-- "Extended" math module for Lunatic. local ffi = require("ffi") local bit = require("bit") local math = require("math") local arshift = bit.arshift local abs, sqrt = math.abs, math.sqrt local assert = assert local error = error local type = type local OUR_REQUIRE_STRING = [[ local _xm=require'xmath' local _v,_iv=_xm.vec3,_xm.ivec3 ]] local function our_get_require() return OUR_REQUIRE_STRING end module(...) ---=== TRIGONOMETRY ===--- local BANG2RAD = math.pi/1024 local isintab = ffi.new("int16_t [?]", 2048) local dsintab = ffi.new("double [?]", 2048) for a=0,511 do local s = math.sin(a*BANG2RAD) isintab[a] = 16384*s dsintab[a] = s end isintab[512] = 16384 dsintab[512] = 1 for i=513,1023 do isintab[i] = isintab[1024-i]; dsintab[i] = dsintab[1024-i]; end for i=1024,2047 do isintab[i] = -isintab[i-1024]; dsintab[i] = -dsintab[i-1024]; end local band = bit.band local function ksc_common(ang) ang = band(ang, 2047) assert(ang < 2048+0ULL) -- might have been passed NaN return ang end -- k{sin,cos}: 16384-scaled output, 2048-based angle input function ksin(ang) return isintab[ksc_common(ang)] end function kcos(ang) return isintab[ksc_common(ang+512)] end local sin, cos = math.sin, math.cos -- {sin,cos}b: [-1..1] output, 2048-based angle input function sinb(ang) return dsintab[ksc_common(ang)] end function cosb(ang) return dsintab[ksc_common(ang+512)] end ---=== Approximations to 2D and 3D Euclidean distances ===--- -- (also see common.c) local function dist_common(pos1, pos2) local x = abs(pos1.x - pos2.x) local y = abs(pos1.y - pos2.y) if (x < y) then x, y = y, x end return x, y end function ldist(pos1, pos2) local x, y = dist_common(pos1, pos2) local t = y + arshift(y,1) return x - arshift(x,5) - arshift(x,7) + arshift(t,2) + arshift(t,6) end function dist(pos1, pos2) local x, y = dist_common(pos1, pos2) local z = abs(arshift(pos1.z - pos2.z, 4)) if (x < z) then x, z = z, x end local t = y + z return x - arshift(x,4) + arshift(t,2) + arshift(t,3) end ---=== VECTOR TYPES ===--- -- The integer 3-vector can be useful for calculations expecting integer -- values, e.g. ivec3(x, y, z) is a reasonable way to round a vec3. It can also -- be used as the RHS to the vec2/vec3 arithmetic methods. -- NOTE: We must have a typedef with that exact name, because for Lunatic -- (i.e. not stand-alone), the type was already declared in defs_common.lua. ffi.cdef "typedef struct { int32_t x, y, z; } vec3_t;" local ivec3_t = ffi.typeof("vec3_t") local dvec2_t = ffi.typeof("struct { double x, y; }") local dvec3_t = ffi.typeof("struct { double x, y, z; }") local vec2_mt = { __add = function(a, b) return dvec2_t(a.x+b.x, a.y+b.y) end, __sub = function(a, b) return dvec2_t(a.x-b.x, a.y-b.y) end, __unm = function(a) return dvec2_t(-a.x, -a.y) end, __mul = function(a,b) if (type(a)=="number") then return dvec2_t(a*b.x, a*b.y) end if (type(b)~="number") then error("number expected in vec2 multiplication", 2) end return dvec2_t(a.x*b, a.y*b) end, __div = function(a,b) if (type(b)~="number") then error("number expected in vec2 division", 2) end return dvec2_t(a.x/b, a.y/b) end, __tostring = function(a) return "vec2("..a.x..", "..a.y..")" end, __index = { lensq = function(a) return a.x*a.x + a.y*a.y end, mhlen = function(a) return abs(a.x)+abs(a.y) end, }, } local l_rotate -- fwd-decl (XXX: could be the other way around) -- The vec3 metatable is shared between the integer- and double-based 3-vector -- types. However, some operations are slightly different. local vec3_mt = { -- Arithmetic operations. Note that they always return a dvec3. __add = function(a, b) return dvec3_t(a.x+b.x, a.y+b.y, a.z+b.z) end, __sub = function(a, b) return dvec3_t(a.x-b.x, a.y-b.y, a.z-b.z) end, __unm = function(a) return dvec3_t(-a.x, -a.y, -a.z) end, __mul = function(a,b) if (type(a)=="number") then return dvec3_t(a*b.x, a*b.y, a*b.z) end if (type(b)~="number") then error("number expected in vec3 multiplication", 2) end return dvec3_t(a.x*b, a.y*b, a.z*b) end, __div = function(a,b) if (type(b)~="number") then error("number expected in vec3 division", 2) end return dvec3_t(a.x/b, a.y/b, a.z/b) end, -- '^' is the "translate upwards" operator, returns same-typed vector. __pow = function(v, zofs) return v:_ctor(v.x, v.y, v.z-zofs) end, -- Convenience for human-readable display. __tostring = function(a) return (a:_isi() and "i" or "").."vec3("..a.x..", "..a.y..", "..a.z..")" end, __index = { -- Euclidean 3D length. len = function(a) return sqrt(a.x*a.x + a.y*a.y + a.z*a.z) end, -- Euclidean 3D squared length. lensq = function(a) return a.x*a.x + a.y*a.y + a.z*a.z end, -- Euclidean 2D length. len2 = function(a) return sqrt(a.x*a.x + a.y*a.y) end, -- Euclidean 2D squared length. len2sq = function(a) return a.x*a.x + a.y*a.y end, -- Manhattan-distance 3D length: mhlen = function(a) return abs(a.x)+abs(a.y)+abs(a.z) end, toivec3 = function(v) return ivec3_t(v.x, v.y, v.z) end, -- BUILD-coordinate (z scaled by 16) <-> uniform conversions. touniform = function(v) return v:_isi() and v:_ctor(v.x, v.y, arshift(v.z, 4)) or v:_ctor(v.x, v.y, v.z/16) end, tobuild = function(v) return v:_ctor(v.x, v.y, 16*v.z) end, rotate = function(v, ang, pivot) return l_rotate(v, ang, pivot) end, -- PRIVATE methods -- -- Get the type constructor for this vector. _ctor = function(v, ...) return v:_isi() and ivec3_t(...) or dvec3_t(...) end, -- Is integer vec3? INTERNAL. _isi = function(v) return ffi.istype(ivec3_t, v) end, --- Serialization --- _get_require = our_get_require, _serialize = function(v) return (v:_isi() and "_iv" or "_v").."("..v.x..","..v.y..","..v.z..")" end, }, } ffi.metatype(dvec2_t, vec2_mt) ffi.metatype(dvec3_t, vec3_mt) ffi.metatype(ivec3_t, vec3_mt) -- VEC2 user data constructor. -- * vec2([x [, y]]), assuming that x and y are numbers. Vacant positions are -- assumed to be 0. -- * vec2(), can be anything indexable with "x" and "y" function vec2(...) local x, y = ... if (type(x)=="number" or x==nil) then return dvec2_t(...) else return dvec2_t(x.x, x.y) end end -- VEC3 user data constructor. -- Analogous to VEC2. function vec3(...) local x, y, z = ... if (type(x)=="number" or x==nil) then return dvec3_t(...) else return dvec3_t(x.x, x.y, x.z) end end -- IVEC3 user data constructor. function ivec3(...) local x, y, z = ... if (type(x)=="number" or x==nil) then return ivec3_t(...) else return ivec3_t(x.x, x.y, x.z) end end ---=== MISCELLANEOUS MATH ===--- local intarg = ffi.new("int32_t [1]") function bangvec(bang) intarg[0] = bang -- round towards zero return vec3(cosb(intarg[0]), sinb(intarg[0])) end function angvec(ang) return vec3(cos(ang), sin(ang)) end local zerovec = vec3() -- Point rotation. Note the different order of arguments from engine function. -- XXX: passing mixed vec2/vec3 is problematic. Get rid of vec2? -- : BUILD angle (0-2047 based) function rotate(pos, ang, pivot) pivot = pivot or zerovec local p = vec3(pos)-pivot local c, s = cosb(ang), sinb(ang) local x, y = p.x, p.y p.x = pivot.x + (c*x - s*y) p.y = pivot.y + (c*y + s*x) return p end l_rotate = rotate -- Two-element vector cross product. -- Anti-commutative, distributive. local function cross2(v, w) return v.y*w.x - v.x*w.y end -- Finds the intersection point of two lines given by -- point a and vector v -- and -- point b and vector w -- -- Returns: -- if , nil -- if retpoint_p evaluates to a non-true value, coefficients cv and cw such that -- else, the intersection point function intersect(a,v, b,w, retpoint_p) local vxw = cross2(v,w) if (vxw ~= 0) then local btoa = vec2(a) - vec2(b) local cv, cw = cross2(w, btoa)/vxw, cross2(v, btoa)/vxw if (retpoint_p) then return vec2(a) + cv*vec2(v) else return cv, cw end end -- return nil if v and w parallel (or either of them is a point), or if -- they contain NaNs end