// **************************************************************************** // * This file is part of the xBRZ project. It is distributed under * // * GNU General Public License: https://www.gnu.org/licenses/gpl-3.0 * // * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved * // * * // * Additionally and as a special exception, the author gives permission * // * to link the code of this program with the following libraries * // * (or with modified versions that use the same licenses), and distribute * // * linked combinations including the two: MAME, FreeFileSync, Snes9x, ePSXe * // * You must obey the GNU General Public License in all respects for all of * // * the code used other than MAME, FreeFileSync, Snes9x, ePSXe. * // * If you modify this file, you may extend this exception to your version * // * of the file, but you are not obligated to do so. If you do not wish to * // * do so, delete this exception statement from your version. * // **************************************************************************** #ifndef XBRZ_TOOLS_H_825480175091875 #define XBRZ_TOOLS_H_825480175091875 #include #include #include namespace xbrz { template inline unsigned char getByte(uint32_t val) { return static_cast((val >> (8 * N)) & 0xff); } inline unsigned char getAlpha(uint32_t pix) { return getByte<3>(pix); } inline unsigned char getRed (uint32_t pix) { return getByte<2>(pix); } inline unsigned char getGreen(uint32_t pix) { return getByte<1>(pix); } inline unsigned char getBlue (uint32_t pix) { return getByte<0>(pix); } inline uint32_t makePixel(unsigned char a, unsigned char r, unsigned char g, unsigned char b) { return (a << 24) | (r << 16) | (g << 8) | b; } inline uint32_t makePixel( unsigned char r, unsigned char g, unsigned char b) { return (r << 16) | (g << 8) | b; } inline uint32_t rgb555to888(uint16_t pix) { return ((pix & 0x7C00) << 9) | ((pix & 0x03E0) << 6) | ((pix & 0x001F) << 3); } inline uint32_t rgb565to888(uint16_t pix) { return ((pix & 0xF800) << 8) | ((pix & 0x07E0) << 5) | ((pix & 0x001F) << 3); } inline uint16_t rgb888to555(uint32_t pix) { return static_cast(((pix & 0xF80000) >> 9) | ((pix & 0x00F800) >> 6) | ((pix & 0x0000F8) >> 3)); } inline uint16_t rgb888to565(uint32_t pix) { return static_cast(((pix & 0xF80000) >> 8) | ((pix & 0x00FC00) >> 5) | ((pix & 0x0000F8) >> 3)); } template inline Pix* byteAdvance(Pix* ptr, int bytes) { using PixNonConst = typename std::remove_cv::type; using PixByte = typename std::conditional::value, char, const char>::type; static_assert(std::is_integral::value, "Pix* is expected to be cast-able to char*"); return reinterpret_cast(reinterpret_cast(ptr) + bytes); } //fill block with the given color template inline void fillBlock(Pix* trg, int pitch /*[bytes]*/, Pix col, int blockWidth, int blockHeight) { //for (int y = 0; y < blockHeight; ++y, trg = byteAdvance(trg, pitch)) // std::fill(trg, trg + blockWidth, col); for (int y = 0; y < blockHeight; ++y, trg = byteAdvance(trg, pitch)) for (int x = 0; x < blockWidth; ++x) trg[x] = col; } //nearest-neighbor (going over target image - slow for upscaling, since source is read multiple times missing out on cache! Fast for similar image sizes!) template void nearestNeighborScale(const PixSrc* src, int srcWidth, int srcHeight, int srcPitch /*[bytes]*/, /**/ PixTrg* trg, int trgWidth, int trgHeight, int trgPitch /*[bytes]*/, int yFirst, int yLast, PixConverter pixCvrt /*convert PixSrc to PixTrg*/) { static_assert(std::is_integral::value, "PixSrc* is expected to be cast-able to char*"); static_assert(std::is_integral::value, "PixTrg* is expected to be cast-able to char*"); static_assert(std::is_same::value, "PixConverter returning wrong pixel format"); if (srcPitch < srcWidth * static_cast(sizeof(PixSrc)) || trgPitch < trgWidth * static_cast(sizeof(PixTrg))) { assert(false); return; } yFirst = std::max(yFirst, 0); yLast = std::min(yLast, trgHeight); if (yFirst >= yLast || srcHeight <= 0 || srcWidth <= 0) return; for (int y = yFirst; y < yLast; ++y) { const int ySrc = srcHeight * y / trgHeight; const PixSrc* const srcLine = byteAdvance(src, ySrc * srcPitch); PixTrg* const trgLine = byteAdvance(trg, y * trgPitch); for (int x = 0; x < trgWidth; ++x) { const int xSrc = srcWidth * x / trgWidth; trgLine[x] = pixCvrt(srcLine[xSrc]); } } } //nearest-neighbor (going over source image - fast for upscaling, since source is read only once template void nearestNeighborScaleOverSource(const PixSrc* src, int srcWidth, int srcHeight, int srcPitch /*[bytes]*/, /**/ PixTrg* trg, int trgWidth, int trgHeight, int trgPitch /*[bytes]*/, int yFirst, int yLast, PixConverter pixCvrt /*convert PixSrc to PixTrg*/) { static_assert(std::is_integral::value, "PixSrc* is expected to be cast-able to char*"); static_assert(std::is_integral::value, "PixTrg* is expected to be cast-able to char*"); static_assert(std::is_same::value, "PixConverter returning wrong pixel format"); if (srcPitch < srcWidth * static_cast(sizeof(PixSrc)) || trgPitch < trgWidth * static_cast(sizeof(PixTrg))) { assert(false); return; } yFirst = std::max(yFirst, 0); yLast = std::min(yLast, srcHeight); if (yFirst >= yLast || trgWidth <= 0 || trgHeight <= 0) return; for (int y = yFirst; y < yLast; ++y) { //mathematically: ySrc = floor(srcHeight * yTrg / trgHeight) // => search for integers in: [ySrc, ySrc + 1) * trgHeight / srcHeight //keep within for loop to support MT input slices! const int yTrgFirst = ( y * trgHeight + srcHeight - 1) / srcHeight; //=ceil(y * trgHeight / srcHeight) const int yTrgLast = ((y + 1) * trgHeight + srcHeight - 1) / srcHeight; //=ceil(((y + 1) * trgHeight) / srcHeight) const int blockHeight = yTrgLast - yTrgFirst; if (blockHeight > 0) { const PixSrc* srcLine = byteAdvance(src, y * srcPitch); /**/ PixTrg* trgLine = byteAdvance(trg, yTrgFirst * trgPitch); int xTrgFirst = 0; for (int x = 0; x < srcWidth; ++x) { const int xTrgLast = ((x + 1) * trgWidth + srcWidth - 1) / srcWidth; const int blockWidth = xTrgLast - xTrgFirst; if (blockWidth > 0) { xTrgFirst = xTrgLast; const auto trgPix = pixCvrt(srcLine[x]); fillBlock(trgLine, trgPitch, trgPix, blockWidth, blockHeight); trgLine += blockWidth; } } } } } template void bilinearScale(const uint32_t* src, int srcWidth, int srcHeight, int srcPitch, /**/ PixTrg* trg, int trgWidth, int trgHeight, int trgPitch, int yFirst, int yLast, PixConverter pixCvrt /*convert uint32_t to PixTrg*/) { static_assert(std::is_integral::value, "PixTrg* is expected to be cast-able to char*"); static_assert(std::is_same::value, "PixConverter returning wrong pixel format"); if (srcPitch < srcWidth * static_cast(sizeof(uint32_t)) || trgPitch < trgWidth * static_cast(sizeof(PixTrg))) { assert(false); return; } yFirst = std::max(yFirst, 0); yLast = std::min(yLast, trgHeight); if (yFirst >= yLast || srcHeight <= 0 || srcWidth <= 0) return; const double scaleX = static_cast(trgWidth ) / srcWidth; const double scaleY = static_cast(trgHeight) / srcHeight; //perf notes: // -> double-based calculation is (slightly) faster than float // -> pre-calculation gives significant boost; std::vector<> memory allocation is negligible! struct CoeffsX { int x1 = 0; int x2 = 0; double xx1 = 0; double x2x = 0; }; std::vector buf(trgWidth); for (int x = 0; x < trgWidth; ++x) { const int x1 = srcWidth * x / trgWidth; int x2 = x1 + 1; if (x2 == srcWidth) --x2; const double xx1 = x / scaleX - x1; const double x2x = 1 - xx1; CoeffsX& bx = buf[x]; bx.x1 = x1; bx.x2 = x2; bx.xx1 = xx1; bx.x2x = x2x; } for (int y = yFirst; y < yLast; ++y) { const int y1 = srcHeight * y / trgHeight; int y2 = y1 + 1; if (y2 == srcHeight) --y2; const double yy1 = y / scaleY - y1; const double y2y = 1 - yy1; const uint32_t* const srcLine = byteAdvance(src, y1 * srcPitch); const uint32_t* const srcLineNext = byteAdvance(src, y2 * srcPitch); PixTrg* const trgLine = byteAdvance(trg, y * trgPitch); for (int x = 0; x < trgWidth; ++x) { //perf: do NOT "simplify" the variable layout without measurement! const int x1 = buf[x].x1; const int x2 = buf[x].x2; const double xx1 = buf[x].xx1; const double x2x = buf[x].x2x; const double x2xy2y = x2x * y2y; const double xx1y2y = xx1 * y2y; const double x2xyy1 = x2x * yy1; const double xx1yy1 = xx1 * yy1; auto interpolate = [=](int offset) -> double { /* https://en.wikipedia.org/wiki/Bilinear_interpolation (c11(x2 - x) + c21(x - x1)) * (y2 - y ) + (c12(x2 - x) + c22(x - x1)) * (y - y1) */ const auto c11 = (srcLine [x1] >> (8 * offset)) & 0xff; const auto c21 = (srcLine [x2] >> (8 * offset)) & 0xff; const auto c12 = (srcLineNext[x1] >> (8 * offset)) & 0xff; const auto c22 = (srcLineNext[x2] >> (8 * offset)) & 0xff; return c11 * x2xy2y + c21 * xx1y2y + c12 * x2xyy1 + c22 * xx1yy1; }; const double bi = interpolate(0); const double gi = interpolate(1); const double ri = interpolate(2); const double ai = interpolate(3); const auto b = static_cast(bi + 0.5); const auto g = static_cast(gi + 0.5); const auto r = static_cast(ri + 0.5); const auto a = static_cast(ai + 0.5); const uint32_t trgPix = (a << 24) | (r << 16) | (g << 8) | b; trgLine[x] = pixCvrt(trgPix); } } } } #endif //XBRZ_TOOLS_H_825480175091875