#pragma once #include "gamecontrol.h" #include "build.h" #include "coreactor.h" #include "intrect.h" extern IntRect viewport3d; // breadth first search, this gets used multiple times throughout the engine, mainly for iterating over sectors. // Only works on indices, this has no knowledge of the actual objects being looked at. // All objects of this type operate on the same shared store. Interleaved use is not allowed, nested use is fine. class BFSSearch { static inline TArray store; unsigned bitpos; unsigned startpos; unsigned curpos; public: enum { EOL = ~0u }; BFSSearch(unsigned datasize, unsigned startnode) { bitpos = store.Size(); unsigned bitsize = (datasize + 31) >> 5; store.Reserve(bitsize); memset(&store[bitpos], 0, bitsize*4); startpos = store.Size(); curpos = startpos; Set(startnode); store.Push(startnode); } // This allows this object to just work as a bit array // which is useful for using its shared storage. BFSSearch(unsigned datasize) { bitpos = store.Size(); unsigned bitsize = (datasize + 31) >> 5; store.Reserve(bitsize); memset(&store[bitpos], 0, bitsize * 4); } ~BFSSearch() { store.Clamp(bitpos); } bool Check(unsigned index) const { return !!(store[bitpos + (index >> 5)] & (1 << (index & 31))); } void Set(unsigned index) { store[bitpos + (index >> 5)] |= (1 << (index & 31)); } private: public: unsigned GetNext() { curpos++; if (curpos <= store.Size()) return store[curpos-1]; else return ~0; } void Rewind() { curpos = startpos; } void Add(unsigned elem) { if (!Check(elem)) { Set(elem); store.Push(elem); } } }; class BFSSectorSearch : public BFSSearch { public: BFSSectorSearch(const sectortype* startnode) : BFSSearch(sector.Size(), sector.IndexOf(startnode)) { } bool Check(const sectortype* index) const { return BFSSearch::Check(sector.IndexOf(index)); } void Set(const sectortype* index) { BFSSearch::Set(sector.IndexOf(index)); } sectortype* GetNext() { unsigned ret = BFSSearch::GetNext(); return ret == EOL? nullptr : §or[ret]; } void Add(sectortype* elem) { BFSSearch::Add(sector.IndexOf(elem)); } }; //========================================================================== // // scans all vertices equivalent with a given spot and performs some work on them. // //========================================================================== template void vertexscan(walltype* startwall, func mark) { BFSSearch walbitmap(wall.Size()); // first pass: scan the the next-in-loop of the partner auto wal = startwall; do { mark(wal); walbitmap.Set(wall.IndexOf(wal)); if (wal->nextwall < 0) break; wal = wal->nextWall()->point2Wall(); } while (!walbitmap.Check(wall.IndexOf(wal))); // second pass: scan the partner of the previous-in-loop. wal = startwall; while (true) { auto thelastwall = wal->lastWall(); // thelastwall can be null here if the map is bogus. if (!thelastwall || thelastwall->nextwall < 0) break; wal = thelastwall->nextWall(); if (walbitmap.Check(wall.IndexOf(wal))) break; mark(wal); walbitmap.Set(wall.IndexOf(wal)); } } //--------------------------------------------------------------------------- // // Constants used for Build sine/cosine functions. // //--------------------------------------------------------------------------- enum { BAMBITS = 21, BAMUNIT = 1 << BAMBITS, SINTABLEBITS = 30, SINTABLEUNIT = 1 << SINTABLEBITS, BUILDSINBITS = 14, BUILDSINSHIFT = SINTABLEBITS - BUILDSINBITS, }; constexpr double BAngRadian = pi::pi() * (1. / 1024.); constexpr double BAngToDegree = 360. / 2048.; constexpr DAngle DAngleBuildToDeg = DAngle::fromDeg(BAngToDegree); extern int sintable[2048]; inline constexpr double sinscale(const int shift) { return shift >= -BUILDSINBITS ? uint64_t(1) << (BUILDSINBITS + shift) : 1. / (uint64_t(1) << abs(BUILDSINBITS + shift)); } //--------------------------------------------------------------------------- // // Build sine inline functions. // //--------------------------------------------------------------------------- inline int bsin(const int ang, int shift = 0) { return (shift -= BUILDSINSHIFT) < 0 ? sintable[ang & 2047] >> abs(shift) : sintable[ang & 2047] << shift; } inline double bsinf(const double ang, const int shift = 0) { return g_sinbam(ang * BAMUNIT) * sinscale(shift); } //--------------------------------------------------------------------------- // // Build cosine inline functions. // // About shifts: // -6 -> * 16 // -7 -> * 8 // -8 -> * 4 // -9 -> * 2 // -10 -> * 1 // //--------------------------------------------------------------------------- inline int bcos(const int ang, int shift = 0) { return (shift -= BUILDSINSHIFT) < 0 ? sintable[(ang + 512) & 2047] >> abs(shift) : sintable[(ang + 512) & 2047] << shift; } inline double bcosf(const double ang, const int shift = 0) { return g_cosbam(ang * BAMUNIT) * sinscale(shift); } //--------------------------------------------------------------------------- // // High precision vector angle function, mainly for the renderer. // //--------------------------------------------------------------------------- inline int getangle(double xvect, double yvect) { return DVector2(xvect, yvect).Angle().Buildang(); } inline int getangle(const DVector2& vec) { return getangle(vec.X, vec.Y); } inline int getangle(const vec2_t& vec) { return getangle(vec.X, vec.Y); } //--------------------------------------------------------------------------- // // Returns an angle delta for Build angles. // //--------------------------------------------------------------------------- inline constexpr int getincangle(int a, int na) { return int(unsigned(na << 21) - unsigned(a << 21)) >> 21; } extern int cameradist, cameraclock; void loaddefinitionsfile(const char* fn, bool cumulative = false, bool maingrp = false); bool calcChaseCamPos(int* px, int* py, int* pz, DCoreActor* pspr, sectortype** psectnum, DAngle ang, fixedhoriz horiz, double const smoothratio); void PlanesAtPoint(const sectortype* sec, float dax, float day, float* ceilz, float* florz); int getslopeval(sectortype* sect, int x, int y, int z, int planez); void setWallSectors(); void GetWallSpritePosition(const spritetypebase* spr, const DVector2& pos, DVector2* out, bool render = false); void GetFlatSpritePosition(DCoreActor* spr, const DVector2& pos, DVector2* out, bool render = false); void GetFlatSpritePosition(const tspritetype* spr, const DVector2& pos, DVector2* out, double* outz, bool render = false); enum class EClose { Outside, InFront, Behind }; EClose IsCloseToLine(const DVector2& vect, const DVector2& start, const DVector2& end, double walldist); EClose IsCloseToWall(const DVector2& vect, walltype* wal, double walldist); void checkRotatedWalls(); bool sectorsConnected(int sect1, int sect2); void dragpoint(walltype* wal, int newx, int newy); void dragpoint(walltype* wal, const DVector2& pos); DVector2 rotatepoint(const DVector2& pivot, const DVector2& point, DAngle angle); int32_t inside(double x, double y, const sectortype* sect); void getcorrectzsofslope(int sectnum, int dax, int day, int* ceilz, int* florz); int getceilzofslopeptr(const sectortype* sec, int dax, int day); int getflorzofslopeptr(const sectortype* sec, int dax, int day); void getzsofslopeptr(const sectortype* sec, int dax, int day, int* ceilz, int* florz); void getzsofslopeptr(const sectortype* sec, double dax, double day, double* ceilz, double* florz); inline double getceilzofslopeptrf(const sectortype* sec, double dax, double day) { return getceilzofslopeptr(sec, dax * worldtoint, day * worldtoint) * zinttoworld; } inline double getflorzofslopeptrf(const sectortype* sec, double dax, double day) { return getflorzofslopeptr(sec, dax * worldtoint, day * worldtoint) * zinttoworld; } enum EFindNextSector { Find_Floor = 0, Find_Ceiling = 1, Find_Down = 0, Find_Up = 2, Find_Safe = 4, Find_CeilingUp = Find_Ceiling | Find_Up, Find_CeilingDown = Find_Ceiling | Find_Down, Find_FloorUp = Find_Floor | Find_Up, Find_FloorDown = Find_Floor | Find_Down, }; sectortype* nextsectorneighborzptr(sectortype* sectp, int startz, int flags); inline double WallStartX(int wallnum) { return wall[wallnum].pos.X; } inline double WallStartY(int wallnum) { return -wall[wallnum].pos.Y; } inline double WallEndX(int wallnum) { return wall[wallnum].point2Wall()->pos.X; } inline double WallEndY(int wallnum) { return -wall[wallnum].point2Wall()->pos.Y; } inline double WallStartX(const walltype* wallnum) { return wallnum->pos.X; } inline double WallStartY(const walltype* wallnum) { return -wallnum->pos.Y; } inline DVector2 WallStart(const walltype* wallnum) { return { WallStartX(wallnum), WallStartY(wallnum) }; } inline double WallEndX(const walltype* wallnum) { return wallnum->point2Wall()->pos.X; } inline double WallEndY(const walltype* wallnum) { return -wallnum->point2Wall()->pos.Y; } inline DVector2 WallEnd(const walltype* wallnum) { return { WallEndX(wallnum), WallEndY(wallnum) }; } inline DVector2 WallDelta(const walltype* wallnum) { return WallEnd(wallnum) - WallStart(wallnum); } inline double PointOnLineSide(double x, double y, double linex, double liney, double deltax, double deltay) { return (x - linex) * deltay - (y - liney) * deltax; } inline double PointOnLineSide(const DVector2 &pos, const walltype *line) { return (pos.X - WallStartX(line)) * WallDelta(line).Y - (pos.Y - WallStartY(line)) * WallDelta(line).X; } template inline double PointOnLineSide(const TVector2& pos, const TVector2& linestart, const TVector2& lineend) { return (pos.X - linestart.X) * (lineend.Y - linestart.Y) - (pos.Y - linestart.Y) * (lineend.X - linestart.X); } extern int numshades; // Return type is int because this gets passed to variadic functions where structs may produce undefined behavior. inline int shadeToLight(int shade) { shade = clamp(shade, 0, numshades - 1); int light = Scale(numshades - 1 - shade, 255, numshades - 1); return PalEntry(255, light, light, light); } inline void copyfloorpal(tspritetype* spr, const sectortype* sect) { if (!lookups.noFloorPal(sect->floorpal)) spr->pal = sect->floorpal; } inline void spriteSetSlope(DCoreActor* actor, int heinum) { if (actor->spr.cstat & CSTAT_SPRITE_ALIGNMENT_FLOOR) { actor->spr.xoffset = heinum & 255; actor->spr.yoffset = (heinum >> 8) & 255; actor->spr.cstat = (actor->spr.cstat & ~CSTAT_SPRITE_ALIGNMENT_MASK) | (heinum != 0 ? CSTAT_SPRITE_ALIGNMENT_SLOPE : CSTAT_SPRITE_ALIGNMENT_FLOOR); } } inline int spriteGetSlope(DCoreActor* actor) { return ((actor->spr.cstat & CSTAT_SPRITE_ALIGNMENT_MASK) != CSTAT_SPRITE_ALIGNMENT_SLOPE) ? 0 : uint8_t(actor->spr.xoffset) + (uint8_t(actor->spr.yoffset) << 8); } // same stuff, different flag... inline int tspriteGetSlope(const tspritetype* spr) { return !(spr->clipdist & TSPR_SLOPESPRITE) ? 0 : uint8_t(spr->xoffset) + (int8_t(spr->yoffset) << 8); } inline int32_t spriteGetZOfSlope(const spritetypebase* tspr, int dax, int day, int heinum) { if (heinum == 0) return tspr->int_pos().Z; int const j = DMulScale(bsin(tspr->int_ang() + 1024), day - tspr->int_pos().Y, -bsin(tspr->int_ang() + 512), dax - tspr->int_pos().X, 4); return tspr->int_pos().Z + MulScale(heinum, j, 18); } inline int inside(int x, int y, const sectortype* sect) { return inside(x * inttoworld, y * inttoworld, sect); } // still needed by some parts in the engine. inline int inside_p(int x, int y, int sectnum) { return (sectnum >= 0 && inside(x, y, §or[sectnum]) == 1); } inline int I_GetBuildTime() { return I_GetTime(120); } inline int32_t getangle(walltype* wal) { return getangle(wal->fdelta()); } inline TArrayView wallsofsector(const sectortype* sec) { return TArrayView(sec->firstWall(), sec->wallnum); } inline TArrayView wallsofsector(int sec) { return wallsofsector(§or[sec]); } // these are mainly meant as refactoring aids to mark function calls to work on. inline int wallnum(const walltype* wal) { return wall.IndexOf(wal); } inline int sectnum(const sectortype* sect) { return sector.IndexOf(sect); } inline double SquareDist(double lx1, double ly1, double lx2, double ly2) { double dx = lx2 - lx1; double dy = ly2 - ly1; return dx * dx + dy * dy; } inline DVector2 NearestPointLine(double px, double py, const walltype* wal) { double lx1 = wal->pos.X; double ly1 = wal->pos.Y; double lx2 = wal->point2Wall()->pos.X; double ly2 = wal->point2Wall()->pos.Y; double wall_length = SquareDist(lx1, ly1, lx2, ly2); if (wall_length == 0) return { lx1, ly1 }; double t = ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1)) / wall_length; double xx = lx1 + t * (lx2 - lx1); double yy = ly1 + t * (ly2 - ly1); return { xx, yy }; } inline DVector2 NearestPointOnWall(double px, double py, const walltype* wal) { double lx1 = wal->pos.X; double ly1 = wal->pos.Y; double lx2 = wal->point2Wall()->pos.X; double ly2 = wal->point2Wall()->pos.Y; double wall_length = SquareDist(lx1, ly1, lx2, ly2); if (wall_length == 0) return { lx1, ly1 }; double t = ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1)) / wall_length; if (t <= 0) return { lx1, ly1 }; if (t >= 1) return { lx2, ly2 }; double xx = lx1 + t * (lx2 - lx1); double yy = ly1 + t * (ly2 - ly1); return { xx, yy }; } inline double SquareDistToWall(double px, double py, const walltype* wal, DVector2* point = nullptr) { auto pt = NearestPointOnWall(px, py, wal); if (point) *point = pt; return SquareDist(px, py, pt.X, pt.Y); } double SquareDistToSector(double px, double py, const sectortype* sect, DVector2* point = nullptr); inline double SquareDistToLine(double px, double py, double lx1, double ly1, double lx2, double ly2) { double wall_length = SquareDist(lx1, ly1, lx2, ly2); if (wall_length == 0) return SquareDist(px, py, lx1, ly1); double t = ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1)) / wall_length; t = clamp(t, 0., 1.); double xx = lx1 + t * (lx2 - lx1); double yy = ly1 + t * (ly2 - ly1); return SquareDist(px, py, xx, yy); } inline void alignceilslope(sectortype* sect, int x, int y, int z) { sect->setceilingslope(getslopeval(sect, x, y, z, sect->int_ceilingz())); } inline void alignflorslope(sectortype* sect, int x, int y, int z) { sect->setfloorslope(getslopeval(sect, x, y, z, sect->int_floorz())); } #include "updatesector.h"