/* -------------------------------------------------- Lighthouse3D VSMatrix - Very Simple Matrix Library http://www.lighthouse3d.com/very-simple-libs This is a simplified version of VSMatrix that has been adjusted for GZDoom's needs. ----------------------------------------------------*/ #include #include #include "matrix.h" #ifdef _MSC_VER #pragma warning(disable : 4244) // truncate from double to float #endif static inline FLOATTYPE DegToRad(FLOATTYPE degrees) { return (FLOATTYPE)(degrees * (pi::pif() / 180.0f)); }; // sets the square matrix mat to the identity matrix, // size refers to the number of rows (or columns) void VSMatrix::setIdentityMatrix( FLOATTYPE *mat, int size) { // fill matrix with 0s for (int i = 0; i < size * size; ++i) mat[i] = 0.0f; // fill diagonal with 1s for (int i = 0; i < size; ++i) mat[i + i * size] = 1.0f; } // gl LoadIdentity implementation void VSMatrix::loadIdentity() { // fill matrix with 0s for (int i = 0; i < 16; ++i) mMatrix[i] = 0.0f; // fill diagonal with 1s for (int i = 0; i < 4; ++i) mMatrix[i + i * 4] = 1.0f; } // gl MultMatrix implementation void VSMatrix::multMatrix(const FLOATTYPE *aMatrix) { FLOATTYPE res[16]; for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { res[j*4 + i] = 0.0f; for (int k = 0; k < 4; ++k) { res[j*4 + i] += mMatrix[k*4 + i] * aMatrix[j*4 + k]; } } } memcpy(mMatrix, res, 16 * sizeof(FLOATTYPE)); } #ifdef USE_DOUBLE // gl MultMatrix implementation void VSMatrix::multMatrix(const float *aMatrix) { FLOATTYPE res[16]; for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { res[j * 4 + i] = 0.0f; for (int k = 0; k < 4; ++k) { res[j*4 + i] += mMatrix[k*4 + i] * aMatrix[j*4 + k]; } } } memcpy(mMatrix, res, 16 * sizeof(FLOATTYPE)); } #endif void VSMatrix::multQuaternion(const TVector4& q) { FLOATTYPE m[16] = { FLOATTYPE(0.0) }; m[0 * 4 + 0] = FLOATTYPE(1.0) - FLOATTYPE(2.0) * q.Y * q.Y - FLOATTYPE(2.0) * q.Z * q.Z; m[1 * 4 + 0] = FLOATTYPE(2.0) * q.X * q.Y - FLOATTYPE(2.0) * q.W * q.Z; m[2 * 4 + 0] = FLOATTYPE(2.0) * q.X * q.Z + FLOATTYPE(2.0) * q.W * q.Y; m[0 * 4 + 1] = FLOATTYPE(2.0) * q.X * q.Y + FLOATTYPE(2.0) * q.W * q.Z; m[1 * 4 + 1] = FLOATTYPE(1.0) - FLOATTYPE(2.0) * q.X * q.X - FLOATTYPE(2.0) * q.Z * q.Z; m[2 * 4 + 1] = FLOATTYPE(2.0) * q.Y * q.Z - FLOATTYPE(2.0) * q.W * q.X; m[0 * 4 + 2] = FLOATTYPE(2.0) * q.X * q.Z - FLOATTYPE(2.0) * q.W * q.Y; m[1 * 4 + 2] = FLOATTYPE(2.0) * q.Y * q.Z + FLOATTYPE(2.0) * q.W * q.X; m[2 * 4 + 2] = FLOATTYPE(1.0) - FLOATTYPE(2.0) * q.X * q.X - FLOATTYPE(2.0) * q.Y * q.Y; m[3 * 4 + 3] = FLOATTYPE(1.0); multMatrix(m); } // gl LoadMatrix implementation void VSMatrix::loadMatrix(const FLOATTYPE *aMatrix) { memcpy(mMatrix, aMatrix, 16 * sizeof(FLOATTYPE)); } #ifdef USE_DOUBLE // gl LoadMatrix implementation void VSMatrix::loadMatrix(const float *aMatrix) { for (int i = 0; i < 16; ++i) { mMatrix[i] = aMatrix[i]; } } #endif // gl Translate implementation void VSMatrix::translate(FLOATTYPE x, FLOATTYPE y, FLOATTYPE z) { mMatrix[12] = mMatrix[0] * x + mMatrix[4] * y + mMatrix[8] * z + mMatrix[12]; mMatrix[13] = mMatrix[1] * x + mMatrix[5] * y + mMatrix[9] * z + mMatrix[13]; mMatrix[14] = mMatrix[2] * x + mMatrix[6] * y + mMatrix[10] * z + mMatrix[14]; } void VSMatrix::transpose() { FLOATTYPE original[16]; for (int cnt = 0; cnt < 16; cnt++) original[cnt] = mMatrix[cnt]; mMatrix[0] = original[0]; mMatrix[1] = original[4]; mMatrix[2] = original[8]; mMatrix[3] = original[12]; mMatrix[4] = original[1]; mMatrix[5] = original[5]; mMatrix[6] = original[9]; mMatrix[7] = original[13]; mMatrix[8] = original[2]; mMatrix[9] = original[6]; mMatrix[10] = original[10]; mMatrix[11] = original[14]; mMatrix[12] = original[3]; mMatrix[13] = original[7]; mMatrix[14] = original[11]; mMatrix[15] = original[15]; } // gl Scale implementation void VSMatrix::scale(FLOATTYPE x, FLOATTYPE y, FLOATTYPE z) { mMatrix[0] *= x; mMatrix[1] *= x; mMatrix[2] *= x; mMatrix[3] *= x; mMatrix[4] *= y; mMatrix[5] *= y; mMatrix[6] *= y; mMatrix[7] *= y; mMatrix[8] *= z; mMatrix[9] *= z; mMatrix[10] *= z; mMatrix[11] *= z; } // gl Rotate implementation void VSMatrix::rotate(FLOATTYPE angle, FLOATTYPE x, FLOATTYPE y, FLOATTYPE z) { FLOATTYPE mat[16]; FLOATTYPE v[3]; v[0] = x; v[1] = y; v[2] = z; FLOATTYPE radAngle = DegToRad(angle); FLOATTYPE co = cos(radAngle); FLOATTYPE si = sin(radAngle); normalize(v); FLOATTYPE x2 = v[0]*v[0]; FLOATTYPE y2 = v[1]*v[1]; FLOATTYPE z2 = v[2]*v[2]; // mat[0] = x2 + (y2 + z2) * co; mat[0] = co + x2 * (1 - co);// + (y2 + z2) * co; mat[4] = v[0] * v[1] * (1 - co) - v[2] * si; mat[8] = v[0] * v[2] * (1 - co) + v[1] * si; mat[12]= 0.0f; mat[1] = v[0] * v[1] * (1 - co) + v[2] * si; // mat[5] = y2 + (x2 + z2) * co; mat[5] = co + y2 * (1 - co); mat[9] = v[1] * v[2] * (1 - co) - v[0] * si; mat[13]= 0.0f; mat[2] = v[0] * v[2] * (1 - co) - v[1] * si; mat[6] = v[1] * v[2] * (1 - co) + v[0] * si; // mat[10]= z2 + (x2 + y2) * co; mat[10]= co + z2 * (1 - co); mat[14]= 0.0f; mat[3] = 0.0f; mat[7] = 0.0f; mat[11]= 0.0f; mat[15]= 1.0f; multMatrix(mat); } // gluLookAt implementation void VSMatrix::lookAt(FLOATTYPE xPos, FLOATTYPE yPos, FLOATTYPE zPos, FLOATTYPE xLook, FLOATTYPE yLook, FLOATTYPE zLook, FLOATTYPE xUp, FLOATTYPE yUp, FLOATTYPE zUp) { FLOATTYPE dir[3], right[3], up[3]; up[0] = xUp; up[1] = yUp; up[2] = zUp; dir[0] = (xLook - xPos); dir[1] = (yLook - yPos); dir[2] = (zLook - zPos); normalize(dir); crossProduct(dir,up,right); normalize(right); crossProduct(right,dir,up); normalize(up); FLOATTYPE m1[16],m2[16]; m1[0] = right[0]; m1[4] = right[1]; m1[8] = right[2]; m1[12] = 0.0f; m1[1] = up[0]; m1[5] = up[1]; m1[9] = up[2]; m1[13] = 0.0f; m1[2] = -dir[0]; m1[6] = -dir[1]; m1[10] = -dir[2]; m1[14] = 0.0f; m1[3] = 0.0f; m1[7] = 0.0f; m1[11] = 0.0f; m1[15] = 1.0f; setIdentityMatrix(m2,4); m2[12] = -xPos; m2[13] = -yPos; m2[14] = -zPos; multMatrix(m1); multMatrix(m2); } // gluPerspective implementation void VSMatrix::perspective(FLOATTYPE fov, FLOATTYPE ratio, FLOATTYPE nearp, FLOATTYPE farp) { FLOATTYPE f = 1.0f / tan (fov * (pi::pif() / 360.0f)); loadIdentity(); mMatrix[0] = f / ratio; mMatrix[1 * 4 + 1] = f; mMatrix[2 * 4 + 2] = (farp + nearp) / (nearp - farp); mMatrix[3 * 4 + 2] = (2.0f * farp * nearp) / (nearp - farp); mMatrix[2 * 4 + 3] = -1.0f; mMatrix[3 * 4 + 3] = 0.0f; } // gl Ortho implementation void VSMatrix::ortho(FLOATTYPE left, FLOATTYPE right, FLOATTYPE bottom, FLOATTYPE top, FLOATTYPE nearp, FLOATTYPE farp) { loadIdentity(); mMatrix[0 * 4 + 0] = 2 / (right - left); mMatrix[1 * 4 + 1] = 2 / (top - bottom); mMatrix[2 * 4 + 2] = -2 / (farp - nearp); mMatrix[3 * 4 + 0] = -(right + left) / (right - left); mMatrix[3 * 4 + 1] = -(top + bottom) / (top - bottom); mMatrix[3 * 4 + 2] = -(farp + nearp) / (farp - nearp); } // gl Frustum implementation void VSMatrix::frustum(FLOATTYPE left, FLOATTYPE right, FLOATTYPE bottom, FLOATTYPE top, FLOATTYPE nearp, FLOATTYPE farp) { FLOATTYPE m[16]; setIdentityMatrix(m,4); m[0 * 4 + 0] = 2 * nearp / (right-left); m[1 * 4 + 1] = 2 * nearp / (top - bottom); m[2 * 4 + 0] = (right + left) / (right - left); m[2 * 4 + 1] = (top + bottom) / (top - bottom); m[2 * 4 + 2] = - (farp + nearp) / (farp - nearp); m[2 * 4 + 3] = -1.0f; m[3 * 4 + 2] = - 2 * farp * nearp / (farp-nearp); m[3 * 4 + 3] = 0.0f; multMatrix(m); } /* // returns a pointer to the requested matrix FLOATTYPE * VSMatrix::get(MatrixTypes aType) { return mMatrix[aType]; } */ /* ----------------------------------------------------- SEND MATRICES TO OPENGL ------------------------------------------------------*/ // ----------------------------------------------------- // AUX functions // ----------------------------------------------------- // Compute res = M * point void VSMatrix::multMatrixPoint(const FLOATTYPE *point, FLOATTYPE *res) { for (int i = 0; i < 4; ++i) { res[i] = 0.0f; for (int j = 0; j < 4; j++) { res[i] += point[j] * mMatrix[j*4 + i]; } } } // res = a cross b; void VSMatrix::crossProduct(const FLOATTYPE *a, const FLOATTYPE *b, FLOATTYPE *res) { res[0] = a[1] * b[2] - b[1] * a[2]; res[1] = a[2] * b[0] - b[2] * a[0]; res[2] = a[0] * b[1] - b[0] * a[1]; } // returns a . b FLOATTYPE VSMatrix::dotProduct(const FLOATTYPE *a, const FLOATTYPE *b) { FLOATTYPE res = a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; return res; } // Normalize a vec3 void VSMatrix::normalize(FLOATTYPE *a) { FLOATTYPE mag = sqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]); a[0] /= mag; a[1] /= mag; a[2] /= mag; } // res = b - a void VSMatrix::subtract(const FLOATTYPE *a, const FLOATTYPE *b, FLOATTYPE *res) { res[0] = b[0] - a[0]; res[1] = b[1] - a[1]; res[2] = b[2] - a[2]; } // res = a + b void VSMatrix::add(const FLOATTYPE *a, const FLOATTYPE *b, FLOATTYPE *res) { res[0] = b[0] + a[0]; res[1] = b[1] + a[1]; res[2] = b[2] + a[2]; } // returns |a| FLOATTYPE VSMatrix::length(const FLOATTYPE *a) { return(sqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2])); } // computes the derived normal matrix for the view matrix void VSMatrix::computeNormalMatrix(const FLOATTYPE *aMatrix) { double mMat3x3[9]; mMat3x3[0] = aMatrix[0]; mMat3x3[1] = aMatrix[1]; mMat3x3[2] = aMatrix[2]; mMat3x3[3] = aMatrix[4]; mMat3x3[4] = aMatrix[5]; mMat3x3[5] = aMatrix[6]; mMat3x3[6] = aMatrix[8]; mMat3x3[7] = aMatrix[9]; mMat3x3[8] = aMatrix[10]; double det, invDet; det = mMat3x3[0] * (mMat3x3[4] * mMat3x3[8] - mMat3x3[5] * mMat3x3[7]) + mMat3x3[1] * (mMat3x3[5] * mMat3x3[6] - mMat3x3[8] * mMat3x3[3]) + mMat3x3[2] * (mMat3x3[3] * mMat3x3[7] - mMat3x3[4] * mMat3x3[6]); invDet = 1.0/det; mMatrix[0] = (mMat3x3[4] * mMat3x3[8] - mMat3x3[5] * mMat3x3[7]) * invDet; mMatrix[1] = (mMat3x3[5] * mMat3x3[6] - mMat3x3[8] * mMat3x3[3]) * invDet; mMatrix[2] = (mMat3x3[3] * mMat3x3[7] - mMat3x3[4] * mMat3x3[6]) * invDet; mMatrix[3] = 0.0f; mMatrix[4] = (mMat3x3[2] * mMat3x3[7] - mMat3x3[1] * mMat3x3[8]) * invDet; mMatrix[5] = (mMat3x3[0] * mMat3x3[8] - mMat3x3[2] * mMat3x3[6]) * invDet; mMatrix[6] = (mMat3x3[1] * mMat3x3[6] - mMat3x3[7] * mMat3x3[0]) * invDet; mMatrix[7] = 0.0f; mMatrix[8] = (mMat3x3[1] * mMat3x3[5] - mMat3x3[4] * mMat3x3[2]) * invDet; mMatrix[9] = (mMat3x3[2] * mMat3x3[3] - mMat3x3[0] * mMat3x3[5]) * invDet; mMatrix[10] =(mMat3x3[0] * mMat3x3[4] - mMat3x3[3] * mMat3x3[1]) * invDet; mMatrix[11] = 0.0; mMatrix[12] = 0.0; mMatrix[13] = 0.0; mMatrix[14] = 0.0; mMatrix[15] = 1.0; } // aux function resMat = resMat * aMatrix void VSMatrix::multMatrix(FLOATTYPE *resMat, const FLOATTYPE *aMatrix) { FLOATTYPE res[16]; for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { res[j*4 + i] = 0.0f; for (int k = 0; k < 4; ++k) { res[j*4 + i] += resMat[k*4 + i] * aMatrix[j*4 + k]; } } } memcpy(resMat, res, 16 * sizeof(FLOATTYPE)); } static double mat3Determinant(const FLOATTYPE *mMat3x3) { return mMat3x3[0] * (mMat3x3[4] * mMat3x3[8] - mMat3x3[5] * mMat3x3[7]) + mMat3x3[1] * (mMat3x3[5] * mMat3x3[6] - mMat3x3[8] * mMat3x3[3]) + mMat3x3[2] * (mMat3x3[3] * mMat3x3[7] - mMat3x3[4] * mMat3x3[6]); } static double mat4Determinant(const FLOATTYPE *matrix) { FLOATTYPE mMat3x3_a[9] = { matrix[1 * 4 + 1], matrix[2 * 4 + 1], matrix[3 * 4 + 1], matrix[1 * 4 + 2], matrix[2 * 4 + 2], matrix[3 * 4 + 2], matrix[1 * 4 + 3], matrix[2 * 4 + 3], matrix[3 * 4 + 3] }; FLOATTYPE mMat3x3_b[9] = { matrix[1 * 4 + 0], matrix[2 * 4 + 0], matrix[3 * 4 + 0], matrix[1 * 4 + 2], matrix[2 * 4 + 2], matrix[3 * 4 + 2], matrix[1 * 4 + 3], matrix[2 * 4 + 3], matrix[3 * 4 + 3] }; FLOATTYPE mMat3x3_c[9] = { matrix[1 * 4 + 0], matrix[2 * 4 + 0], matrix[3 * 4 + 0], matrix[1 * 4 + 1], matrix[2 * 4 + 1], matrix[3 * 4 + 1], matrix[1 * 4 + 3], matrix[2 * 4 + 3], matrix[3 * 4 + 3] }; FLOATTYPE mMat3x3_d[9] = { matrix[1 * 4 + 0], matrix[2 * 4 + 0], matrix[3 * 4 + 0], matrix[1 * 4 + 1], matrix[2 * 4 + 1], matrix[3 * 4 + 1], matrix[1 * 4 + 2], matrix[2 * 4 + 2], matrix[3 * 4 + 2] }; FLOATTYPE a, b, c, d; FLOATTYPE value; a = mat3Determinant(mMat3x3_a); b = mat3Determinant(mMat3x3_b); c = mat3Determinant(mMat3x3_c); d = mat3Determinant(mMat3x3_d); value = matrix[0 * 4 + 0] * a; value -= matrix[0 * 4 + 1] * b; value += matrix[0 * 4 + 2] * c; value -= matrix[0 * 4 + 3] * d; return value; } static void mat4Adjoint(const FLOATTYPE *matrix, FLOATTYPE *result) { FLOATTYPE mMat3x3_a[9] = { matrix[1 * 4 + 1], matrix[2 * 4 + 1], matrix[3 * 4 + 1], matrix[1 * 4 + 2], matrix[2 * 4 + 2], matrix[3 * 4 + 2], matrix[1 * 4 + 3], matrix[2 * 4 + 3], matrix[3 * 4 + 3] }; FLOATTYPE mMat3x3_b[9] = { matrix[1 * 4 + 0], matrix[2 * 4 + 0], matrix[3 * 4 + 0], matrix[1 * 4 + 2], matrix[2 * 4 + 2], matrix[3 * 4 + 2], matrix[1 * 4 + 3], matrix[2 * 4 + 3], matrix[3 * 4 + 3] }; FLOATTYPE mMat3x3_c[9] = { matrix[1 * 4 + 0], matrix[2 * 4 + 0], matrix[3 * 4 + 0], matrix[1 * 4 + 1], matrix[2 * 4 + 1], matrix[3 * 4 + 1], matrix[1 * 4 + 3], matrix[2 * 4 + 3], matrix[3 * 4 + 3] }; FLOATTYPE mMat3x3_d[9] = { matrix[1 * 4 + 0], matrix[2 * 4 + 0], matrix[3 * 4 + 0], matrix[1 * 4 + 1], matrix[2 * 4 + 1], matrix[3 * 4 + 1], matrix[1 * 4 + 2], matrix[2 * 4 + 2], matrix[3 * 4 + 2] }; FLOATTYPE mMat3x3_e[9] = { matrix[0 * 4 + 1], matrix[2 * 4 + 1], matrix[3 * 4 + 1], matrix[0 * 4 + 2], matrix[2 * 4 + 2], matrix[3 * 4 + 2], matrix[0 * 4 + 3], matrix[2 * 4 + 3], matrix[3 * 4 + 3] }; FLOATTYPE mMat3x3_f[9] = { matrix[0 * 4 + 0], matrix[2 * 4 + 0], matrix[3 * 4 + 0], matrix[0 * 4 + 2], matrix[2 * 4 + 2], matrix[3 * 4 + 2], matrix[0 * 4 + 3], matrix[2 * 4 + 3], matrix[3 * 4 + 3] }; FLOATTYPE mMat3x3_g[9] = { matrix[0 * 4 + 0], matrix[2 * 4 + 0], matrix[3 * 4 + 0], matrix[0 * 4 + 1], matrix[2 * 4 + 1], matrix[3 * 4 + 1], matrix[0 * 4 + 3], matrix[2 * 4 + 3], matrix[3 * 4 + 3] }; FLOATTYPE mMat3x3_h[9] = { matrix[0 * 4 + 0], matrix[2 * 4 + 0], matrix[3 * 4 + 0], matrix[0 * 4 + 1], matrix[2 * 4 + 1], matrix[3 * 4 + 1], matrix[0 * 4 + 2], matrix[2 * 4 + 2], matrix[3 * 4 + 2] }; FLOATTYPE mMat3x3_i[9] = { matrix[0 * 4 + 1], matrix[1 * 4 + 1], matrix[3 * 4 + 1], matrix[0 * 4 + 2], matrix[1 * 4 + 2], matrix[3 * 4 + 2], matrix[0 * 4 + 3], matrix[1 * 4 + 3], matrix[3 * 4 + 3] }; FLOATTYPE mMat3x3_j[9] = { matrix[0 * 4 + 0], matrix[1 * 4 + 0], matrix[3 * 4 + 0], matrix[0 * 4 + 2], matrix[1 * 4 + 2], matrix[3 * 4 + 2], matrix[0 * 4 + 3], matrix[1 * 4 + 3], matrix[3 * 4 + 3] }; FLOATTYPE mMat3x3_k[9] = { matrix[0 * 4 + 0], matrix[1 * 4 + 0], matrix[3 * 4 + 0], matrix[0 * 4 + 1], matrix[1 * 4 + 1], matrix[3 * 4 + 1], matrix[0 * 4 + 3], matrix[1 * 4 + 3], matrix[3 * 4 + 3] }; FLOATTYPE mMat3x3_l[9] = { matrix[0 * 4 + 0], matrix[1 * 4 + 0], matrix[3 * 4 + 0], matrix[0 * 4 + 1], matrix[1 * 4 + 1], matrix[3 * 4 + 1], matrix[0 * 4 + 2], matrix[1 * 4 + 2], matrix[3 * 4 + 2] }; FLOATTYPE mMat3x3_m[9] = { matrix[0 * 4 + 1], matrix[1 * 4 + 1], matrix[2 * 4 + 1], matrix[0 * 4 + 2], matrix[1 * 4 + 2], matrix[2 * 4 + 2], matrix[0 * 4 + 3], matrix[1 * 4 + 3], matrix[2 * 4 + 3] }; FLOATTYPE mMat3x3_n[9] = { matrix[0 * 4 + 0], matrix[1 * 4 + 0], matrix[2 * 4 + 0], matrix[0 * 4 + 2], matrix[1 * 4 + 2], matrix[2 * 4 + 2], matrix[0 * 4 + 3], matrix[1 * 4 + 3], matrix[2 * 4 + 3] }; FLOATTYPE mMat3x3_o[9] = { matrix[0 * 4 + 0], matrix[1 * 4 + 0], matrix[2 * 4 + 0], matrix[0 * 4 + 1], matrix[1 * 4 + 1], matrix[2 * 4 + 1], matrix[0 * 4 + 3], matrix[1 * 4 + 3], matrix[2 * 4 + 3] }; FLOATTYPE mMat3x3_p[9] = { matrix[0 * 4 + 0], matrix[1 * 4 + 0], matrix[2 * 4 + 0], matrix[0 * 4 + 1], matrix[1 * 4 + 1], matrix[2 * 4 + 1], matrix[0 * 4 + 2], matrix[1 * 4 + 2], matrix[2 * 4 + 2] }; result[0 * 4 + 0] = mat3Determinant(mMat3x3_a); result[1 * 4 + 0] = -mat3Determinant(mMat3x3_b); result[2 * 4 + 0] = mat3Determinant(mMat3x3_c); result[3 * 4 + 0] = -mat3Determinant(mMat3x3_d); result[0 * 4 + 1] = -mat3Determinant(mMat3x3_e); result[1 * 4 + 1] = mat3Determinant(mMat3x3_f); result[2 * 4 + 1] = -mat3Determinant(mMat3x3_g); result[3 * 4 + 1] = mat3Determinant(mMat3x3_h); result[0 * 4 + 2] = mat3Determinant(mMat3x3_i); result[1 * 4 + 2] = -mat3Determinant(mMat3x3_j); result[2 * 4 + 2] = mat3Determinant(mMat3x3_k); result[3 * 4 + 2] = -mat3Determinant(mMat3x3_l); result[0 * 4 + 3] = -mat3Determinant(mMat3x3_m); result[1 * 4 + 3] = mat3Determinant(mMat3x3_n); result[2 * 4 + 3] = -mat3Determinant(mMat3x3_o); result[3 * 4 + 3] = mat3Determinant(mMat3x3_p); } bool VSMatrix::inverseMatrix(VSMatrix &result) { // Calculate mat4 determinant FLOATTYPE det = mat4Determinant(mMatrix); // Inverse unknown when determinant is close to zero if (fabs(det) < 1e-15) { for (int i = 0; i < 16; i++) result.mMatrix[i] = FLOATTYPE(0.0); return false; } else { mat4Adjoint(mMatrix, result.mMatrix); FLOATTYPE invDet = FLOATTYPE(1.0) / det; for (int i = 0; i < 16; i++) { result.mMatrix[i] = result.mMatrix[i] * invDet; } } return true; }