/* ** binaryangle.h ** ** type safe representations of high precision angle and horizon values. ** Angle uses natural 32 bit overflow to clamp to one rotation. ** **--------------------------------------------------------------------------- ** Copyright 2020 Christoph Oelckers ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **--------------------------------------------------------------------------- ** */ #pragma once #include #include "basics.h" #include "m_fixed.h" #include "xs_Float.h" // needed for reliably overflowing float->int conversions. #include "serializer.h" #include "math/cmath.h" class FSerializer; enum { BAMBITS = 21, BAMUNIT = 1 << BAMBITS, SINTABLEBITS = 30, SINTABLEUNIT = 1 << SINTABLEBITS, BUILDSINBITS = 14, BUILDSINSHIFT = SINTABLEBITS - BUILDSINBITS, }; //--------------------------------------------------------------------------- // // Constants used for Build sine/cosine functions. // //--------------------------------------------------------------------------- constexpr double BAngRadian = pi::pi() * (1. / 1024.); constexpr double BAngToDegree = 360. / 2048.; extern int sintable[2048]; inline constexpr double sinscale(const int shift) { return shift >= -BUILDSINBITS ? uint64_t(1) << (BUILDSINBITS + shift) : 1. / (uint64_t(1) << abs(BUILDSINBITS + shift)); } //--------------------------------------------------------------------------- // // Build sine inline functions. // //--------------------------------------------------------------------------- inline int bsin(const int ang, int shift = 0) { return (shift -= BUILDSINSHIFT) < 0 ? sintable[ang & 2047] >> abs(shift) : sintable[ang & 2047] << shift; } inline double bsinf(const double ang, const int shift = 0) { return g_sinbam(ang * BAMUNIT) * sinscale(shift); } //--------------------------------------------------------------------------- // // Build cosine inline functions. // //--------------------------------------------------------------------------- inline int bcos(const int ang, int shift = 0) { return (shift -= BUILDSINSHIFT) < 0 ? sintable[(ang + 512) & 2047] >> abs(shift) : sintable[(ang + 512) & 2047] << shift; } inline double bcosf(const double ang, const int shift = 0) { return g_cosbam(ang * BAMUNIT) * sinscale(shift); } //--------------------------------------------------------------------------- // // // //--------------------------------------------------------------------------- class binangle { uint32_t value; constexpr binangle(uint32_t v) : value(v) {} friend constexpr binangle bamang(uint32_t v); friend constexpr binangle q16ang(uint32_t v); friend constexpr binangle buildang(uint32_t v); friend binangle buildfang(double v); friend binangle radang(double v); friend binangle degang(double v); friend FSerializer &Serialize(FSerializer &arc, const char *key, binangle &obj, binangle *defval); constexpr int32_t tosigned() const { return int32_t(value); } public: binangle() = default; binangle(const binangle &other) = default; binangle& operator=(const binangle& other) = default; // This class intentionally makes no allowances for implicit type conversions because those would render it ineffective. constexpr short asbuild() const { return value >> BAMBITS; } constexpr double asbuildf() const { return value * (1. / +BAMUNIT); } constexpr fixed_t asq16() const { return value >> 5; } constexpr uint32_t asbam() const { return value; } constexpr double asrad() const { return value * (pi::pi() / 0x80000000u); } constexpr double asdeg() const { return AngleToFloat(value); } constexpr short signedbuild() const { return tosigned() >> BAMBITS; } constexpr double signedbuildf() const { return tosigned() * (1. / +BAMUNIT); } constexpr fixed_t signedq16() const { return tosigned() >> 5; } constexpr int32_t signedbam() const { return tosigned(); } constexpr double signedrad() const { return tosigned() * (pi::pi() / 0x80000000u); } constexpr double signeddeg() const { return AngleToFloat(tosigned()); } double fsin() const { return g_sinbam(asbam()); } double fcos() const { return g_cosbam(asbam()); } double ftan() const { return g_tan(asrad()); } int bsin(const int8_t& shift = 0) const { return ::bsin(asbuild(), shift); } int bcos(const int8_t& shift = 0) const { return ::bcos(asbuild(), shift); } constexpr bool operator== (binangle other) const { return value == other.value; } constexpr bool operator!= (binangle other) const { return value != other.value; } constexpr binangle &operator+= (binangle other) { value += other.value; return *this; } constexpr binangle &operator-= (binangle other) { value -= other.value; return *this; } constexpr binangle operator+ (binangle other) const { return binangle(value + other.value); } constexpr binangle operator- (binangle other) const { return binangle(value - other.value); } constexpr binangle operator- () const { return binangle(0 - value); } constexpr binangle &operator<<= (const uint8_t shift) { value = tosigned() << shift; return *this; } constexpr binangle &operator>>= (const uint8_t shift) { value = tosigned() >> shift; return *this; } constexpr binangle operator<< (const uint8_t shift) const { return binangle(tosigned() << shift); } constexpr binangle operator>> (const uint8_t shift) const { return binangle(tosigned() >> shift); } }; inline constexpr binangle bamang(uint32_t v) { return binangle(v); } inline constexpr binangle q16ang(uint32_t v) { return binangle(v << 5); } inline constexpr binangle buildang(uint32_t v) { return binangle(v << BAMBITS); } inline binangle buildfang(double v) { return binangle(xs_ToFixed(BAMBITS, v)); } inline binangle radang(double v) { return binangle(xs_CRoundToUInt(v * (0x80000000u / pi::pi()))); } inline binangle degang(double v) { return binangle(FloatToAngle(v)); } inline FSerializer &Serialize(FSerializer &arc, const char *key, binangle &obj, binangle *defval) { return Serialize(arc, key, obj.value, defval ? &defval->value : nullptr); } //--------------------------------------------------------------------------- // // Functions for use with fixedhoriz and friendly functions. // //--------------------------------------------------------------------------- inline double HorizToPitch(double horiz) { return atan2(horiz, 128) * (180. / pi::pi()); } inline double HorizToPitch(fixed_t q16horiz) { return atan2(q16horiz, IntToFixed(128)) * (180. / pi::pi()); } inline fixed_t PitchToHoriz(double pitch) { return xs_CRoundToInt(clamp(IntToFixed(128) * tan(pitch * (pi::pi() / 180.)), INT32_MIN, INT32_MAX)); } inline int32_t PitchToBAM(double pitch) { return xs_CRoundToInt(clamp(pitch * (0x80000000u / 90.), INT32_MIN, INT32_MAX)); } inline constexpr double BAMToPitch(int32_t bam) { return bam * (90. / 0x80000000u); } //--------------------------------------------------------------------------- // // // //--------------------------------------------------------------------------- class fixedhoriz { fixed_t value; constexpr fixedhoriz(fixed_t v) : value(v) {} friend constexpr fixedhoriz q16horiz(fixed_t v); friend constexpr fixedhoriz buildhoriz(int v); friend fixedhoriz buildfhoriz(double v); friend fixedhoriz pitchhoriz(double v); friend fixedhoriz bamhoriz(int32_t v); friend FSerializer &Serialize(FSerializer &arc, const char *key, fixedhoriz &obj, fixedhoriz *defval); public: fixedhoriz() = default; fixedhoriz(const fixedhoriz &other) = default; // This class intentionally makes no allowances for implicit type conversions because those would render it ineffective. constexpr short asbuild() const { return FixedToInt(value); } constexpr double asbuildf() const { return FixedToFloat(value); } constexpr fixed_t asq16() const { return value; } double aspitch() const { return HorizToPitch(value); } int32_t asbam() const { return PitchToBAM(aspitch()); } bool operator< (fixedhoriz other) const { return value < other.value; } bool operator> (fixedhoriz other) const { return value > other.value; } bool operator<= (fixedhoriz other) const { return value <= other.value; } bool operator>= (fixedhoriz other) const { return value >= other.value; } constexpr bool operator== (fixedhoriz other) const { return value == other.value; } constexpr bool operator!= (fixedhoriz other) const { return value != other.value; } constexpr fixedhoriz &operator+= (fixedhoriz other) { value += other.value; return *this; } constexpr fixedhoriz &operator-= (fixedhoriz other) { value -= other.value; return *this; } constexpr fixedhoriz operator- () const { return fixedhoriz(-value); } constexpr fixedhoriz operator+ (fixedhoriz other) const { return fixedhoriz(value + other.value); } constexpr fixedhoriz operator- (fixedhoriz other) const { return fixedhoriz(value - other.value); } constexpr fixedhoriz &operator<<= (const uint8_t shift) { value <<= shift; return *this; } constexpr fixedhoriz &operator>>= (const uint8_t shift) { value >>= shift; return *this; } constexpr fixedhoriz operator<< (const uint8_t shift) const { return fixedhoriz(value << shift); } constexpr fixedhoriz operator>> (const uint8_t shift) const { return fixedhoriz(value >> shift); } }; inline constexpr fixedhoriz q16horiz(fixed_t v) { return fixedhoriz(v); } inline constexpr fixedhoriz buildhoriz(int v) { return fixedhoriz(IntToFixed(v)); } inline fixedhoriz buildfhoriz(double v) { return fixedhoriz(FloatToFixed(v)); } inline fixedhoriz pitchhoriz(double v) { return fixedhoriz(PitchToHoriz(v)); } inline fixedhoriz bamhoriz(int32_t v) { return pitchhoriz(BAMToPitch(v)); } inline FSerializer &Serialize(FSerializer &arc, const char *key, fixedhoriz &obj, fixedhoriz *defval) { return Serialize(arc, key, obj.value, defval ? &defval->value : nullptr); } //--------------------------------------------------------------------------- // // High precision vector angle function, mainly for the renderer. // //--------------------------------------------------------------------------- inline binangle bvectangbam(double x, double y) { return radang(atan2(y, x)); } //--------------------------------------------------------------------------- // // Interpolation functions for use throughout games. // //--------------------------------------------------------------------------- inline constexpr int32_t interpolatedvalue(int32_t oval, int32_t val, double const smoothratio, int const scale = 16) { return oval + MulScale(val - oval, int(smoothratio), scale); } inline constexpr int32_t interpolatedvalue(int32_t oval, int32_t val, int const smoothratio, int const scale = 16) { return oval + MulScale(val - oval, smoothratio, scale); } inline constexpr double interpolatedvaluef(double oval, double val, double const smoothratio, int const scale = 16) { return oval + MulScaleF(val - oval, smoothratio, scale); } inline constexpr int32_t interpolatedangle(int32_t oang, int32_t ang, double const smoothratio, int const scale = 16) { return oang + MulScale(((ang + 1024 - oang) & 2047) - 1024, int(smoothratio), scale); } inline constexpr int32_t interpolatedangle(int32_t oang, int32_t ang, int const smoothratio, int const scale = 16) { return oang + MulScale(((ang + 1024 - oang) & 2047) - 1024, smoothratio, scale); } inline constexpr binangle interpolatedangle(binangle oang, binangle ang, double const smoothratio, int const scale = 16) { return bamang(oang.asbam() + MulScale(((ang.asbam() + 0x80000000 - oang.asbam()) & 0xFFFFFFFF) - 0x80000000, int(smoothratio), scale)); } inline constexpr binangle interpolatedangle(binangle oang, binangle ang, int const smoothratio, int const scale = 16) { return bamang(oang.asbam() + MulScale(((ang.asbam() + 0x80000000 - oang.asbam()) & 0xFFFFFFFF) - 0x80000000, smoothratio, scale)); } inline constexpr fixedhoriz interpolatedhorizon(fixedhoriz oval, fixedhoriz val, double const smoothratio, int const scale = 16) { return q16horiz(oval.asq16() + MulScale((val - oval).asq16(), int(smoothratio), scale)); } inline constexpr fixedhoriz interpolatedhorizon(fixedhoriz oval, fixedhoriz val, int const smoothratio, int const scale = 16) { return q16horiz(oval.asq16() + MulScale((val - oval).asq16(), smoothratio, scale)); }