new m32 aiming: changed the way distance is determined, so it also handles parallaxed sectors.

git-svn-id: https://svn.eduke32.com/eduke32@1464 1a8010ca-5511-0410-912e-c29ae57300e0
This commit is contained in:
helixhorned 2009-07-20 22:01:44 +00:00
parent 8f0da12b76
commit ce3d64d971

View file

@ -1919,13 +1919,15 @@ void polymer_alt_editorselect(void)
GLdouble proj[16]; GLdouble proj[16];
GLint view[4]; GLint view[4];
GLdouble x,y,z, viewx,viewy,viewz; GLdouble x,y,z;
GLdouble scrx,scry,scrz;
GLfloat scr[3], scrv[3];
GLfloat dadepth; GLfloat dadepth;
int8_t bestwhat = -1; int8_t bestwhat = -1;
int16_t bestsec = -1; int16_t bestsec = -1;
int16_t bestwall = -1; int16_t bestwall = -1;
GLfloat bestdist = 1000; //todo: tweak... GLfloat bestdist = FLT_MAX;
#ifdef M32_SHOWDEBUG #ifdef M32_SHOWDEBUG
GLfloat col1[3]={1.0,0.0,0.0}; GLfloat col1[3]={1.0,0.0,0.0};
@ -1942,7 +1944,18 @@ void polymer_alt_editorselect(void)
bglReadPixels(searchx, ydimen-searchy, 1,1, GL_DEPTH_COMPONENT, GL_FLOAT, &dadepth); bglReadPixels(searchx, ydimen-searchy, 1,1, GL_DEPTH_COMPONENT, GL_FLOAT, &dadepth);
bgluUnProject(searchx, ydimen-searchy, dadepth, model, proj, view, &x, &y, &z); bgluUnProject(searchx, ydimen-searchy, dadepth, model, proj, view, &x, &y, &z);
bgluUnProject(searchx, ydimen-searchy, 0.0, model, proj, view, &viewx, &viewy, &viewz); bgluUnProject(searchx, ydimen-searchy, 0.0, model, proj, view, &scrx, &scry, &scrz);
#ifdef M32_SHOWDEBUG
if (m32_numdebuglines < 64)
Bsprintf(m32_debugstr[m32_numdebuglines++], "x=%.02f, y=%.02f, z/16=%.02f (BUILD)", -z, x, -y);
#endif
scr[0]=scrx, scr[1]=scry, scr[2]=scrz;
scrv[0] = x-scrx;
scrv[1] = y-scry;
scrv[2] = z-scrz;
for (i=0; i<numwalls; i++) for (i=0; i<numwalls; i++)
{ {
@ -1960,24 +1973,33 @@ void polymer_alt_editorselect(void)
GLdouble a=pl[0], b=pl[1], c=pl[2], d=pl[3]; GLdouble a=pl[0], b=pl[1], c=pl[2], d=pl[3];
GLdouble nnormsq = a*a + b*b + c*c; GLdouble nnormsq = a*a + b*b + c*c;
GLdouble nnorm = sqrt(nnormsq); GLdouble nnorm = sqrt(nnormsq);
GLdouble dist; GLfloat t, svcoeff, dist;
GLfloat npl[3] = {a/nnorm, b/nnorm, c/nnorm}; GLfloat npl[3] = {a/nnorm, b/nnorm, c/nnorm};
GLfloat scrv[3] = {x-viewx, y-viewy, z-viewz};
dist = fabs(a*x + b*y + c*z + d)/nnorm; t = dot3f(pl,scrv);
if (t==0)
continue;
svcoeff = -(dot3f(pl,scr)+d)/t;
if (svcoeff < 0)
continue;
dist = svcoeff * sqrt(dot3f(scrv,scrv));
if (dist > bestdist) if (dist > bestdist)
continue; continue;
// TODO: the parallax cases...
for (what=(wal->nextsector>=0?2:0); what>=0; what--) for (what=(wal->nextsector>=0?2:0); what>=0; what--)
{ {
GLfloat v1[3], v2[3], v3[3], v4[3], v12[3], v34[3], v1p_r[3], v3p_r[3]; GLfloat v1[3], v2[3], v3[3], v4[3], v12[3], v34[3], v1p_r[3], v3p_r[3];
GLfloat v23[3], v41[3], v2p_r[3], v4p_r[3]; GLfloat v23[3], v41[3], v2p_r[3], v4p_r[3];
GLfloat tp[3]={x,y,z}; GLfloat tp[3];
_prplane *pp; _prplane *pp;
tp[0] = scrx + svcoeff*scrv[0];
tp[1] = scry + svcoeff*scrv[1];
tp[2] = scrz + svcoeff*scrv[2];
pp=wp; pp=wp;
if (what==0) if (what==0)
{ {
@ -1997,7 +2019,7 @@ void polymer_alt_editorselect(void)
pp=&w->mask; pp=&w->mask;
} }
if (-dot3f(scrv,pl)<0 && !(what==2 && (wal->cstat&16))) if (-t<0 && !(what==2 && (wal->cstat&16)))
goto nextwall; goto nextwall;
Bmemcpy(v1, &pp->buffer[0], 3*sizeof(GLfloat)); Bmemcpy(v1, &pp->buffer[0], 3*sizeof(GLfloat));
@ -2066,8 +2088,7 @@ nextwall:;
for (what=1; what<=2; what++) for (what=1; what<=2; what++)
{ {
GLfloat *pl; GLfloat *pl;
GLdouble a, b, c, d; GLfloat t, svcoeff, dist, p[2];
GLfloat scrv[3] = {x-viewx, y-viewy, z-viewz};
if (what==1) if (what==1)
cfp = &s->ceil; cfp = &s->ceil;
@ -2076,161 +2097,158 @@ nextwall:;
pl = cfp->plane; pl = cfp->plane;
if (-dot3f(scrv,pl)<0) t = dot3f(pl,scrv);
if (-t<=0)
continue; continue;
a=pl[0], b=pl[1], c=pl[2], d=pl[3]; svcoeff = -(dot3f(pl,scr)+pl[3])/t;
if (svcoeff < 0)
continue;
dist = svcoeff * sqrt(dot3f(scrv,scrv));
if (dist > bestdist)
continue;
// point on plane (x and z)
p[0] = scrx + svcoeff*scrv[0];
p[1] = scrz + svcoeff*scrv[2];
// implementation using a loop over all triangles
for (j=0; j<s->indicescount; j+=3)
{ {
GLdouble nnormsq = a*a + b*b + c*c; GLushort idx[3] = {cfp->indices[j], cfp->indices[j+1], cfp->indices[j+2]};
GLdouble nnorm = sqrt(nnormsq); GLfloat v1[2] = {cfp->buffer[(idx[0]*5)], cfp->buffer[(idx[0]*5)+2]};
GLdouble dist = dist = fabs(a*x + b*y + c*z + d)/nnorm; GLfloat v2[2] = {cfp->buffer[(idx[1]*5)], cfp->buffer[(idx[1]*5)+2]};
GLfloat v3[2] = {cfp->buffer[(idx[2]*5)], cfp->buffer[(idx[2]*5)+2]};
if (dist > bestdist) GLfloat v12[2] = {v2[0]-v1[0], v2[1]-v1[1]};
continue; GLfloat v23[2] = {v3[0]-v2[0], v3[1]-v2[1]};
GLfloat v31[2] = {v1[0]-v3[0], v1[1]-v3[1]};
int rotsign = (what==1)?-1:1;
GLfloat v1p_r[2] = {rotsign*(p[1]-v1[1]), -rotsign*(p[0]-v1[0])};
GLfloat v2p_r[2] = {rotsign*(p[1]-v2[1]), -rotsign*(p[0]-v2[0])};
GLfloat v3p_r[2] = {rotsign*(p[1]-v3[1]), -rotsign*(p[0]-v3[0])};
if (dot2f(v12,v12)>0.25 && dot2f(v23,v23)>0.25 && dot2f(v31,v31)>0.25
&& dot2f(v12,v1p_r) < 0 && dot2f(v23,v2p_r) < 0 && dot2f(v31,v3p_r) < 0)
{ {
// projected point
GLfloat p[2] =
{
//x,
((b*b+c*c)*x - a*b*y - a*c*z - a*d)/nnormsq,
//y,
//(-a*b*x + (a*a+c*c)*y - b*c*z - b*d)/nnormsq,
//z
(-a*c*x - b*c*y + (a*a+b*b)*z - c*d)/nnormsq
};
// implementation using a loop over all triangles
for (j=0; j<s->indicescount; j+=3)
{
GLushort idx[3] = {cfp->indices[j], cfp->indices[j+1], cfp->indices[j+2]};
GLfloat v1[2] = {cfp->buffer[(idx[0]*5)], cfp->buffer[(idx[0]*5)+2]};
GLfloat v2[2] = {cfp->buffer[(idx[1]*5)], cfp->buffer[(idx[1]*5)+2]};
GLfloat v3[2] = {cfp->buffer[(idx[2]*5)], cfp->buffer[(idx[2]*5)+2]};
GLfloat v12[2] = {v2[0]-v1[0], v2[1]-v1[1]};
GLfloat v23[2] = {v3[0]-v2[0], v3[1]-v2[1]};
GLfloat v31[2] = {v1[0]-v3[0], v1[1]-v3[1]};
int rotsign = (what==1)?-1:1;
GLfloat v1p_r[2] = {rotsign*(p[1]-v1[1]), -rotsign*(p[0]-v1[0])};
GLfloat v2p_r[2] = {rotsign*(p[1]-v2[1]), -rotsign*(p[0]-v2[0])};
GLfloat v3p_r[2] = {rotsign*(p[1]-v3[1]), -rotsign*(p[0]-v3[0])};
if (dot2f(v12,v12)>0.25 && dot2f(v23,v23)>0.25 && dot2f(v31,v31)>0.25
&& dot2f(v12,v1p_r) < 0 && dot2f(v23,v2p_r) < 0 && dot2f(v31,v3p_r) < 0)
{
bestwhat = what;
bestsec = i;
bestdist = dist;
#ifdef M32_SHOWDEBUG
if (qvertcount<QNUM-3)
{
Bmemcpy(&qcolors[3*qvertcount],col1,sizeof(col1));
qverts[(3*qvertcount)+0] = v1[0];
qverts[(3*qvertcount)+1] = cfp->buffer[(idx[0]*5+1)];
qverts[(3*qvertcount)+2] = v1[1];
qvertcount++;
Bmemcpy(&qcolors[3*qvertcount],col2,sizeof(col1));
qverts[(3*qvertcount)+0] = v2[0];
qverts[(3*qvertcount)+1] = cfp->buffer[(idx[1]*5+1)];
qverts[(3*qvertcount)+2] = v2[1];
qvertcount++;
Bmemcpy(&qcolors[3*qvertcount],col3,sizeof(col1));
qverts[(3*qvertcount)+0] = v3[0];
qverts[(3*qvertcount)+1] = cfp->buffer[(idx[2]*5+1)];
qverts[(3*qvertcount)+2] = v3[1];
qvertcount++;
Bmemcpy(&qverts[3*qvertcount++],dummyvert, 3*sizeof(GLfloat));
}
#endif
goto nextsector;
}
} // loop over triangles
/*
// implementation using inside() (less precise)
if (inside(-p[1],p[0],i))
{
bestwhat = what; bestwhat = what;
bestsec = i; bestsec = i;
bestdist = dist; bestdist = dist;
}
*/
nextsector:
if (bestsec==i)
{
int16_t k, bestk=0;
GLfloat bestwdistsq = FLT_MAX, wdistsq;
GLfloat w1[2], w2[2], w21[2], pw1[2], pw2[2];
GLfloat ptonline[2];
GLfloat scrvxz[2]={scrv[0],scrv[2]};
GLfloat scrvxznorm, scrvxzn[2], scrpxz[2];
GLfloat w1d, w2d;
walltype *wal = &wall[sec->wallptr];
for (k=0; k<sec->wallnum; k++)
{
w1[1] = -(float)wal[k].x;
w1[0] = (float)wal[k].y;
w2[1] = -(float)wall[wal[k].point2].x;
w2[0] = (float)wall[wal[k].point2].y;
scrvxznorm = sqrt(dot2f(scrvxz,scrvxz));
scrvxzn[0] = scrvxz[1]/scrvxznorm;
scrvxzn[1] = -scrvxz[0]/scrvxznorm;
relvec2f(p,w1, pw1);
relvec2f(p,w2, pw2);
relvec2f(w2,w1, w21);
w1d = dot2f(scrvxzn,pw1);
w2d = dot2f(scrvxzn,pw2);
w2d = -w2d;
if (w1d <= 0 || w2d <= 0)
continue;
ptonline[0] = w2[0]+(w2d/(w1d+w2d))*w21[0];
ptonline[1] = w2[1]+(w2d/(w1d+w2d))*w21[1];
relvec2f(p,ptonline, scrpxz);
if (dot2f(scrvxz,scrpxz)<0)
continue;
wdistsq = dot2f(scrpxz,scrpxz);
if (wdistsq < bestwdistsq)
{
bestk = k;
bestwdistsq = wdistsq;
}
}
bestwall = sec->wallptr+bestk;
#ifdef M32_SHOWDEBUG #ifdef M32_SHOWDEBUG
if (m32_numdebuglines<64) if (qvertcount<QNUM-3)
Bsprintf(m32_debugstr[m32_numdebuglines++], "what=sec %d, dist=%.02f, wall=%d", bestsec, bestdist, bestwall); {
Bmemcpy(&qcolors[3*qvertcount],col1,sizeof(col1));
qverts[(3*qvertcount)+0] = v1[0];
qverts[(3*qvertcount)+1] = cfp->buffer[(idx[0]*5+1)];
qverts[(3*qvertcount)+2] = v1[1];
qvertcount++;
Bmemcpy(&qcolors[3*qvertcount],col2,sizeof(col1));
qverts[(3*qvertcount)+0] = v2[0];
qverts[(3*qvertcount)+1] = cfp->buffer[(idx[1]*5+1)];
qverts[(3*qvertcount)+2] = v2[1];
qvertcount++;
Bmemcpy(&qcolors[3*qvertcount],col3,sizeof(col1));
qverts[(3*qvertcount)+0] = v3[0];
qverts[(3*qvertcount)+1] = cfp->buffer[(idx[2]*5+1)];
qverts[(3*qvertcount)+2] = v3[1];
qvertcount++;
Bmemcpy(&qverts[3*qvertcount++],dummyvert, 3*sizeof(GLfloat));
}
#endif #endif
} // determine searchwall goto nextsector;
} // ceiling or floor }
} // loop over sectors } // loop over triangles
} /*
} // implementation using inside() (less precise)
if (inside(-p[1],p[0],i))
{
bestwhat = what;
bestsec = i;
bestdist = dist;
}
*/
nextsector:
if (bestsec==i)
{
int16_t k, bestk=0;
GLfloat bestwdistsq = FLT_MAX, wdistsq;
GLfloat w1[2], w2[2], w21[2], pw1[2], pw2[2];
GLfloat ptonline[2];
GLfloat scrvxz[2]={scrv[0],scrv[2]};
GLfloat scrvxznorm, scrvxzn[2], scrpxz[2];
GLfloat w1d, w2d;
walltype *wal = &wall[sec->wallptr];
for (k=0; k<sec->wallnum; k++)
{
w1[1] = -(float)wal[k].x;
w1[0] = (float)wal[k].y;
w2[1] = -(float)wall[wal[k].point2].x;
w2[0] = (float)wall[wal[k].point2].y;
scrvxznorm = sqrt(dot2f(scrvxz,scrvxz));
scrvxzn[0] = scrvxz[1]/scrvxznorm;
scrvxzn[1] = -scrvxz[0]/scrvxznorm;
relvec2f(p,w1, pw1);
relvec2f(p,w2, pw2);
relvec2f(w2,w1, w21);
w1d = dot2f(scrvxzn,pw1);
w2d = dot2f(scrvxzn,pw2);
w2d = -w2d;
if (w1d <= 0 || w2d <= 0)
continue;
ptonline[0] = w2[0]+(w2d/(w1d+w2d))*w21[0];
ptonline[1] = w2[1]+(w2d/(w1d+w2d))*w21[1];
relvec2f(p,ptonline, scrpxz);
if (dot2f(scrvxz,scrpxz)<0)
continue;
wdistsq = dot2f(scrpxz,scrpxz);
if (wdistsq < bestwdistsq)
{
bestk = k;
bestwdistsq = wdistsq;
}
}
bestwall = sec->wallptr+bestk;
#ifdef M32_SHOWDEBUG
if (m32_numdebuglines<64)
Bsprintf(m32_debugstr[m32_numdebuglines++], "what=sec %d, dist=%.02f, wall=%d", bestsec, bestdist, bestwall);
#endif
} // determine searchwall
} // ceiling or floor
} // loop over sectors
for (i=0; i<m32_numdrawnsprites; i++) for (i=0; i<m32_numdrawnsprites; i++)
{ {
GLfloat *pl = m32_drawnsprites[i].plane; GLfloat *pl = m32_drawnsprites[i].plane;
GLdouble a=pl[0], b=pl[1], c=pl[2], d=pl[3]; GLfloat t, svcoeff, dist;
GLdouble nnormsq = a*a + b*b + c*c;
GLdouble nnorm = sqrt(nnormsq);
GLdouble dist = fabs(a*x + b*y + c*z + d)/nnorm;
GLfloat scrv[3] = {x-viewx, y-viewy, z-viewz};
int16_t sn = m32_drawnsprites[i].owner; int16_t sn = m32_drawnsprites[i].owner;
if (dist > bestdist+1.01 || ((sprite[sn].cstat&64) && -dot3f(scrv,pl)<0)) t = dot3f(pl,scrv);
if (t==0 || ((sprite[sn].cstat&64) && -t<0))
continue; continue;
svcoeff = -(dot3f(pl,scr)+pl[3])/t;
if (svcoeff < 0)
continue;
dist = svcoeff * sqrt(dot3f(scrv,scrv));
if (dist > bestdist+1.01)
continue;
{ {
GLfloat tp[3] = {x,y,z};
GLfloat *v = m32_drawnsprites[i].verts; GLfloat *v = m32_drawnsprites[i].verts;
GLfloat v12_r[3], v23_r[3], v34_r[3], v41_r[3]; GLfloat v12_r[3], v23_r[3], v34_r[3], v41_r[3];
GLfloat v1p[3], v2p[3], v3p[3], v4p[3]; GLfloat v1p[3], v2p[3], v3p[3], v4p[3];
GLfloat tp[3];
tp[0] = scrx + svcoeff*scrv[0];
tp[1] = scry + svcoeff*scrv[1];
tp[2] = scrz + svcoeff*scrv[2];
relvec3f(&v[3*3],&v[0*3], v12_r); relvec3f(&v[3*3],&v[0*3], v12_r);
relvec3f(&v[0*3],&v[1*3], v23_r); relvec3f(&v[0*3],&v[1*3], v23_r);
relvec3f(&v[1*3],&v[2*3], v34_r); relvec3f(&v[1*3],&v[2*3], v34_r);