#pragma once /* ** geometry.h ** basic geometry math routines ** **--------------------------------------------------------------------------- ** Copyright 2005-2022 Christoph Oelckers ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **--------------------------------------------------------------------------- */ #include "vectors.h" inline DVector2 rotatepoint(const DVector2& pivot, const DVector2& point, DAngle angle) { return (point - pivot).Rotated(angle) + pivot; } //========================================================================== // // // //========================================================================== inline double PointOnLineSide(double x, double y, double linex, double liney, double deltax, double deltay) { return (x - linex) * deltay - (y - liney) * deltax; } //========================================================================== // // // //========================================================================== inline double SquareDist(double lx1, double ly1, double lx2, double ly2) { double dx = lx2 - lx1; double dy = ly2 - ly1; return dx * dx + dy * dy; } // This is for cases where only the factor is needed, and pre-validation was performed. inline double NearestPointOnLineFast(double px, double py, double lx1, double ly1, double lx2, double ly2) { double wall_length = SquareDist(lx1, ly1, lx2, ly2); assert(wall_length > 0); return ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1)) / wall_length; } inline DVector2 NearestPointOnLine(double px, double py, double lx1, double ly1, double lx2, double ly2, bool clamp = true) { double wall_length = SquareDist(lx1, ly1, lx2, ly2); if (wall_length == 0) { return { lx1, ly1 }; } double t = ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1)) / wall_length; if (clamp) { if (t <= 0) return { lx1, ly1 }; if (t >= 1) return { lx2, ly2 }; } double xx = lx1 + t * (lx2 - lx1); double yy = ly1 + t * (ly2 - ly1); return { xx, yy }; } //========================================================================== // // // //========================================================================== inline double SquareDistToLine(double px, double py, double lx1, double ly1, double lx2, double ly2) { double wall_length = SquareDist(lx1, ly1, lx2, ly2); if (wall_length == 0) return SquareDist(px, py, lx1, ly1); double t = ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1)) / wall_length; t = clamp(t, 0., 1.); double xx = lx1 + t * (lx2 - lx1); double yy = ly1 + t * (ly2 - ly1); return SquareDist(px, py, xx, yy); } //========================================================================== // // taken from GZDoom with the divline_t parameters removed // //========================================================================== inline double InterceptVector(double v2x, double v2y, double v2dx, double v2dy, double v1x, double v1y, double v1dx, double v1dy) { double den = v1dy * v2dx - v1dx * v2dy; if (den == 0) return 0; // parallel double num = (v1x - v2x) * v1dy + (v2y - v1y) * v1dx; return num / den; } //========================================================================== // // Essentially two InterceptVector calls. We can reduce the calculations // because the denominators for both calculations only differ by their sign. // //========================================================================== inline double InterceptLineSegments(double v2x, double v2y, double v2dx, double v2dy, double v1x, double v1y, double v1dx, double v1dy, double* pfactor1 = nullptr, bool forcansee = false) { double den = v1dy * v2dx - v1dx * v2dy; if (den == 0) return -2 * (double)FLT_MAX; // parallel (return a magic value different from everything else, just in case it needs to be handled) if (forcansee && den < 0) // cansee does this added check here, aside from that its logic is virtually the same. return -1; // hitting the backside // perform the division first for better parallelization. den = 1 / den; double factor1 = ((v2x - v1x) * v2dy + (v1y - v2y) * v2dx) * -den; if (factor1 < 0 || factor1 >= 1) return -FLT_MAX; // no intersection if (pfactor1) *pfactor1 = factor1; return ((v1x - v2x) * v1dy + (v2y - v1y) * v1dx) * den; // this one's for the line segment where we want to get the intercept factor for so it needs to be last. } //========================================================================== // // calculates intersection between a plane and line in 3D // //========================================================================== inline double LinePlaneIntersect(const DVector3& start, const DVector3& trace, const DVector3& ppoint, const DVector3& pvec1, const DVector3& pvec2) { auto normal = pvec1 ^ pvec2; // we do not need a unit vector here. double dist = normal.dot(ppoint); double dotStart = normal.dot(start); double dotTrace = normal.dot(trace); if (dotTrace == 0) return -FLT_MAX; return (dist - dotStart) / dotTrace; // we are only interested in the factor } //========================================================================== // // BoxOnLineSide // // Based on Doom's, but rewritten to be standalone // //========================================================================== inline int BoxOnLineSide(const DVector2& boxtl, const DVector2& boxbr, const DVector2& start, const DVector2& delta) { int p1; int p2; if (delta.X == 0) { p1 = boxbr.X < start.X; p2 = boxtl.X < start.X; if (delta.Y < 0) { p1 ^= 1; p2 ^= 1; } } else if (delta.Y == 0) { p1 = boxtl.Y > start.Y; p2 = boxbr.Y > start.Y; if (delta.X < 0) { p1 ^= 1; p2 ^= 1; } } else if (delta.X * delta.Y <= 0) { p1 = PointOnLineSide(boxtl.X, boxtl.Y, start.X, start.Y, delta.X, delta.Y) > 0; p2 = PointOnLineSide(boxbr.X, boxbr.Y, start.X, start.Y, delta.X, delta.Y) > 0; } else { p1 = PointOnLineSide(boxbr.X, boxtl.Y, start.X, start.Y, delta.X, delta.Y) > 0; p2 = PointOnLineSide(boxtl.X, boxbr.Y, start.X, start.Y, delta.X, delta.Y) > 0; } return (p1 == p2) ? p1 : -1; } //========================================================================== // // BoxInRange // //========================================================================== inline bool BoxInRange(const DVector2& boxtl, const DVector2& boxbr, const DVector2& start, const DVector2& end) { return boxtl.X < max(start.X, end.X) && boxbr.X > min(start.X, end.X) && boxtl.Y < max(start.Y, end.Y) && boxbr.Y > min(start.Y, end.Y); } inline bool BoxInRange2(const DVector2& boxtl, const DVector2& boxbr, const DVector2& start, const DVector2& end) { return boxtl.X <= max(start.X, end.X) && boxbr.X >= min(start.X, end.X) && boxtl.Y <= max(start.Y, end.Y) && boxbr.Y >= min(start.Y, end.Y); }