#pragma once #include "gamecontrol.h" #include "gamestruct.h" #include "build.h" #include "coreactor.h" #include "intrect.h" #include "geometry.h" #include "c_cvars.h" extern IntRect viewport3d; EXTERN_CVAR(Bool, hw_hightile) EXTERN_CVAR(Bool, hw_models) EXTERN_CVAR(Float, gl_texture_filter_anisotropic) EXTERN_CVAR(Int, gl_texture_filter) extern bool hw_int_useindexedcolortextures; EXTERN_CVAR(Bool, hw_useindexedcolortextures) EXTERN_CVAR(Bool, r_voxels) inline int leveltimer; inline int Numsprites; inline int display_mirror; inline int randomseed; inline int g_visibility = 512, g_relvisibility = 0; constexpr int SLOPEVAL_FACTOR = 4096; enum { CLIPMASK0 = (1 << 16) + 1, CLIPMASK1 = (256 << 16) + 64 }; //========================================================================== // // breadth first search, this gets used multiple times throughout the engine, mainly for iterating over sectors. // Only works on indices, this has no knowledge of the actual objects being looked at. // All objects of this type operate on the same shared store. Interleaved use is not allowed, nested use is fine. // //========================================================================== class BFSSearch { static inline TArray store; unsigned bitpos; unsigned startpos; unsigned curpos; public: enum { EOL = ~0u }; BFSSearch(unsigned datasize, unsigned startnode) { bitpos = store.Size(); unsigned bitsize = (datasize + 31) >> 5; store.Reserve(bitsize); memset(&store[bitpos], 0, bitsize*4); startpos = store.Size(); curpos = startpos; Set(startnode); store.Push(startnode); } // This allows this object to just work as a bit array // which is useful for using its shared storage. BFSSearch(unsigned datasize) { bitpos = store.Size(); unsigned bitsize = (datasize + 31) >> 5; store.Reserve(bitsize); memset(&store[bitpos], 0, bitsize * 4); } ~BFSSearch() { store.Clamp(bitpos); } bool Check(unsigned index) const { return !!(store[bitpos + (index >> 5)] & (1 << (index & 31))); } void Set(unsigned index) { store[bitpos + (index >> 5)] |= (1 << (index & 31)); } private: public: unsigned GetNext() { curpos++; if (curpos <= store.Size()) return store[curpos-1]; else return ~0; } void Rewind() { curpos = startpos; } void Add(unsigned elem) { if (!Check(elem)) { Set(elem); store.Push(elem); } } }; class BFSSectorSearch : public BFSSearch { public: BFSSectorSearch(const sectortype* startnode) : BFSSearch(sector.Size(), sector.IndexOf(startnode)) { } bool Check(const sectortype* index) const { return BFSSearch::Check(sector.IndexOf(index)); } void Set(const sectortype* index) { BFSSearch::Set(sector.IndexOf(index)); } sectortype* GetNext() { unsigned ret = BFSSearch::GetNext(); return ret == EOL? nullptr : §or[ret]; } void Add(sectortype* elem) { BFSSearch::Add(sector.IndexOf(elem)); } }; //========================================================================== // // scans all vertices equivalent with a given spot and performs some work on them. // //========================================================================== template void vertexscan(walltype* startwall, func mark) { BFSSearch walbitmap(wall.Size()); // first pass: scan the the next-in-loop of the partner auto wal = startwall; do { mark(wal); walbitmap.Set(wall.IndexOf(wal)); if (wal->nextwall < 0) break; wal = wal->nextWall()->point2Wall(); } while (!walbitmap.Check(wall.IndexOf(wal))); // second pass: scan the partner of the previous-in-loop. wal = startwall; while (true) { auto thelastwall = wal->lastWall(); // thelastwall can be null here if the map is bogus. if (!thelastwall || thelastwall->nextwall < 0) break; wal = thelastwall->nextWall(); if (walbitmap.Check(wall.IndexOf(wal))) break; mark(wal); walbitmap.Set(wall.IndexOf(wal)); } } //========================================================================== // // // //========================================================================== inline void dragpoint(walltype* startwall, const DVector2& pos) { vertexscan(startwall, [&](walltype* wal) { wal->move(pos); wal->sectorp()->exflags |= SECTOREX_DRAGGED; }); } //--------------------------------------------------------------------------- // // Constants used for Build sine/cosine functions. // //--------------------------------------------------------------------------- enum { BAMBITS = 21, BAMUNIT = 1 << BAMBITS, }; constexpr double BAngRadian = pi::pi() * (1. / 1024.); constexpr double BAngToDegree = 360. / 2048.; constexpr DAngle DAngleBuildToDeg = DAngle::fromDeg(BAngToDegree); //--------------------------------------------------------------------------- // // Build sine inline functions. // //--------------------------------------------------------------------------- inline int bsin(const int ang) { return int(g_sinbam(ang * BAMUNIT) * 16384); } //--------------------------------------------------------------------------- // // Build cosine inline functions. // //--------------------------------------------------------------------------- inline int bcos(const int ang) { return int(g_cosbam(ang * BAMUNIT) * 16384); } //--------------------------------------------------------------------------- // // // //--------------------------------------------------------------------------- extern double cameradist, cameraclock; void loaddefinitionsfile(const char* fn, bool cumulative = false, bool maingrp = false); bool calcChaseCamPos(DVector3& ppos, DCoreActor* pspr, sectortype** psectnum, DAngle ang, DAngle horiz, double const interpfrac, double const backamp); int getslopeval(sectortype* sect, const DVector3& pos, double bazez); bool cansee(const DVector3& start, sectortype* sect1, const DVector3& end, sectortype* sect2); double intersectSprite(DCoreActor* actor, const DVector3& start, const DVector3& direction, DVector3& result, double maxfactor); double intersectWallSprite(DCoreActor* actor, const DVector3& start, const DVector3& direction, DVector3& result, double maxfactor, bool checktex = false); double intersectFloorSprite(DCoreActor* actor, const DVector3& start, const DVector3& direction, DVector3& result, double maxfactor); double intersectSlopeSprite(DCoreActor* actor, const DVector3& start, const DVector3& direction, DVector3& result, double maxfactor); double checkWallHit(walltype* wal, EWallFlags flagmask, const DVector3& start, const DVector3& direction, DVector3& result, double maxfactor); double checkSectorPlaneHit(sectortype* sec, const DVector3& start, const DVector3& direction, DVector3& result, double maxfactor); void neartag(const DVector3& start, sectortype* sect, DAngle angle, HitInfoBase& result, double neartagrange, int tagsearch); int testpointinquad(const DVector2& pt, const DVector2* quad); int hitscan(const DVector3& start, const sectortype* startsect, const DVector3& vect, HitInfoBase& hitinfo, unsigned cliptype, double maxrange = -1); bool checkRangeOfWall(walltype* wal, EWallFlags flagmask, const DVector3& pos, double maxdist, double* theZs); bool checkRangeOfFaceSprite(DCoreActor* itActor, const DVector3& pos, double maxdist, double* theZs); bool checkRangeOfWallSprite(DCoreActor* itActor, const DVector3& pos, double maxdist, double* theZs); bool checkRangeOfFloorSprite(DCoreActor* itActor, const DVector3& pos, double maxdist, double& theZ); void getzrange(const DVector3& pos, sectortype* sect, double* ceilz, CollisionBase& ceilhit, double* florz, CollisionBase& florhit, double walldist, uint32_t cliptype); void setWallSectors(); void GetWallSpritePosition(const spritetypebase* spr, const DVector2& pos, DVector2* out, bool render = false); void GetFlatSpritePosition(DCoreActor* spr, const DVector2& pos, DVector2* out, double* outz = nullptr, bool render = false); void GetFlatSpritePosition(const tspritetype* spr, const DVector2& pos, DVector2* out, double* outz, bool render = false); enum class EClose { Outside, InFront, Behind }; EClose IsCloseToLine(const DVector2& vect, const DVector2& start, const DVector2& end, double walldist); EClose IsCloseToWall(const DVector2& vect, walltype* wal, double walldist); void checkRotatedWalls(); bool sectorsConnected(int sect1, int sect2); int32_t inside(double x, double y, const sectortype* sect); int insidePoly(double x, double y, const DVector2* points, int count); enum { NT_Lotag = 1, NT_Hitag = 2, NT_NoSpriteCheck = 4 }; //========================================================================== // // slope getter stuff (many wrappers, one worker only) // //========================================================================== void calcSlope(const sectortype* sec, double xpos, double ypos, double* pceilz, double* pflorz); //========================================================================== // // for the renderer // //========================================================================== inline void PlanesAtPoint(const sectortype* sec, float dax, float day, float* pceilz, float* pflorz) { double f, c; calcSlope(sec, dax, day, &c, &f); if (pceilz) *pceilz = -float(c); if (pflorz) *pflorz = -float(f); } // only used by clipmove et.al. void getcorrectzsofslope(int sectnum, int dax, int day, double* ceilz, double* florz); //========================================================================== // // for the game engine // //========================================================================== inline void getzsofslopeptr(const sectortype* sec, double dax, double day, double* ceilz, double* florz) { calcSlope(sec, dax, day, ceilz, florz); } template inline void getzsofslopeptr(const sectortype* sec, const Vector& pos, double* ceilz, double* florz) { calcSlope(sec, pos.X, pos.Y, ceilz, florz); } inline double getceilzofslopeptr(const sectortype* sec, double dax, double day) { double c; calcSlope(sec, dax, day, &c, nullptr); return c; } inline double getflorzofslopeptr(const sectortype* sec, double dax, double day) { double f; calcSlope(sec, dax, day, nullptr, &f); return f; } template inline double getceilzofslopeptr(const sectortype* sec, const Vector& pos) { return getceilzofslopeptr(sec, pos.X, pos.Y); } template inline double getflorzofslopeptr(const sectortype* sec, const Vector& pos) { return getflorzofslopeptr(sec, pos.X, pos.Y); } //========================================================================== // // slope setters // //========================================================================== inline void alignceilslope(sectortype* sect, const DVector3& pos) { sect->setceilingslope(getslopeval(sect, pos, sect->ceilingz)); } inline void alignflorslope(sectortype* sect, const DVector3& pos) { sect->setfloorslope(getslopeval(sect, pos, sect->floorz)); } //========================================================================== // // slope sprites // //========================================================================== inline void spriteSetSlope(DCoreActor* actor, int heinum) { if (actor->spr.cstat & CSTAT_SPRITE_ALIGNMENT_FLOOR) { actor->spr.xoffset = heinum & 255; actor->spr.yoffset = (heinum >> 8) & 255; actor->spr.cstat = (actor->spr.cstat & ~CSTAT_SPRITE_ALIGNMENT_MASK) | (heinum != 0 ? CSTAT_SPRITE_ALIGNMENT_SLOPE : CSTAT_SPRITE_ALIGNMENT_FLOOR); } } inline int spriteGetSlope(DCoreActor* actor) { return ((actor->spr.cstat & CSTAT_SPRITE_ALIGNMENT_MASK) != CSTAT_SPRITE_ALIGNMENT_SLOPE) ? 0 : uint8_t(actor->spr.xoffset) + (int8_t(actor->spr.yoffset) << 8); } // same stuff, different flag... inline int tspriteGetSlope(const tspritetype* spr) { return !(spr->clipdist & TSPR_SLOPESPRITE) ? 0 : uint8_t(spr->xoffset) + (int8_t(spr->yoffset) << 8); } inline double spriteGetZOfSlopef(const spritetypebase* tspr, const DVector2& pos, int heinum) { if (heinum == 0) return tspr->pos.Z; return tspr->pos.Z + heinum * -tspr->angle.ToVector().dot(pos - tspr->pos.XY()) * (1. / SLOPEVAL_FACTOR); } //========================================================================== // // end of slopes // //========================================================================== enum EFindNextSector { Find_Floor = 0, Find_Ceiling = 1, Find_Down = 0, Find_Up = 2, Find_Safe = 4, Find_CeilingUp = Find_Ceiling | Find_Up, Find_CeilingDown = Find_Ceiling | Find_Down, Find_FloorUp = Find_Floor | Find_Up, Find_FloorDown = Find_Floor | Find_Down, }; sectortype* nextsectorneighborzptr(sectortype* sectp, double startz, int flags); bool isAwayFromWall(DCoreActor* ac, double delta); // important note: This returns positive for 'in front' with renderer coordinates. // Due to Build's inverted coordinate system it will return negative for 'in front' there. inline double PointOnLineSide(const DVector2 &pos, const walltype *line) { return (pos.X - line->pos.X) * line->delta().Y - (pos.Y - line->pos.Y) * line->delta().X; } extern int numshades; // Return type is int because this gets passed to variadic functions where structs may produce undefined behavior. inline int shadeToLight(int shade) { shade = clamp(shade, 0, numshades - 1); int light = Scale(numshades - 1 - shade, 255, numshades - 1); return PalEntry(255, light, light, light); } inline void copyfloorpal(tspritetype* spr, const sectortype* sect) { if (!lookups.noFloorPal(sect->floorpal)) spr->pal = sect->floorpal; } inline int I_GetBuildTime() { return I_GetTime(120); } inline TArrayView wallsofsector(const sectortype* sec) { return TArrayView(sec->firstWall(), sec->wallnum); } inline TArrayView wallsofsector(int sec) { return wallsofsector(§or[sec]); } // these are mainly meant as refactoring aids to mark function calls to work on. inline int wallnum(const walltype* wal) { return wall.IndexOf(wal); } inline int sectnum(const sectortype* sect) { return sector.IndexOf(sect); } inline DVector2 NearestPointOnWall(double px, double py, const walltype* wal, bool clamp = true) { return NearestPointOnLine(px, py, wal->pos.X, wal->pos.Y, wal->point2Wall()->pos.X, wal->point2Wall()->pos.Y, clamp); } inline double SquareDistToWall(double px, double py, const walltype* wal, DVector2* point = nullptr) { auto pt = NearestPointOnWall(px, py, wal); if (point) *point = pt; return SquareDist(px, py, pt.X, pt.Y); } double SquareDistToSector(double px, double py, const sectortype* sect, DVector2* point = nullptr); inline double GetRayIntersect(const DVector3& start1, const DVector3& vect1, const DVector2& start2, const DVector2& vect2, DVector3& retv) { double factor2; double factor = InterceptLineSegments(start1.X, start1.Y, vect1.X, vect1.Y, start2.X, start2.Y, vect2.X, vect2.Y, &factor2); if (factor <= 0) return -1; retv = start1 + factor * vect1; return factor2; } inline double BobVal(int val) { return g_sinbam((unsigned)val << 21); } inline double BobVal(double val) { return g_sinbam(xs_CRoundToUInt(val * (1 << 21))); } inline DAngle GetMinPitch() { return !cl_clampedpitch ? DAngle90 : gi->playerPitchMin(); } inline DAngle GetMaxPitch() { return !cl_clampedpitch ? -DAngle90 : gi->playerPitchMax(); } inline DAngle ClampViewPitch(const DAngle pitch) { return clamp(pitch, GetMaxPitch(), GetMinPitch()); } //========================================================================== // // old deprecated integer versions // //========================================================================== [[deprecated]] inline int int_getceilzofslopeptr(const sectortype* sec, int dax, int day) { double z; calcSlope(sec, dax * inttoworld, day * inttoworld, &z, nullptr); return int(z * zworldtoint); } [[deprecated]] inline int int_getflorzofslopeptr(const sectortype* sec, int dax, int day) { double z; calcSlope(sec, dax * inttoworld, day * inttoworld, nullptr, &z); return int(z * zworldtoint); } [[deprecated]] inline void int_getzsofslopeptr(const sectortype* sec, int dax, int day, int* ceilz, int* florz) { double c, f; calcSlope(sec, dax * inttoworld, day * inttoworld, &c, &f); *ceilz = int(c * zworldtoint); *florz = int(f * zworldtoint); } [[deprecated]] inline int rintersect(int x1, int y1, int z1, int vx, int vy, int vz, int x3, int y3, int x4, int y4, int* intx, int* inty, int* intz) { DVector3 retv; double result = GetRayIntersect(DVector3(x1 * inttoworld, y1 * inttoworld, z1 * zinttoworld), DVector3(vx * inttoworld, vy * inttoworld, vz * zinttoworld), DVector2(x3 * inttoworld, y3 * inttoworld), DVector2((x4 - x3) * inttoworld, (y4 - y3) * inttoworld), retv); if (result < 0) return -1; *intx = int(retv.X * worldtoint); *inty = int(retv.Y * worldtoint); *intz = int(retv.Z * zworldtoint); return FloatToFixed(result); } [[deprecated]] inline int cansee(int x1, int y1, int z1, sectortype* sect1, int x2, int y2, int z2, sectortype* sect2) { return cansee(DVector3(x1 * inttoworld, y1 * inttoworld, z1 * zinttoworld), sect1, DVector3(x2 * inttoworld, y2 * inttoworld, z2 * zinttoworld), sect2); } [[deprecated]] inline int inside(int x, int y, const sectortype* sect) { return inside(x * inttoworld, y * inttoworld, sect); } // still needed by some parts in the engine. [[deprecated]] inline int inside_p(int x, int y, int sectnum) { return (sectnum >= 0 && inside(x * inttoworld, y * inttoworld, §or[sectnum]) == 1); } #include "updatesector.h"