[0] = 0;
else
{
for (int i = 0; i < 4; i++)
{
int spos = DMulScale(-sinang, out[i].Y - pos.Y, -cosang, out[i].X - pos.X, 4);
outz[i] = MulScale(heinum, spos, 18);
}
}
}
}
void GetFlatSpritePosition(DCoreActor* actor, vec2_t pos, vec2_t* out, bool render)
{
TGetFlatSpritePosition(&actor->spr, pos, out, nullptr, spriteGetSlope(actor), render);
}
void GetFlatSpritePosition(const tspritetype* spr, vec2_t pos, vec2_t* out, int* outz, bool render)
{
TGetFlatSpritePosition(spr, pos, out, outz, tspriteGetSlope(spr), render);
}
//==========================================================================
//
// Check if some walls are set to use rotated textures.
// Ideally this should just have been done with texture rotation,
// but the effects on the render code would be too severe due to the alignment mess.
//
//==========================================================================
void checkRotatedWalls()
{
for (auto& w : wall)
{
if (w.cstat & CSTAT_WALL_ROTATE_90)
{
int picnum = w.picnum;
tileUpdatePicnum(&picnum);
auto& tile = RotTile(picnum);
if (tile.newtile == -1 && tile.owner == -1)
{
tile.newtile = TileFiles.tileCreateRotated(picnum);
assert(tile.newtile != -1);
RotTile(tile.newtile).owner = picnum;
}
}
}
}
//==========================================================================
//
// check if two sectors share a wall connection
//
//==========================================================================
bool sectorsConnected(int sect1, int sect2)
{
for (auto& wal : wallsofsector(sect1))
{
if (wal.nextsector == sect2) return true;
}
return false;
}
//==========================================================================
//
//
//
//==========================================================================
void dragpoint(walltype* startwall, int newx, int newy)
{
vertexscan(startwall, [&](walltype* wal)
{
wal->movexy(newx, newy);
wal->sectorp()->exflags |= SECTOREX_DRAGGED;
});
}
void dragpoint(walltype* startwall, const DVector2& pos)
{
vertexscan(startwall, [&](walltype* wal)
{
wal->move(pos);
wal->sectorp()->exflags |= SECTOREX_DRAGGED;
});
}
//==========================================================================
//
//
//
//==========================================================================
DVector2 rotatepoint(const DVector2& pivot, const DVector2& point, DAngle angle)
{
auto cosang = angle.Cos();
auto sinang = angle.Sin();
auto p = point - pivot;
return {
p.X * cosang - p.Y * sinang + pivot.X,
p.Y * cosang + p.X * sinang + pivot.Y };
}
//==========================================================================
//
//
//
//==========================================================================
int inside(double x, double y, const sectortype* sect)
{
if (sect)
{
int64_t acc = 1;
for (auto& wal : wallsofsector(sect))
{
// Perform the checks here in 48.16 fixed point.
// Doing it directly with floats and multiplications does not work reliably.
// Unfortunately, due to the conversions, this is a bit slower. :(
int64_t xs = int64_t(0x10000 * (wal.pos.X - x));
int64_t ys = int64_t(0x10000 * (wal.pos.Y - y));
auto wal2 = wal.point2Wall();
int64_t xe = int64_t(0x10000 * (wal2->pos.X - x));
int64_t ye = int64_t(0x10000 * (wal2->pos.Y - y));
if ((ys ^ ye) < 0)
{
int64_t val;
if ((xs ^ xe) >= 0) val = xs;
else val = ((xs * ye) - xe * ys) ^ ye;
acc ^= val;
}
}
return acc < 0;
}
return -1;
}
//==========================================================================
//
// find the closest neighboring sector plane in the given direction.
// Does not consider slopes, just like the original!
//
//==========================================================================
sectortype* nextsectorneighborzptr(sectortype* sectp, int startz_, int flags)
{
double startz = startz_ * zinttoworld;
double factor = (flags & Find_Up)? -1 : 1;
int bestz = INT_MAX;
sectortype* bestsec = (flags & Find_Safe)? sectp : nullptr;
const auto planez = (flags & Find_Ceiling)? &sectortype::ceilingz : &sectortype::floorz;
startz *= factor;
for(auto& wal : wallsofsector(sectp))
{
if (wal.twoSided())
{
auto nextsec = wal.nextSector();
auto nextz = factor * nextsec->*planez;
if (startz < nextz && nextz < bestz)
{
bestz = nextz;
bestsec = nextsec;
}
}
}
return bestsec;
}
//==========================================================================
//
//
//
//==========================================================================
tspritetype* renderAddTsprite(tspriteArray& tsprites, DCoreActor* actor)
{
auto tspr = tsprites.newTSprite();
tspr->pos = actor->spr.pos;
tspr->cstat = actor->spr.cstat;
tspr->picnum = actor->spr.picnum;
tspr->shade = actor->spr.shade;
tspr->pal = actor->spr.pal;
tspr->clipdist = 0;
tspr->blend = actor->spr.blend;
tspr->xrepeat = actor->spr.xrepeat;
tspr->yrepeat = actor->spr.yrepeat;
tspr->xoffset = actor->spr.xoffset;
tspr->yoffset = actor->spr.yoffset;
tspr->sectp = actor->spr.sectp;
tspr->statnum = actor->spr.statnum;
tspr->__int_angle = actor->int_ang();
tspr->xvel = actor->spr.xvel;
tspr->yvel = actor->spr.yvel;
tspr->zvel = actor->spr.zvel;
tspr->lotag = actor->spr.lotag;
tspr->hitag = actor->spr.hitag;
tspr->extra = actor->spr.extra;
tspr->time = actor->time;
tspr->cstat2 = actor->spr.cstat2;
tspr->ownerActor = actor;
// need to copy the slope sprite flag around because for tsprites the bit combination means 'voxel'.
if ((tspr->cstat & CSTAT_SPRITE_ALIGNMENT_MASK) == CSTAT_SPRITE_ALIGNMENT_SLOPE)
{
tspr->cstat &= ~CSTAT_SPRITE_ALIGNMENT_WALL;
tspr->clipdist |= TSPR_SLOPESPRITE;
}
return tspr;
}
//==========================================================================
//
// vector serializers
//
//==========================================================================
FSerializer& Serialize(FSerializer& arc, const char* key, vec2_t& c, vec2_t* def)
{
if (arc.isWriting() && def && !memcmp(&c, def, sizeof(c))) return arc;
if (arc.BeginObject(key))
{
arc("x", c.X, def ? &def->X : nullptr)
("y", c.Y, def ? &def->Y : nullptr)
.EndObject();
}
return arc;
}
FSerializer& Serialize(FSerializer& arc, const char* key, vec3_t& c, vec3_t* def)
{
if (arc.isWriting() && def && !memcmp(&c, def, sizeof(c))) return arc;
if (arc.BeginObject(key))
{
arc("x", c.X, def ? &def->X : nullptr)
("y", c.Y, def ? &def->Y : nullptr)
("z", c.Z, def ? &def->Z : nullptr)
.EndObject();
}
return arc;
}