#ifndef __M_FIXED__ #define __M_FIXED__ #include #include #include "basics.h" // Modern compilers are smart enough to do these multiplications intelligently. __forceinline int32_t MulScale14(int32_t a, int32_t b) { return (int32_t)(((int64_t)a * b) >> 14); } // only used by R_DrawVoxel __forceinline int32_t MulScale30(int32_t a, int32_t b) { return (int32_t)(((int64_t)a * b) >> 30); } // only used once in the node builder __forceinline int32_t MulScale32(int32_t a, int32_t b) { return (int32_t)(((int64_t)a * b) >> 32); } // only used by R_DrawVoxel __forceinline uint32_t UMulScale16(uint32_t a, uint32_t b) { return (uint32_t)(((uint64_t)a * b) >> 16); } // used for sky drawing __forceinline int32_t DMulScale3(int32_t a, int32_t b, int32_t c, int32_t d) { return (int32_t)(((int64_t)a*b + (int64_t)c*d) >> 3); } // used for setting up slopes for Build maps __forceinline int32_t DMulScale6(int32_t a, int32_t b, int32_t c, int32_t d) { return (int32_t)(((int64_t)a*b + (int64_t)c*d) >> 6); } // only used by R_DrawVoxel __forceinline int32_t DMulScale10(int32_t a, int32_t b, int32_t c, int32_t d) { return (int32_t)(((int64_t)a*b + (int64_t)c*d) >> 10); } // only used by R_DrawVoxel __forceinline int32_t DMulScale18(int32_t a, int32_t b, int32_t c, int32_t d) { return (int32_t)(((int64_t)a*b + (int64_t)c*d) >> 18); } // only used by R_DrawVoxel __forceinline int32_t DMulScale32(int32_t a, int32_t b, int32_t c, int32_t d) { return (int32_t)(((int64_t)a*b + (int64_t)c*d) >> 32); } // used by R_PointOnSide. // Sadly, for divisions this is not true but these are so infrequently used that the C versions are just fine, despite not being fully optimal. __forceinline int32_t DivScale6(int32_t a, int32_t b) { return (int32_t)(((int64_t)a << 6) / b); } // only used by R_DrawVoxel __forceinline int32_t DivScale21(int32_t a, int32_t b) { return (int32_t)(((int64_t)a << 21) / b); } // only used by R_DrawVoxel __forceinline int32_t DivScale30(int32_t a, int32_t b) { return (int32_t)(((int64_t)a << 30) / b); } // only used once in the node builder __forceinline void fillshort(void *buff, unsigned int count, uint16_t clear) { int16_t *b2 = (int16_t *)buff; for (unsigned int i = 0; i != count; ++i) { b2[i] = clear; } } #include "xs_Float.h" inline int32_t FixedDiv (int32_t a, int32_t b) { if ((uint32_t)abs(a) >> (31-16) >= (uint32_t)abs (b)) return (a^b)<0 ? FIXED_MIN : FIXED_MAX; return (int32_t)(((int64_t)a << 16) / b); } __forceinline constexpr int32_t FixedMul(int32_t a, int32_t b) { return (int32_t)(((int64_t)a * b) >> 16); } inline fixed_t FloatToFixed(double f) { return xs_Fix<16>::ToFix(f); } inline constexpr fixed_t IntToFixed(int32_t f) { // Negative shifts are undefined, so multiply instead of shifting left. return f * FRACUNIT; } inline constexpr double FixedToFloat(fixed_t f) { return f * (1/65536.); } inline constexpr int32_t FixedToInt(fixed_t f) { return xs_CRoundToInt(FixedToFloat(f)); } inline constexpr unsigned FloatToAngle(double f) { return xs_CRoundToInt((f)* (0x40000000 / 90.)); } inline constexpr double AngleToFloat(unsigned f) { return f * (90. / 0x40000000); } inline constexpr double AngleToFloat(int f) { return f * (90. / 0x40000000); } #define FLOAT2FIXED(f) FloatToFixed(f) #define FIXED2FLOAT(f) float(FixedToFloat(f)) #define FIXED2DBL(f) FixedToFloat(f) #define ANGLE2DBL(f) AngleToFloat(f) #endif