/* /* ** sectorgeometry.cpp ** ** caches the triangle meshes used for rendering sector planes. ** **--------------------------------------------------------------------------- ** Copyright 2021 Christoph Oelckers ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **--------------------------------------------------------------------------- ** ** */ #include "sectorgeometry.h" #include "build.h" #include "gamefuncs.h" #include "texturemanager.h" #include "earcut.hpp" #include "hw_sections2.h" #include "tesselator.h" #include "nodebuilder/nodebuild.h" SectorGeometry sectorGeometry; SectionGeometry sectionGeometry; //========================================================================== // // CalcPlane fixme - this should be stored in the sector, not be recalculated each frame. // //========================================================================== static FVector3 CalcNormal(sectortype* sector, int plane) { FVector3 pt[3]; auto wal = sector->firstWall(); auto wal2 = wal->point2Wall(); pt[0] = { (float)WallStartX(wal), (float)WallStartY(wal), 0 }; pt[1] = { (float)WallEndX(wal), (float)WallEndY(wal), 0 }; PlanesAtPoint(sector, wal->x, wal->y, plane ? &pt[0].Z : nullptr, plane? nullptr : &pt[0].Z); PlanesAtPoint(sector, wal2->x, wal2->y, plane ? &pt[1].Z : nullptr, plane ? nullptr : &pt[1].Z); if (pt[0].X == pt[1].X) { if (pt[0].Y == pt[1].Y) return { 0.f, 0.f, plane ? -1.f : 1.f }; pt[2].X = pt[0].X + 4; pt[2].Y = pt[0].Y; } else { pt[2].X = pt[0].X; pt[2].Y = pt[0].Y + 4; } PlanesAtPoint(sector, pt[2].X * 16, pt[2].Y * 16, plane ? &pt[2].Z : nullptr, plane ? nullptr : &pt[2].Z); auto normal = (pt[2] - pt[0]) ^ (pt[1] - pt[0]); if ((pt[2].Z < 0 && !plane) || (pt[2].Z > 0 && plane)) return -pt[2]; return pt[2]; } //========================================================================== // // The math used here to calculate texture positioning was derived from // Polymer but required several fixes for correctness. // //========================================================================== class UVCalculator { sectortype* sect; int myplane; int stat; float z1; int ix1; int iy1; int ix2; int iy2; float sinalign, cosalign; FGameTexture* tex; float xpanning, ypanning; float xscaled, yscaled; FVector2 offset; public: UVCalculator(sectortype* sec, int plane, FGameTexture* tx, const FVector2& off) { float xpan, ypan; sect = sec; tex = tx; myplane = plane; offset = off; auto firstwall = sec->firstWall(); ix1 = firstwall->x; iy1 = firstwall->y; ix2 = firstwall->point2Wall()->x; iy2 = firstwall->point2Wall()->y; if (plane == 0) { stat = sec->floorstat; xpan = sec->floorxpan_; ypan = sec->floorypan_; PlanesAtPoint(sec, ix1, iy1, nullptr, &z1); } else { stat = sec->ceilingstat; xpan = sec->ceilingxpan_; ypan = sec->ceilingypan_; PlanesAtPoint(sec, ix1, iy1, &z1, nullptr); } DVector2 dv = { double(ix2 - ix1), -double(iy2 - iy1) }; auto vang = dv.Angle() - 90.; cosalign = float(vang.Cos()); sinalign = float(vang.Sin()); int pow2width = 1 << sizeToBits((int)tx->GetDisplayWidth()); int pow2height = 1 << sizeToBits((int)tx->GetDisplayHeight()); xpanning = xpan / 256.f; ypanning = ypan / 256.f; float scalefactor = (stat & CSTAT_SECTOR_TEXHALF) ? 8.0f : 16.0f; if ((stat & (CSTAT_SECTOR_SLOPE | CSTAT_SECTOR_ALIGN)) == (CSTAT_SECTOR_ALIGN)) { // This is necessary to adjust for some imprecisions in the math. // To calculate the inverse Build performs an integer division with significant loss of precision // that can cause the texture to be shifted by multiple pixels. // The code below calculates the amount of this deviation so that it can be added back to the formula. int len = ksqrt(uhypsq(ix2 - ix1, iy2 - iy1)); if (len != 0) { int i = 1048576 / len; scalefactor *= 1048576.f / (i * len); } } xscaled = scalefactor * pow2width; yscaled = scalefactor * pow2height; } FVector2 GetUV(int x, int y, float z) { float tv, tu; if (stat & CSTAT_SECTOR_ALIGN) { float dx = (float)(x - ix1); float dy = (float)(y - iy1); tu = -(dx * sinalign + dy * cosalign); tv = (dx * cosalign - dy * sinalign); if (stat & CSTAT_SECTOR_SLOPE) { float dz = (z - z1) * 16; float newtv = sqrt(tv * tv + dz * dz); tv = tv < 0 ? -newtv : newtv; } } else { tu = x - offset.X; tv = -y - offset.Y; } if (stat & CSTAT_SECTOR_SWAPXY) std::swap(tu, tv); if (stat & CSTAT_SECTOR_XFLIP) tu = -tu; if (stat & CSTAT_SECTOR_YFLIP) tv = -tv; return { tu / xscaled + xpanning, tv / yscaled + ypanning }; } }; enum class ETriangulateResult { Ok = 0, Failed = 1, // unable to triangulate Invalid = 2, // input data invalid. }; //========================================================================== // // Convert the outline to render coordinates. // //========================================================================== static int OutlineToFloat(Outline& outl, FOutline& polygon) { polygon.resize(outl.Size()); unsigned count = 0; for (unsigned i = 0; i < outl.Size(); i++) { polygon[i].resize(outl[i].Size()); count += outl[i].Size(); for (unsigned j = 0; j < outl[i].Size(); j++) { float X = RenderX(outl[i][j].x); float Y = RenderY(outl[i][j].y); if (fabs(X) > 32768.f || fabs(Y) > 32768.f) { // If we get here there's some fuckery going around with the coordinates. Let's better abort and wait for things to realign. // Do not try alternative methods if this happens. return -1; } polygon[i][j] = { X, Y }; } } return count; } //========================================================================== // // Try to triangulate a given outline with Earcut. // //========================================================================== ETriangulateResult TriangulateOutlineEarcut(const FOutline& polygon, int count, TArray& points, TArray& indicesOut) { // Sections are already validated so we can assume that the data is well defined here. auto indices = mapbox::earcut(polygon); size_t numtriangles = count + (polygon.size() - 1) * 2 - 2; // accout for the extra connections needed to turn the polygon into s single loop. if (indices.size() < numtriangles * 3) { // this means that full triangulation failed. return ETriangulateResult::Failed; } points.Resize(count); int p = 0; for (size_t a = 0; a < polygon.size(); a++) { for (auto& pt : polygon[a]) { points[p++] = { pt.first, pt.second }; } } indicesOut.Resize((unsigned)indices.size()); for (unsigned i = 0; i < indices.size(); i++) { indicesOut[i] = indices[i]; } return ETriangulateResult::Ok; } //========================================================================== // // Try to triangulate a given outline with libtess2. // //========================================================================== FMemArena tessArena(100000); ETriangulateResult TriangulateOutlineLibtess(const FOutline& polygon, int count, TArray& points, TArray& indicesOut) { tessArena.FreeAll(); auto poolAlloc = [](void* userData, unsigned int size) -> void* { FMemArena* pool = (FMemArena*)userData; return pool->Alloc(size); }; auto poolFree = [](void*, void*) { }; TESSalloc ma{}; ma.memalloc = poolAlloc; ma.memfree = poolFree; ma.userData = (void*)&tessArena; ma.extraVertices = 256; // realloc not provided, allow 256 extra vertices. auto tess = tessNewTess(&ma); if (!tess) return ETriangulateResult::Failed; tessSetOption(tess, TESS_CONSTRAINED_DELAUNAY_TRIANGULATION, 0); tessSetOption(tess, TESS_REVERSE_CONTOURS, 1); // Add contours. for (auto& loop : polygon) tessAddContour(tess, 2, &loop.data()->first, (int)sizeof(*loop.data()), (int)loop.size()); int result = tessTesselate(tess, TESS_WINDING_POSITIVE, TESS_POLYGONS, 3, 2, nullptr); if (!result) { tessDeleteTess(tess); return ETriangulateResult::Failed; } const float* verts = tessGetVertices(tess); const int* vinds = tessGetVertexIndices(tess); const int* elems = tessGetElements(tess); const int nverts = tessGetVertexCount(tess); const int nelems = tessGetElementCount(tess) * 3; // an 'element' here is a full triangle, not a single vertex like in OpenGL... points.Resize(nverts); indicesOut.Resize(nelems); for (int i = 0; i < nverts; i++) { points[i] = { verts[i * 2], verts[i * 2 + 1] }; } for (int i = 0; i < nelems; i++) { indicesOut[i] = elems[i]; } return ETriangulateResult::Ok; } //========================================================================== // // Try to triangulate a given outline with the ZDoom node builder. // //========================================================================== #if 0 ETriangulateResult TriangulateOutlineNodeBuild(const FOutline& polygon, int count, TArray& points, TArray& indicesOut) { TArray vertexes(count, true); TArray lines(count, true); TArray sides(count, true); sectortype dummy; int n = 0; for (size_t i = 0; i < polygon.size(); i++) { int firstn = n; for (size_t j = 0; j < polygon[i].size(); i++) { vertexes[n].set(polygon[i][j].first, polygon[i][j].second); lines[n].backsector = nullptr; lines[n].frontsector = &dummy; lines[n].linenum = (int)j; lines[n].wallnum = n; lines[n].sidedef[0] = &sides[n]; lines[n].sidedef[1] = nullptr; lines[n].v1 = &vertexes[n]; lines[n].v2 = j == polygon[i].size() ? &vertexes[firstn] : &vertexes[n + 1]; sides[n].sidenum = n; sides[n].sector = &dummy; } } FNodeBuilder::FLevel leveldata = { &vertexes[0], count, &sides[0], count, &lines[0], count, 0, 0, 0, 0 }; leveldata.FindMapBounds(); FNodeBuilder builder(leveldata); FLevelLocals Level; builder.Extract(Level); points.Resize(Level.vertexes.Size()); for (unsigned i = 0; i < Level.vertexes.Size(); i++) { points[i] = { (float)Level.vertexes[i].fX(), (float)Level.vertexes[i].fY() }; } indicesOut.Clear(); for (auto& sub : Level.subsectors) { if (sub.numlines <= 2) continue; auto v0 = Level.vertexes.IndexOf(sub.firstline->v1); for (unsigned i = 1; i < sub.numlines - 1; i++) { auto v1 = Level.vertexes.IndexOf(sub.firstline->v1); auto v2 = Level.vertexes.IndexOf(sub.firstline->v2); indicesOut.Push(v0); indicesOut.Push(v1); indicesOut.Push(v2); } } return ETriangulateResult::Ok; } #endif //========================================================================== // // // //========================================================================== bool SectionGeometry::ValidateSection(Section2* section, int plane) { auto sec = section->sector; auto& sdata = data[section->index]; auto compare = &sdata.compare[plane]; if (plane == 0) { if (sec->floorheinum == compare->floorheinum && sec->floorpicnum == compare->floorpicnum && ((sec->floorstat ^ compare->floorstat) & (CSTAT_SECTOR_ALIGN | CSTAT_SECTOR_YFLIP | CSTAT_SECTOR_XFLIP | CSTAT_SECTOR_TEXHALF | CSTAT_SECTOR_SWAPXY)) == 0 && sec->floorxpan_ == compare->floorxpan_ && sec->floorypan_ == compare->floorypan_ && sec->firstWall()->pos == sdata.poscompare[0] && sec->firstWall()->point2Wall()->pos == sdata.poscompare2[0] && !(section->dirty & EDirty::FloorDirty) && sdata.planes[plane].vertices.Size() ) return true; section->dirty &= EDirty::FloorDirty; } else { if (sec->ceilingheinum == compare->ceilingheinum && sec->ceilingpicnum == compare->ceilingpicnum && ((sec->ceilingstat ^ compare->ceilingstat) & (CSTAT_SECTOR_ALIGN | CSTAT_SECTOR_YFLIP | CSTAT_SECTOR_XFLIP | CSTAT_SECTOR_TEXHALF | CSTAT_SECTOR_SWAPXY)) == 0 && sec->ceilingxpan_ == compare->ceilingxpan_ && sec->ceilingypan_ == compare->ceilingypan_ && sec->firstWall()->pos == sdata.poscompare[1] && sec->firstWall()->point2Wall()->pos == sdata.poscompare2[1] && !(section->dirty & EDirty::CeilingDirty) && sdata.planes[1].vertices.Size()) return true; section->dirty &= ~EDirty::CeilingDirty; } *compare = *sec; sdata.poscompare[plane] = sec->firstWall()->pos; sdata.poscompare2[plane] = sec->firstWall()->point2Wall()->pos; return false; } //========================================================================== // // // //========================================================================== bool SectionGeometry::CreateMesh(Section2* section) { auto outline = BuildOutline(section); FOutline foutline; int count = OutlineToFloat(outline, foutline); if (count == -1) return false; // gotta wait... TArray meshVertices; TArray meshIndices; ETriangulateResult result = ETriangulateResult::Failed; auto& sdata = data[section->index]; if (!(section->flags & NoEarcut)) { result = TriangulateOutlineEarcut(foutline, count, sdata.meshVertices, sdata.meshIndices); } if (result == ETriangulateResult::Failed && !(section->geomflags & NoLibtess)) { section->geomflags |= NoEarcut; result = TriangulateOutlineLibtess(foutline, count, sdata.meshVertices, sdata.meshIndices); } #if 0 if (result == ETriangulateResult::Failed) { section->geomflags |= NoLibtess; result = TriangulateOutlineNodeBuild(foutline, count, sdata.meshVertices, meshIndices); } #endif section->dirty &= ~EDirty::GeometryDirty; return true; } //========================================================================== // // assumes that the geometry has already been validated. // //========================================================================== void SectionGeometry::CreatePlaneMesh(Section2* section, int plane, const FVector2& offset) { auto sectorp = section->sector; // calculate the rest. auto texture = tileGetTexture(plane ? sectorp->ceilingpicnum : sectorp->floorpicnum); auto& sdata = data[section->index]; auto& entry = sdata.planes[plane]; int fz = sectorp->floorz, cz = sectorp->ceilingz; sectorp->floorz = sectorp->ceilingz = 0; UVCalculator uvcalc(sectorp, plane, texture, offset); entry.vertices.Resize(sdata.meshVertices.Size()); entry.texcoords.Resize(entry.vertices.Size()); for (unsigned i = 0; i < entry.vertices.Size(); i++) { auto& org = sdata.meshVertices[i]; auto& pt = entry.vertices[i]; auto& tc = entry.texcoords[i]; pt.X = org.X; pt.Y = org.Y; PlanesAtPoint(sectorp, (pt.X * 16), (pt.Y * -16), plane ? &pt.Z : nullptr, !plane ? &pt.Z : nullptr); tc = uvcalc.GetUV(int(pt.X * 16.), int(pt.Y * -16.), pt.Z); } entry.normal = CalcNormal(sectorp, plane); sectorp->floorz = fz; sectorp->ceilingz = cz; } //========================================================================== // // // //========================================================================== void SectionGeometry::MarkDirty(sectortype* sector) { for (auto section : sections2PerSector[sectnum(sector)]) { section->dirty = sector->dirty; } sector->dirty = 0; } //========================================================================== // // // //========================================================================== SectionGeometryPlane* SectionGeometry::get(Section2* section, int plane, const FVector2& offset, TArray** pIndices) { if (!section || section->index >= data.Size()) return nullptr; auto sectp = section->sector; if (sectp->dirty) MarkDirty(sectp); if (section->dirty & EDirty::GeometryDirty) { bool res = CreateMesh(section); if (!res) { section->dirty &= ~EDirty::GeometryDirty; // sector is in an invalid state, so pretend the old setup is still valid. Happens in some SW maps. } } if (!ValidateSection(section, plane)) { CreatePlaneMesh(section, plane, offset); } *pIndices = &data[section->index].meshIndices; return &data[section->index].planes[plane]; }