//------------------------------------------------------------------------- /* Copyright (C) 2021 Christoph Oelckers & Mitchell Richters This is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ //------------------------------------------------------------------------- #include "gamefuncs.h" #include "gamestruct.h" #include "intvec.h" //--------------------------------------------------------------------------- // // Unified chasecam function for all games. // //--------------------------------------------------------------------------- int cameradist, cameraclock; bool calcChaseCamPos(int* px, int* py, int* pz, spritetype* pspr, short *psectnum, binangle ang, fixedhoriz horiz, double const smoothratio) { hitdata_t hitinfo; binangle daang; short bakcstat; int newdist; assert(*psectnum >= 0 && *psectnum < MAXSECTORS); // Calculate new pos to shoot backwards, using averaged values from the big three. int nx = gi->chaseCamX(ang); int ny = gi->chaseCamY(ang); int nz = gi->chaseCamZ(horiz); vec3_t pvect = { *px, *py, *pz }; bakcstat = pspr->cstat; pspr->cstat &= ~(CSTAT_SPRITE_BLOCK | CSTAT_SPRITE_BLOCK_HITSCAN); updatesectorz(*px, *py, *pz, psectnum); hitscan(&pvect, *psectnum, nx, ny, nz, &hitinfo, CLIPMASK1); pspr->cstat = bakcstat; int hx = hitinfo.pos.x - *px; int hy = hitinfo.pos.y - *py; if (*psectnum < 0) { return false; } assert(*psectnum >= 0 && *psectnum < MAXSECTORS); // If something is in the way, make pp->camera_dist lower if necessary if (abs(nx) + abs(ny) > abs(hx) + abs(hy)) { if (hitinfo.wall >= 0) { // Push you a little bit off the wall *psectnum = hitinfo.sect; daang = bvectangbam(wall[wall[hitinfo.wall].point2].x - wall[hitinfo.wall].x, wall[wall[hitinfo.wall].point2].y - wall[hitinfo.wall].y); newdist = nx * daang.bsin() + ny * -daang.bcos(); if (abs(nx) > abs(ny)) hx -= MulScale(nx, newdist, 28); else hy -= MulScale(ny, newdist, 28); } else if (hitinfo.sprite < 0) { // Push you off the ceiling/floor *psectnum = hitinfo.sect; if (abs(nx) > abs(ny)) hx -= (nx >> 5); else hy -= (ny >> 5); } else { // If you hit a sprite that's not a wall sprite - try again. spritetype* hspr = &sprite[hitinfo.sprite]; if (!(hspr->cstat & CSTAT_SPRITE_ALIGNMENT_WALL)) { bakcstat = hspr->cstat; hspr->cstat &= ~(CSTAT_SPRITE_BLOCK | CSTAT_SPRITE_BLOCK_HITSCAN); calcChaseCamPos(px, py, pz, pspr, psectnum, ang, horiz, smoothratio); hspr->cstat = bakcstat; return false; } else { // same as wall calculation. daang = buildang(pspr->ang - 512); newdist = nx * daang.bsin() + ny * -daang.bcos(); if (abs(nx) > abs(ny)) hx -= MulScale(nx, newdist, 28); else hy -= MulScale(ny, newdist, 28); } } if (abs(nx) > abs(ny)) newdist = DivScale(hx, nx, 16); else newdist = DivScale(hy, ny, 16); if (newdist < cameradist) cameradist = newdist; } // Actually move you! (Camerdist is 65536 if nothing is in the way) *px += MulScale(nx, cameradist, 16); *py += MulScale(ny, cameradist, 16); *pz += MulScale(nz, cameradist, 16); // Caculate clock using GameTicRate so it increases the same rate on all speed computers. int myclock = PlayClock + MulScale(120 / GameTicRate, smoothratio, 16); if (cameraclock == INT_MIN) { // Third person view was just started. cameraclock = myclock; } // Slowly increase cameradist until it reaches 65536. cameradist = min(cameradist + ((myclock - cameraclock) << 10), 65536); cameraclock = myclock; // Make sure psectnum is correct. updatesectorz(*px, *py, *pz, psectnum); return true; } //--------------------------------------------------------------------------- // // // //--------------------------------------------------------------------------- bool spriteIsModelOrVoxel(const spritetype * tspr) { if ((unsigned)tspr->owner < MAXSPRITES && spriteext[tspr->owner].flags & SPREXT_NOTMD) return false; if (hw_models) { auto& mdinfo = tile2model[Ptile2tile(tspr->picnum, tspr->pal)]; if (mdinfo.modelid >= 0 && mdinfo.framenum >= 0) return true; } auto slabalign = (tspr->cstat & CSTAT_SPRITE_ALIGNMENT) == CSTAT_SPRITE_ALIGNMENT_SLAB; if (r_voxels && !slabalign && tiletovox[tspr->picnum] >= 0 && voxmodels[tiletovox[tspr->picnum]]) return true; return (slabalign && voxmodels[tspr->picnum]); } //========================================================================== // // note that this returns values in renderer coordinate space with inverted sign! // //========================================================================== void PlanesAtPoint(const sectortype* sec, float dax, float day, float* pceilz, float* pflorz) { float ceilz = float(sec->ceilingz); float florz = float(sec->floorz); if (((sec->ceilingstat | sec->floorstat) & CSTAT_SECTOR_SLOPE) == CSTAT_SECTOR_SLOPE) { auto wal = &wall[sec->wallptr]; auto wal2 = &wall[wal->point2]; float dx = wal2->x - wal->x; float dy = wal2->y - wal->y; int i = (int)sqrt(dx * dx + dy * dy) << 5; // length of sector's first wall. if (i != 0) { float const j = (dx * (day - wal->y) - dy * (dax - wal->x)) * (1.f / 8.f); if (sec->ceilingstat & CSTAT_SECTOR_SLOPE) ceilz += (sec->ceilingheinum * j) / i; if (sec->floorstat & CSTAT_SECTOR_SLOPE) florz += (sec->floorheinum * j) / i; } } // Scale to render coordinates. if (pceilz) *pceilz = ceilz * -(1.f / 256.f); if (pflorz) *pflorz = florz * -(1.f / 256.f); } //========================================================================== // // Calculate the position of a wall sprite in the world // //========================================================================== void GetWallSpritePosition(const spritetype* spr, vec2_t pos, vec2_t* out, bool render) { auto tex = tileGetTexture(spr->picnum); int width, leftofs; if (render && hw_hightile && TileFiles.tiledata[spr->picnum].h_xsize) { width = TileFiles.tiledata[spr->picnum].h_xsize; leftofs = (TileFiles.tiledata[spr->picnum].h_xoffs + spr->xoffset); } else { width = tex->GetTexelWidth(); leftofs = (tex->GetTexelLeftOffset() + spr->xoffset); } int x = bsin(spr->ang) * spr->xrepeat; int y = -bcos(spr->ang) * spr->xrepeat; int xoff = leftofs + spr->xoffset; if (spr->cstat & CSTAT_SPRITE_XFLIP) xoff = -xoff; int origin = (width >> 1) + xoff; out[0].x = pos.x - MulScale(x, origin, 16); out[0].y = pos.y - MulScale(y, origin, 16); out[1].x = out[0].x + MulScale(x, width, 16); out[1].y = out[0].y + MulScale(y, width, 16); } //========================================================================== // // Calculate the position of a wall sprite in the world // //========================================================================== void GetFlatSpritePosition(const spritetype* spr, vec2_t pos, vec2_t* out, bool render) { auto tex = tileGetTexture(spr->picnum); int width, height, leftofs, topofs; if (render && hw_hightile && TileFiles.tiledata[spr->picnum].h_xsize) { width = TileFiles.tiledata[spr->picnum].h_xsize * spr->xrepeat; height = TileFiles.tiledata[spr->picnum].h_ysize * spr->yrepeat; leftofs = (TileFiles.tiledata[spr->picnum].h_xoffs + spr->xoffset) * spr->xrepeat; topofs = (TileFiles.tiledata[spr->picnum].h_yoffs + spr->yoffset) * spr->yrepeat; } else { width = tex->GetTexelWidth() * spr->xrepeat; height = tex->GetTexelHeight() * spr->yrepeat; leftofs = (tex->GetTexelLeftOffset() + spr->xoffset) * spr->xrepeat; topofs = (tex->GetTexelTopOffset() + spr->yoffset) * spr->yrepeat; } if (spr->cstat & CSTAT_SPRITE_XFLIP) leftofs = -leftofs; if (spr->cstat & CSTAT_SPRITE_YFLIP) topofs = -topofs; int sprcenterx = (width >> 1) + leftofs; int sprcentery = (height >> 1) + topofs; int cosang = bcos(spr->ang); int sinang = bsin(spr->ang); out[0].x = pos.x + DMulScale(sinang, sprcenterx, cosang, sprcentery, 16); out[0].y = pos.y + DMulScale(sinang, sprcentery, -cosang, sprcenterx, 16); out[1].x = out[0].x - MulScale(sinang, width, 16); out[1].y = out[0].y + MulScale(cosang, width, 16); vec2_t sub = { MulScale(cosang, height, 16), MulScale(sinang, height, 16) }; out[2] = out[1] - sub; out[3] = out[0] - sub; } //========================================================================== // // Check if some walls are set to use rotated textures. // Ideally this should just have been done with texture rotation, // but the effects on the render code would be too severe due to the alignment mess. // //========================================================================== void checkRotatedWalls() { for (int i = 0; i < numwalls; ++i) { if (wall[i].cstat & CSTAT_WALL_ROTATE_90) { auto& w = wall[i]; auto& tile = RotTile(w.picnum + animateoffs(w.picnum, 16384)); if (tile.newtile == -1 && tile.owner == -1) { auto owner = w.picnum + animateoffs(w.picnum, 16384); tile.newtile = TileFiles.tileCreateRotated(owner); assert(tile.newtile != -1); RotTile(tile.newtile).owner = w.picnum + animateoffs(w.picnum, 16384); } } } } //========================================================================== // // vector serializers // //========================================================================== FSerializer& Serialize(FSerializer& arc, const char* key, vec2_t& c, vec2_t* def) { if (def && !memcmp(&c, def, sizeof(c))) return arc; if (arc.BeginObject(key)) { arc("x", c.x, def ? &def->x : nullptr) ("y", c.y, def ? &def->y : nullptr) .EndObject(); } return arc; } FSerializer& Serialize(FSerializer& arc, const char* key, vec3_t& c, vec3_t* def) { if (def && !memcmp(&c, def, sizeof(c))) return arc; if (arc.BeginObject(key)) { arc("x", c.x, def ? &def->x : nullptr) ("y", c.y, def ? &def->y : nullptr) ("z", c.z, def ? &def->z : nullptr) .EndObject(); } return arc; }