//------------------------------------------------------------------------- /* Copyright (C) 2021 Christoph Oelckers & Mitchell Richters This is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ //------------------------------------------------------------------------- #include "gamefuncs.h" #include "gamestruct.h" #include "intvec.h" #include "coreactor.h" #include "interpolate.h" IntRect viewport3d; //--------------------------------------------------------------------------- // // Unified chasecam function for all games. // //--------------------------------------------------------------------------- int cameradist, cameraclock; bool calcChaseCamPos(int* px, int* py, int* pz, DCoreActor* act, sectortype** psect, DAngle ang, fixedhoriz horiz, double const smoothratio) { HitInfoBase hitinfo; DAngle daang; int newdist; if (!*psect) return false; // Calculate new pos to shoot backwards, using averaged values from the big three. vec3_t np = gi->chaseCamPos(ang, horiz); auto bakcstat = act->spr.cstat; act->spr.cstat &= ~CSTAT_SPRITE_BLOCK_ALL; updatesectorz(*px, *py, *pz, psect); hitscan(vec3_t( *px, *py, *pz ), *psect, np, hitinfo, CLIPMASK1); act->spr.cstat = bakcstat; int hx = hitinfo.int_hitpos().X - *px; int hy = hitinfo.int_hitpos().Y - *py; if (*psect == nullptr) { return false; } // If something is in the way, make pp->camera_dist lower if necessary if (abs(np.X) + abs(np.Y) > abs(hx) + abs(hy)) { if (hitinfo.hitWall != nullptr) { // Push you a little bit off the wall *psect = hitinfo.hitSector; daang = VecToAngle(hitinfo.hitWall->point2Wall()->pos.X - hitinfo.hitWall->pos.X, hitinfo.hitWall->point2Wall()->pos.Y - hitinfo.hitWall->pos.Y); newdist = int(np.X * daang.Sin() * (1 << BUILDSINBITS) + np.Y * -daang.Cos() * (1 << BUILDSINBITS)); if (abs(np.X) > abs(np.Y)) hx -= MulScale(np.X, newdist, 28); else hy -= MulScale(np.Y, newdist, 28); } else if (hitinfo.hitActor == nullptr) { // Push you off the ceiling/floor *psect = hitinfo.hitSector; if (abs(np.X) > abs(np.Y)) hx -= (np.X >> 5); else hy -= (np.Y >> 5); } else { // If you hit a sprite that's not a wall sprite - try again. auto hit = hitinfo.hitActor; if (!(hit->spr.cstat & CSTAT_SPRITE_ALIGNMENT_WALL)) { bakcstat = hit->spr.cstat; hit->spr.cstat &= ~(CSTAT_SPRITE_BLOCK | CSTAT_SPRITE_BLOCK_HITSCAN); calcChaseCamPos(px, py, pz, act, psect, ang, horiz, smoothratio); hit->spr.cstat = bakcstat; return false; } else { // same as wall calculation. daang = act->spr.angle - DAngle90; newdist = int(np.X * daang.Sin() * (1 << BUILDSINBITS) + np.Y * -daang.Cos() * (1 << BUILDSINBITS)); if (abs(np.X) > abs(np.Y)) hx -= MulScale(np.X, newdist, 28); else hy -= MulScale(np.Y, newdist, 28); } } if (abs(np.X) > abs(np.Y)) newdist = DivScale(hx, np.X, 16); else newdist = DivScale(hy, np.Y, 16); if (newdist < cameradist) cameradist = newdist; } // Actually move you! (Camerdist is 65536 if nothing is in the way) *px += MulScale(np.X, cameradist, 16); *py += MulScale(np.Y, cameradist, 16); *pz += MulScale(np.Z, cameradist, 16); // Caculate clock using GameTicRate so it increases the same rate on all speed computers. int myclock = PlayClock + MulScale(120 / GameTicRate, int(smoothratio), 16); if (cameraclock == INT_MIN) { // Third person view was just started. cameraclock = myclock; } // Slowly increase cameradist until it reaches 65536. cameradist = min(cameradist + ((myclock - cameraclock) << 10), 65536); cameraclock = myclock; // Make sure psectnum is correct. updatesectorz(*px, *py, *pz, psect); return true; } //========================================================================== // // consolidated slope calculation // //========================================================================== void calcSlope(const sectortype* sec, float xpos, float ypos, float* pceilz, float* pflorz) { int bits = 0; if (pceilz) { bits |= sec->ceilingstat; *pceilz = float(sec->int_ceilingz()); } if (pflorz) { bits |= sec->floorstat; *pflorz = float(sec->int_floorz()); } if ((bits & CSTAT_SECTOR_SLOPE) == CSTAT_SECTOR_SLOPE) { auto wal = sec->firstWall(); int len = wal->Length(); if (len != 0) { float fac = (wal->int_delta().X * (float(ypos - wal->wall_int_pos().Y)) - wal->int_delta().Y * (float(xpos - wal->wall_int_pos().X))) * (1.f / 256.f) / len; if (pceilz && sec->ceilingstat & CSTAT_SECTOR_SLOPE) *pceilz += (sec->ceilingheinum * fac); if (pflorz && sec->floorstat & CSTAT_SECTOR_SLOPE) *pflorz += (sec->floorheinum * fac); } } } //========================================================================== // // for the renderer // //========================================================================== void PlanesAtPoint(const sectortype* sec, float dax, float day, float* pceilz, float* pflorz) { calcSlope(sec, dax * worldtoint, day * worldtoint, pceilz, pflorz); if (pceilz) *pceilz *= -(1 / 256.f); if (pflorz) *pflorz *= -(1 / 256.f); } //========================================================================== // // for the games (these are not inlined so that they can inline calcSlope) // //========================================================================== int getceilzofslopeptr(const sectortype* sec, int dax, int day) { float z; calcSlope(sec, dax, day, &z, nullptr); return int(z); } int getflorzofslopeptr(const sectortype* sec, int dax, int day) { float z; calcSlope(sec, dax, day, nullptr, &z); return int(z); } void getzsofslopeptr(const sectortype* sec, int dax, int day, int* ceilz, int* florz) { float c, f; calcSlope(sec, dax, day, &c, &f); *ceilz = int(c); *florz = int(f); } void getzsofslopeptr(const sectortype* sec, double dax, double day, double* ceilz, double* florz) { float c, f; calcSlope(sec, dax * worldtoint, day * worldtoint, &c, &f); *ceilz = c * zinttoworld; *florz = f * zinttoworld; } void getcorrectzsofslope(int sectnum, int dax, int day, int* ceilz, int* florz) { DVector2 closestv; SquareDistToSector(dax * inttoworld, day * inttoworld, §or[sectnum], &closestv); float ffloorz, fceilz; calcSlope(§or[sectnum], closestv.X * worldtoint, closestv.Y * worldtoint, &fceilz, &ffloorz); if (ceilz) *ceilz = int(fceilz); if (florz) *florz = int(ffloorz); } //========================================================================== // // // //========================================================================== int getslopeval(sectortype* sect, int x, int y, int z, int basez) { auto wal = sect->firstWall(); auto delta = wal->int_delta(); int i = (y - wal->wall_int_pos().Y) * delta.X - (x - wal->wall_int_pos().X) * delta.Y; return i == 0? 0 : Scale((z - basez) << 8, wal->Length(), i); } //========================================================================== // // Calculate the distance to the closest point in the given sector // //========================================================================== double SquareDistToSector(double px, double py, const sectortype* sect, DVector2* point) { if (inside(px, py, sect)) { if (point) *point = { px, py }; return 0; } double bestdist = DBL_MAX; DVector2 bestpt = { px, py }; for (auto& wal : wallsofsector(sect)) { DVector2 pt; auto dist = SquareDistToWall(px, py, &wal, &pt); if (dist < bestdist) { bestdist = dist; bestpt = pt; } } if (point) *point = bestpt; return bestdist; } //========================================================================== // // Calculate the position of a wall sprite in the world // //========================================================================== void GetWallSpritePosition(const spritetypebase* spr, const DVector2& pos, DVector2* out, bool render) { auto tex = tileGetTexture(spr->picnum); double width, xoffset; if (render && hw_hightile && TileFiles.tiledata[spr->picnum].hiofs.xsize) { width = TileFiles.tiledata[spr->picnum].hiofs.xsize; xoffset = (TileFiles.tiledata[spr->picnum].hiofs.xoffs + spr->xoffset); } else { width = tex->GetDisplayWidth(); xoffset = tex->GetDisplayLeftOffset() + spr->xoffset; } double x = spr->angle.Sin() * spr->xrepeat * (1. / 64.); double y = -spr->angle.Cos() * spr->xrepeat * (1. / 64.); if (spr->cstat & CSTAT_SPRITE_XFLIP) xoffset = -xoffset; double origin = (width * 0.5) + xoffset; out[0].X = pos.X - x * origin; out[0].Y = pos.Y - y * origin; out[1].X = out[0].X + x * width; out[1].Y = out[0].Y + y * width; } //========================================================================== // // Calculate the position of a wall sprite in the world // //========================================================================== void TGetFlatSpritePosition(const spritetypebase* spr, const DVector2& pos, DVector2* out, double* outz, int heinum, bool render) { auto tex = tileGetTexture(spr->picnum); double width, height, leftofs, topofs; double sloperatio = sqrt(heinum * heinum + 4096 * 4096) * (1. / 4096.); double xrepeat = spr->xrepeat * (1. / 64.); double yrepeat = spr->yrepeat * (1. / 64.); int xo = heinum ? 0 : spr->xoffset; int yo = heinum ? 0 : spr->yoffset; if (render && hw_hightile && TileFiles.tiledata[spr->picnum].hiofs.xsize) { width = TileFiles.tiledata[spr->picnum].hiofs.xsize * xrepeat; height = TileFiles.tiledata[spr->picnum].hiofs.ysize * yrepeat; leftofs = (TileFiles.tiledata[spr->picnum].hiofs.xoffs + xo) * xrepeat; topofs = (TileFiles.tiledata[spr->picnum].hiofs.yoffs + yo) * yrepeat; } else { width = (int)tex->GetDisplayWidth() * xrepeat; height = (int)tex->GetDisplayHeight() * yrepeat; leftofs = ((int)tex->GetDisplayLeftOffset() + xo) * xrepeat; topofs = ((int)tex->GetDisplayTopOffset() + yo) * yrepeat; } if (spr->cstat & CSTAT_SPRITE_XFLIP) leftofs = -leftofs; if (spr->cstat & CSTAT_SPRITE_YFLIP) topofs = -topofs; double sprcenterx = (width * 0.5) + leftofs; double sprcentery = (height * 0.5) + topofs; double cosang = spr->angle.Cos(); double sinang = spr->angle.Sin(); double cosangslope = cosang / sloperatio; double sinangslope = sinang / sloperatio; out[0].X = pos.X + sinang * sprcenterx + cosangslope * sprcentery; out[0].Y = pos.Y + sinangslope * sprcentery - cosang * sprcenterx; out[1].X = out[0].X - sinang * width; out[1].Y = out[0].Y + cosang * width; DVector2 sub = { cosangslope * height, sinangslope * height }; out[2] = out[1] - sub; out[3] = out[0] - sub; if (outz) { if (!heinum) outz[3] = outz[2] = outz[1] = outz[0] = 0; else { for (int i = 0; i < 4; i++) { outz[i] = (sinang * (out[i].Y - pos.Y) + cosang * (out[i].X - pos.X)) * heinum * (1. / 4096); } } } } void GetFlatSpritePosition(DCoreActor* actor, const DVector2& pos, DVector2* out, bool render) { TGetFlatSpritePosition(&actor->spr, pos, out, nullptr, spriteGetSlope(actor), render); } void GetFlatSpritePosition(const tspritetype* spr, const DVector2& pos, DVector2* out, double* outz, bool render) { TGetFlatSpritePosition(spr, pos, out, outz, tspriteGetSlope(spr), render); } //========================================================================== // // checks if the given point is sufficiently close to the given line segment. // //========================================================================== EClose IsCloseToLine(const DVector2& point, const DVector2& start, const DVector2& end, double maxdist) { auto const v1 = start - point; auto const v2 = end - point; // trivially outside the box. if ( ((v1.X < -maxdist) && (v2.X < -maxdist)) || // fully to the left ((v1.Y < -maxdist) && (v2.Y < -maxdist)) || // fully below ((v1.X >= maxdist) && (v2.X >= maxdist)) || // fully to the right ((v1.Y >= maxdist) && (v2.Y >= maxdist))) // fully above return EClose::Outside; auto waldelta = end - start; if (waldelta.X * v1.Y <= waldelta.Y * v1.X) { // is it in front? waldelta.X *= waldelta.X > 0 ? v1.Y + maxdist : v1.Y - maxdist; waldelta.Y *= waldelta.Y > 0 ? v1.X - maxdist : v1.X + maxdist; return waldelta.X > waldelta.Y ? EClose::InFront : EClose::Outside; } else { // or behind? waldelta.X *= waldelta.X > 0 ? v1.Y - maxdist : v1.Y + maxdist; waldelta.Y *= waldelta.Y > 0 ? v1.X + maxdist : v1.X - maxdist; return (waldelta.X <= waldelta.Y) ? EClose::Behind : EClose::Outside; } } EClose IsCloseToWall(const DVector2& point, walltype* wal, double maxdist) { return IsCloseToLine(point, wal->pos, wal->point2Wall()->pos, maxdist); } //========================================================================== // // Check if some walls are set to use rotated textures. // Ideally this should just have been done with texture rotation, // but the effects on the render code would be too severe due to the alignment mess. // //========================================================================== void checkRotatedWalls() { for (auto& w : wall) { if (w.cstat & CSTAT_WALL_ROTATE_90) { int picnum = w.picnum; tileUpdatePicnum(&picnum); auto& tile = RotTile(picnum); if (tile.newtile == -1 && tile.owner == -1) { tile.newtile = TileFiles.tileCreateRotated(picnum); assert(tile.newtile != -1); RotTile(tile.newtile).owner = picnum; } } } } //========================================================================== // // check if two sectors share a wall connection // //========================================================================== bool sectorsConnected(int sect1, int sect2) { for (auto& wal : wallsofsector(sect1)) { if (wal.nextsector == sect2) return true; } return false; } //========================================================================== // // // //========================================================================== void dragpoint(walltype* startwall, int newx, int newy) { vertexscan(startwall, [&](walltype* wal) { wal->movexy(newx, newy); wal->sectorp()->exflags |= SECTOREX_DRAGGED; }); } void dragpoint(walltype* startwall, const DVector2& pos) { vertexscan(startwall, [&](walltype* wal) { wal->move(pos); wal->sectorp()->exflags |= SECTOREX_DRAGGED; }); } //========================================================================== // // // //========================================================================== int inside(double x, double y, const sectortype* sect) { if (sect) { int64_t acc = 1; for (auto& wal : wallsofsector(sect)) { // Perform the checks here in 48.16 fixed point. // Doing it directly with floats and multiplications does not work reliably. // Unfortunately, due to the conversions, this is a bit slower. :( int64_t xs = int64_t(0x10000 * (wal.pos.X - x)); int64_t ys = int64_t(0x10000 * (wal.pos.Y - y)); auto wal2 = wal.point2Wall(); int64_t xe = int64_t(0x10000 * (wal2->pos.X - x)); int64_t ye = int64_t(0x10000 * (wal2->pos.Y - y)); if ((ys ^ ye) < 0) { int64_t val; if ((xs ^ xe) >= 0) val = xs; else val = ((xs * ye) - xe * ys) ^ ye; acc ^= val; } } return acc < 0; } return -1; } //========================================================================== // // find the closest neighboring sector plane in the given direction. // Does not consider slopes, just like the original! // //========================================================================== sectortype* nextsectorneighborzptr(sectortype* sectp, int startz_, int flags) { double startz = startz_ * zinttoworld; double factor = (flags & Find_Up)? -1 : 1; double bestz = INT_MAX; sectortype* bestsec = (flags & Find_Safe)? sectp : nullptr; const auto planez = (flags & Find_Ceiling)? §ortype::ceilingz : §ortype::floorz; startz *= factor; for(auto& wal : wallsofsector(sectp)) { if (wal.twoSided()) { auto nextsec = wal.nextSector(); auto nextz = factor * nextsec->*planez; if (startz < nextz && nextz < bestz) { bestz = nextz; bestsec = nextsec; } } } return bestsec; } //========================================================================== // // // //========================================================================== tspritetype* renderAddTsprite(tspriteArray& tsprites, DCoreActor* actor) { auto tspr = tsprites.newTSprite(); tspr->pos = actor->spr.pos; tspr->cstat = actor->spr.cstat; tspr->picnum = actor->spr.picnum; tspr->shade = actor->spr.shade; tspr->pal = actor->spr.pal; tspr->clipdist = 0; tspr->blend = actor->spr.blend; tspr->xrepeat = actor->spr.xrepeat; tspr->yrepeat = actor->spr.yrepeat; tspr->xoffset = actor->spr.xoffset; tspr->yoffset = actor->spr.yoffset; tspr->sectp = actor->spr.sectp; tspr->statnum = actor->spr.statnum; tspr->angle = actor->spr.angle; tspr->xint = actor->spr.xint; tspr->yint = actor->spr.yint; tspr->inittype = actor->spr.inittype; // not used by tsprites. tspr->lotag = actor->spr.lotag; tspr->hitag = actor->spr.hitag; tspr->extra = actor->spr.extra; tspr->time = actor->time; tspr->cstat2 = actor->spr.cstat2; tspr->ownerActor = actor; // need to copy the slope sprite flag around because for tsprites the bit combination means 'voxel'. if ((tspr->cstat & CSTAT_SPRITE_ALIGNMENT_MASK) == CSTAT_SPRITE_ALIGNMENT_SLOPE) { tspr->cstat &= ~CSTAT_SPRITE_ALIGNMENT_WALL; tspr->clipdist |= TSPR_SLOPESPRITE; } return tspr; } //========================================================================== // // vector serializers // //========================================================================== FSerializer& Serialize(FSerializer& arc, const char* key, vec2_t& c, vec2_t* def) { if (arc.isWriting() && def && !memcmp(&c, def, sizeof(c))) return arc; if (arc.BeginObject(key)) { arc("x", c.X, def ? &def->X : nullptr) ("y", c.Y, def ? &def->Y : nullptr) .EndObject(); } return arc; } FSerializer& Serialize(FSerializer& arc, const char* key, vec3_t& c, vec3_t* def) { if (arc.isWriting() && def && !memcmp(&c, def, sizeof(c))) return arc; if (arc.BeginObject(key)) { arc("x", c.X, def ? &def->X : nullptr) ("y", c.Y, def ? &def->Y : nullptr) ("z", c.Z, def ? &def->Z : nullptr) .EndObject(); } return arc; }