- ported my old Build-style renderer for Doom from 2008 and the wall renderer from GZDoom to work with Build data.

It renders walls, but y-panning is still broken.
This commit is contained in:
Christoph Oelckers 2021-03-15 23:46:03 +01:00
parent 9ebd8fd4a5
commit b492cbcebb
15 changed files with 2353 additions and 55 deletions

View file

@ -1072,6 +1072,8 @@ set (PCH_SOURCES
core/gi.cpp
core/rendering/scene/hw_clipper.cpp
core/rendering/scene/hw_walls.cpp
core/rendering/render.cpp
core/console/c_notifybuffer.cpp
core/console/d_event.cpp

View file

@ -875,6 +875,19 @@ enum EHitBits
void updateModelInterpolation();
int32_t renderAddTsprite(int16_t z, int16_t sectnum);
inline void tileUpdatePicnum(int* const tileptr, int const obj, int stat)
{
auto& tile = *tileptr;
if (picanm[tile].sf & PICANM_ANIMTYPE_MASK)
tile += animateoffs(tile, obj);
if (((obj & 16384) == 16384) && (stat & CSTAT_WALL_ROTATE_90) && RotTile(tile).newtile != -1)
tile = RotTile(tile).newtile;
}
#include "iterators.h"

View file

@ -20,6 +20,17 @@
// bits 12-15: reserved
//////////////////// Version 7 map format ////////////////////
enum
{
CSTAT_SECTOR_SKY = 1,
CSTAT_SECTOR_SLOPE = 2,
CSTAT_SECTOR_SWAPXY = 4,
CSTAT_SECTOR_TEXHALF = 8,
CSTAT_SECTOR_XFLIP = 16,
CSTAT_SECTOR_YFLIP = 32,
CSTAT_SECTOR_ALIGN = 64,
CSTAT_SECTOR_METHOD = 384
};
//40 bytes
struct sectortype
@ -91,6 +102,7 @@ struct walltype
int16_t hitag;
int16_t extra;
float xpan_, ypan_;
angle_t clipangle;
int xpan() const { return int(xpan_); }
int ypan() const { return int(ypan_); }

View file

@ -1419,7 +1419,7 @@ int32_t hitscan(const vec3_t *sv, int16_t sectnum, int32_t vx, int32_t vy, int32
{
if (picanm[tilenum].sf&PICANM_TEXHITSCAN_BIT)
{
tileUpdatePicnum(&tilenum, 0);
tileUpdatePicnum(&tilenum, 0, 0);
if (tileLoad(tilenum))
{

View file

@ -29,6 +29,7 @@
#include "inputstate.h"
#include "printf.h"
#include "gamecontrol.h"
#include "render.h"
#ifdef USE_OPENGL
# include "mdsprite.h"
@ -38,6 +39,7 @@
#include "gl_renderer.h"
#endif
float rollang;
int32_t r_rortexture = 0;
int32_t r_rortexturerange = 0;
@ -909,9 +911,32 @@ void set_globalang(fixed_t const ang)
// drawrooms
//
EXTERN_CVAR(Int, gl_fogmode)
CVAR(Bool, testnewrenderer, true, 0)
int32_t renderDrawRoomsQ16(int32_t daposx, int32_t daposy, int32_t daposz,
fixed_t daang, fixed_t dahoriz, int16_t dacursectnum)
{
for (int i = 0; i < numwalls; ++i)
{
if (wall[i].cstat & CSTAT_WALL_ROTATE_90)
{
auto& w = wall[i];
auto& tile = RotTile(w.picnum + animateoffs(w.picnum, 16384));
if (tile.newtile == -1 && tile.owner == -1)
{
auto owner = w.picnum + animateoffs(w.picnum, 16384);
tile.newtile = TileFiles.tileCreateRotated(owner);
assert(tile.newtile != -1);
RotTile(tile.newtile).owner = w.picnum + animateoffs(w.picnum, 16384);
}
}
}
int32_t i;
if (gl_fogmode == 1) gl_fogmode = 2; // only radial fog works with Build's screwed up coordinate system.
@ -931,26 +956,6 @@ int32_t renderDrawRoomsQ16(int32_t daposx, int32_t daposy, int32_t daposz,
i = xdimen-1;
for (int i = 0; i < numwalls; ++i)
{
if (wall[i].cstat & CSTAT_WALL_ROTATE_90)
{
auto &w = wall[i];
auto &tile = RotTile(w.picnum+animateoffs(w.picnum,16384));
if (tile.newtile == -1 && tile.owner == -1)
{
auto owner = w.picnum + animateoffs(w.picnum, 16384);
tile.newtile = TileFiles.tileCreateRotated(owner);
assert(tile.newtile != -1);
RotTile(tile.newtile).owner = w.picnum+animateoffs(w.picnum,16384);
}
}
}
// Update starting sector number (common to classic and Polymost).
// ADJUST_GLOBALCURSECTNUM.
if (globalcursectnum >= MAXSECTORS)
@ -967,7 +972,15 @@ int32_t renderDrawRoomsQ16(int32_t daposx, int32_t daposy, int32_t daposz,
return 0;
}
if (!testnewrenderer)
{
Polymost::polymost_drawrooms();
}
else
{
vec3_t pos = { daposx, daposy, daposz };
render_drawrooms(pos, globalcursectnum, daang, dahoriz, rollang, r_fov, false, false);
}
return inpreparemirror;
}
@ -1560,9 +1573,11 @@ void renderDrawMapView(int32_t dax, int32_t day, int32_t zoome, int16_t ang)
globalfloorpal = globalpal = sec->floorpal;
globalpicnum = sec->floorpicnum;
if ((unsigned)globalpicnum >= (unsigned)MAXTILES) globalpicnum = 0;
tileUpdatePicnum(&globalpicnum, s);
int _globalpicnum = sec->floorpicnum;
if ((unsigned)_globalpicnum >= (unsigned)MAXTILES) globalpicnum = 0;
tileUpdatePicnum(&_globalpicnum, s, 0);
globalpicnum = _globalpicnum;
setgotpic(globalpicnum);
if ((tileWidth(globalpicnum) <= 0) || (tileHeight(globalpicnum) <= 0)) continue;
@ -1679,8 +1694,12 @@ void renderDrawMapView(int32_t dax, int32_t day, int32_t zoome, int16_t ang)
globalpicnum = spr->picnum;
globalpal = spr->pal; // GL needs this, software doesn't
if ((unsigned)globalpicnum >= (unsigned)MAXTILES) globalpicnum = 0;
tileUpdatePicnum(&globalpicnum, s);
int _globalpicnum = sec->floorpicnum;
if ((unsigned)_globalpicnum >= (unsigned)MAXTILES) globalpicnum = 0;
tileUpdatePicnum(&_globalpicnum, s, 0);
globalpicnum = _globalpicnum;
setgotpic(globalpicnum);
if ((tileWidth(globalpicnum) <= 0) || (tileHeight(globalpicnum) <= 0)) continue;
@ -2981,6 +3000,7 @@ void alignflorslope(int16_t dasect, int32_t x, int32_t y, int32_t z)
void renderSetRollAngle(float rolla)
{
Polymost::gtang = rolla * BAngRadian;
rollang = rolla * (BAngRadian * 180 / pi::pif());
}
#endif

View file

@ -8,6 +8,8 @@
#pragma once
#include "cmdlib.h"
#ifndef ENGINE_PRIV_H
#define ENGINE_PRIV_H
@ -96,10 +98,6 @@ static FORCE_INLINE int32_t getpalookup(int32_t davis, int32_t dashade)
static FORCE_INLINE int32_t getpalookupsh(int32_t davis) { return getpalookup(davis, globalshade) << 8; }
////// yax'y stuff //////
int32_t renderAddTsprite(int16_t z, int16_t sectnum);
static FORCE_INLINE void setgotpic(int32_t tilenume)
{
gotpic[tilenume>>3] |= pow2char[tilenume&7];
@ -117,16 +115,6 @@ static FORCE_INLINE void set_globalpos(int32_t const x, int32_t const y, int32_t
globalposz = z, fglobalposz = (float)z;
}
template <typename T> static FORCE_INLINE void tileUpdatePicnum(T * const tileptr, int const obj)
{
auto &tile = *tileptr;
if (picanm[tile].sf & PICANM_ANIMTYPE_MASK)
tile += animateoffs(tile, obj);
if (((obj & 16384) == 16384) && (globalorientation & CSTAT_WALL_ROTATE_90) && RotTile(tile).newtile != -1)
tile = RotTile(tile).newtile;
}
// x1, y1: in/out
// rest x/y: out
@ -196,22 +184,12 @@ static inline void get_floorspr_points(T const * const spr, int32_t px, int32_t
inline int widthBits(int num)
{
int w = tileWidth(num);
int j = 15;
while ((j > 1) && ((1 << j) > w))
j--;
return j;
return sizeToBits(tileWidth(num));
}
inline int heightBits(int num)
{
int w = tileHeight(num);
int j = 15;
while ((j > 1) && ((1 << j) > w))
j--;
return j;
return sizeToBits(tileHeight(num));
}

View file

@ -114,13 +114,24 @@ static inline float polymost_invsqrt_approximation(float x)
return 1.f / sqrtf(x);
}
float sectorVisibility(int sectnum)
static float sectorVisibility(int sectnum)
{
// Beware of wraparound madness...
int v = sector[sectnum].visibility;
return v? ((uint8_t)(v + 16)) / 16.f : 1.f;
}
template <typename T> static FORCE_INLINE void tileUpdatePicnum(T* const tileptr, int const obj)
{
auto& tile = *tileptr;
if (picanm[tile].sf & PICANM_ANIMTYPE_MASK)
tile += animateoffs(tile, obj);
if (((obj & 16384) == 16384) && (globalorientation & CSTAT_WALL_ROTATE_90) && RotTile(tile).newtile != -1)
tile = RotTile(tile).newtile;
}
//--------------------------------------------------------------------------------------------------
//Use this for both initialization and uninitialization of OpenGL.

View file

@ -103,4 +103,14 @@ inline void fillshort(void* buff, size_t count, uint16_t clear)
template<typename T> inline constexpr T Sgn(const T& val) { return (val > 0) - (val < 0); }
inline int sizeToBits(int w)
{
int j = 15;
while ((j > 1) && ((1 << j) > w))
j--;
return j;
}
#endif

View file

@ -0,0 +1,688 @@
// renderer draft. This code is not for release!
#include "glbackend/glbackend.h"
#include "build.h"
#include "hw_vrmodes.h"
#include "v_draw.h"
#include "gamecvars.h"
#include "binaryangle.h"
#include "automap.h"
#include "hw_clipper.h"
#include "hw_drawstructs.h"
#include "hw_clock.h"
#include "render.h"
#include "printf.h"
#include "v_video.h"
#include "flatvertices.h"
angle_t FrustumAngle(float ratio, float fov, float pitch)
{
float tilt = fabs(pitch);
// If the pitch is larger than this you can look all around at a FOV of 90°
if (tilt > 46.0f) return 0xffffffff;
// ok, this is a gross hack that barely works...
// but at least it doesn't overestimate too much...
// todo: integrate roll into the calculation
double floatangle = 2.0 + (45.0 + ((tilt / 1.9))) * fov * 48.0 / AspectMultiplier(ratio) / 90.0;
angle_t a1 = DAngle(floatangle).BAMs();
if (a1 >= ANGLE_180) return 0xffffffff;
return a1;
}
//==========================================================================
//
// note that these return values in renderer coordinate space with inverted sign!
//
//==========================================================================
float CeilingAtPoint(sectortype* sec, float dax, float day)
{
if (!(sec->ceilingstat & CSTAT_SECTOR_SLOPE))
return float(sec->ceilingz);
auto wal = &wall[sec->wallptr];
auto wal2 = &wall[wal->point2];
vec2_t d = { wal2->x - wal->x, wal2->y - wal->y };
int i = ksqrt(uhypsq(d.x, d.y)) << 5;
if (i == 0) return sec->ceilingz;
float const j = (d.x * (day - wal->y) - d.y * (dax - wal->x)) * (1.f / 8.f);
return -float(sec->ceilingz) + (sec->ceilingheinum * j) / i;
}
float FloorAtPoint(usectorptr_t sec, float dax, float day)
{
if (!(sec->floorstat & CSTAT_SECTOR_SLOPE))
return float(sec->floorz);
auto wal = &wall[sec->wallptr];
auto wal2 = &wall[wal->point2];
vec2_t d = { wal2->x - wal->x, wal2->y - wal->y };
int i = ksqrt(uhypsq(d.x, d.y)) << 5;
if (i == 0) return sec->floorz;
float const j = (d.x * (day - wal->y) - d.y * (dax - wal->x)) * (1.f / 8.f);
return -float(sec->floorz) + (sec->floorheinum * j) / i;
}
void PlanesAtPoint(usectorptr_t sec, float dax, float day, float* pceilz, float* pflorz)
{
float ceilz = float(sec->ceilingz);
float florz = float(sec->floorz);
if (((sec->ceilingstat | sec->floorstat) & CSTAT_SECTOR_SLOPE) == CSTAT_SECTOR_SLOPE)
{
auto wal = &wall[sec->wallptr];
auto wal2 = &wall[wal->point2];
vec2_t d = { wal2->x - wal->x, wal2->y - wal->y };
int i = ksqrt(uhypsq(d.x, d.y)) << 5;
if (i != 0)
{
float const j = (d.x * (day - wal->y) - d.y * (dax - wal->x)) * (1.f / 8.f);
if (sec->ceilingstat & CSTAT_SECTOR_SLOPE) ceilz += (sec->ceilingheinum * j) / i;
if (sec->floorstat & CSTAT_SECTOR_SLOPE) florz += (sec->floorheinum * j) / i;
}
}
// Scale to render coordinates.
*pceilz = ceilz * -(1.f / 256.f);
*pflorz = florz * -(1.f / 256.f);
}
#define NS namespace Newrender { // auto-format blocking #define.
NS
struct FBunch
{
int sectnum;
int startline;
int endline;
angle_t startangle; // in pseudo angles for the clipper
angle_t endangle;
};
const float aspect_factor = (1.28f / 1.333333f); // this factor gets applied by the original code - must check if needed or just an artifact of the weird math.
// ----------------------------------------------------------------------------
//
// Bunches are groups of continuous lines
// This array stores the amount of points per bunch,
// the view angles for each point and the line index for the starting line
//
// ----------------------------------------------------------------------------
class BunchDrawer
{
public:
Clipper &clipper;
int LastBunch;
int StartTime;
TArray<FBunch> Bunches;
TArray<int> CompareData;
double viewx, viewy;
FixedBitArray<MAXSECTORS> gotsector;
//==========================================================================
//
//
//
//==========================================================================
public:
BunchDrawer(Clipper& c, vec2_t& view) : clipper(c)
{
viewx = view.x * (1/ 16.f);
viewy = view.y * -(1/ 16.f);
StartScene();
clipper.SetViewpoint(DVector2(viewx, viewy));
for (int i = 0; i < numwalls; i++)
{
// Precalculate the clip angles to avoid doing this repeatedly during level traversal.
// Reverse the orientation so that startangle and endangle are properly ordered.
wall[i].clipangle = 0 - clipper.PointToPseudoAngle(wall[i].x * (1 / 16.f), wall[i].y * (-1 / 16.f));
}
}
//==========================================================================
//
//
//
//==========================================================================
private:
void StartScene()
{
LastBunch = 0;
StartTime = I_msTime();
Bunches.Clear();
CompareData.Clear();
gotsector.Zero();
}
//==========================================================================
//
//
//
//==========================================================================
void StartBunch(int sectnum, int linenum, angle_t startan, angle_t endan)
{
FBunch* bunch = &Bunches[LastBunch = Bunches.Reserve(1)];
bunch->sectnum = sectnum;
bunch->startline = bunch->endline = linenum;
bunch->startangle = startan;
bunch->endangle = endan;
}
//==========================================================================
//
//
//
//==========================================================================
void AddLineToBunch(int line, int newan)
{
Bunches[LastBunch].endline++;
Bunches[LastBunch].endangle = newan;
}
//==========================================================================
//
//
//
//==========================================================================
void DeleteBunch(int index)
{
Bunches[index] = Bunches.Last();
Bunches.Pop();
}
bool CheckClip(walltype* wal)
{
auto pt2 = &wall[wal->point2];
sectortype* backsector = &sector[wal->nextsector];
sectortype* frontsector = &sector[wall[wal->nextwall].nextsector];
float bs_floorheight1;
float bs_floorheight2;
float bs_ceilingheight1;
float bs_ceilingheight2;
float fs_floorheight1;
float fs_floorheight2;
float fs_ceilingheight1;
float fs_ceilingheight2;
// Mirrors and horizons always block the view
//if (linedef->special==Line_Mirror || linedef->special==Line_Horizon) return true;
PlanesAtPoint(frontsector, wal->x, wal->y, &fs_ceilingheight1, &fs_floorheight1);
PlanesAtPoint(frontsector, pt2->x, pt2->y, &fs_ceilingheight2, &fs_floorheight2);
PlanesAtPoint(backsector, wal->x, wal->y, &bs_ceilingheight1, &bs_floorheight1);
PlanesAtPoint(backsector, pt2->x, pt2->y, &bs_ceilingheight2, &bs_floorheight2);
// now check for closed sectors! No idea if we really need the sky checks. We'll see.
if (bs_ceilingheight1 <= fs_floorheight1 && bs_ceilingheight2 <= fs_floorheight2)
{
// backsector's ceiling is below frontsector's floor.
if (frontsector->ceilingstat & backsector->ceilingstat & CSTAT_SECTOR_SKY) return false;
return true;
}
if (fs_ceilingheight1 <= bs_floorheight1 && fs_ceilingheight2 <= bs_floorheight2)
{
// backsector's floor is above frontsector's ceiling
if (frontsector->floorstat & backsector->floorstat & CSTAT_SECTOR_SKY) return false;
return true;
}
if (bs_ceilingheight1 <= bs_floorheight1 && bs_ceilingheight2 <= bs_floorheight2)
{
// backsector is closed
if (frontsector->ceilingstat & backsector->ceilingstat & CSTAT_SECTOR_SKY) return false;
if (frontsector->floorstat & backsector->floorstat & CSTAT_SECTOR_SKY) return false;
return true;
}
return false;
}
//==========================================================================
//
// ClipLine
// Clips the given segment
//
//==========================================================================
enum
{
CL_Skip = 0,
CL_Draw = 1,
CL_Pass = 2,
};
int ClipLine(int line)
{
angle_t startAngle, endAngle;
auto wal = &wall[line];
startAngle = wal->clipangle;
endAngle = wall[wal->point2].clipangle;
// Back side, i.e. backface culling - read: endAngle >= startAngle!
if (startAngle - endAngle < ANGLE_180)
{
return CL_Skip;
}
if (!clipper.SafeCheckRange(startAngle, endAngle))
{
return CL_Skip;
}
if (wal->nextwall == -1 || (wal->cstat & CSTAT_WALL_1WAY) || CheckClip(wal))
{
// one-sided
clipper.SafeAddClipRange(startAngle, endAngle);
return CL_Draw;
}
else
{
return CL_Draw | CL_Pass;
}
}
//==========================================================================
//
//
//
//==========================================================================
void ProcessBunch(int bnch)
{
FBunch* bunch = &Bunches[bnch];
ClipWall.Clock();
for (int i = bunch->startline; i <= bunch->endline; i++)
{
int clipped = ClipLine(i);
if (clipped & CL_Draw)
{
show2dwall.Set(i);
//if (gl_render_walls)
{
SetupWall.Clock();
HWWall hwwall;
//Printf("Rendering wall %d\n", i);
hwwall.Process(nullptr, &wall[i], &sector[bunch->sectnum], wall[i].nextsector<0? nullptr : &sector[wall[i].nextsector]);
rendered_lines++;
SetupWall.Unclock();
}
}
if (clipped & CL_Pass)
{
ClipWall.Unclock();
ProcessSector(wall[i].nextsector);
ClipWall.Clock();
}
}
ClipWall.Unclock();
}
//==========================================================================
//
//
//
//==========================================================================
int WallInFront(int wall1, int wall2)
{
double x1s = WallStartX(wall1);
double y1s = WallStartY(wall1);
double x1e = WallEndX(wall1);
double y1e = WallEndY(wall1);
double x2s = WallStartX(wall2);
double y2s = WallStartY(wall2);
double x2e = WallEndX(wall2);
double y2e = WallEndY(wall2);
double dx = x1e - x1s;
double dy = y1e - y1s;
double t1 = PointOnLineSide(x2s, y2s, x1s, y1s, dx, dy);
double t2 = PointOnLineSide(x2e, y2e, x1s, y1s, dx, dy);
if (t1 == 0)
{
if (t2 == 0) return(-1);
t1 = t2;
}
if (t2 == 0) t2 = t1;
if ((t1 * t2) >= 0)
{
t2 = PointOnLineSide(viewx, viewy, x1s, y1s, dx, dy);
return((t2 * t1) < 0);
}
dx = x2e - x2s;
dy = y2e - y2s;
t1 = PointOnLineSide(x1s, y1s, x2s, y2s, dx, dy);
t2 = PointOnLineSide(x1e, y1e, x2s, y2s, dx, dy);
if (t1 == 0)
{
if (t2 == 0) return(-1);
t1 = t2;
}
if (t2 == 0) t2 = t1;
if ((t1 * t2) >= 0)
{
t2 = PointOnLineSide(viewx, viewy, x2s, y2s, dx, dy);
return((t2 * t1) >= 0);
}
return(-2);
}
//==========================================================================
//
// This is a bit more complicated than it looks because angles can wrap
// around so we can only compare angle differences.
//
// Rules:
// 1. Any bunch can span at most 180°.
// 2. 2 bunches can never overlap at both ends
// 3. if there is an overlap one of the 2 starting points must be in the
// overlapping area.
//
//==========================================================================
int BunchInFront(FBunch* b1, FBunch* b2)
{
angle_t anglecheck, endang;
if (b2->startangle - b1->startangle < b1->endangle - b1->startangle)
{
// we have an overlap at b2->startangle
anglecheck = b2->startangle - b1->startangle;
// Find the wall in b1 that overlaps b2->startangle
for (int i = b1->startline; i <= b1->endline; i++)
{
endang = wall[wall[i].point2].clipangle - b1->startangle;
if (endang > anglecheck)
{
// found a line
int ret = WallInFront(b2->startline, i);
return ret;
}
}
}
else if (b1->startangle - b2->startangle < b2->endangle - b2->startangle)
{
// we have an overlap at b1->startangle
anglecheck = b1->startangle - b2->startangle;
// Find the wall in b2 that overlaps b1->startangle
for (int i = b2->startline; i <= b2->endline; i++)
{
endang = wall[wall[i].point2].clipangle - b2->startangle;
if (endang > anglecheck)
{
// found a line
int ret = WallInFront(i, b1->startline);
return ret;
}
}
}
// we have no overlap
return -1;
}
//==========================================================================
//
//
//
//==========================================================================
int FindClosestBunch()
{
int closest = 0; //Almost works, but not quite :(
CompareData.Clear();
for (unsigned i = 1; i < Bunches.Size(); i++)
{
switch (BunchInFront(&Bunches[i], &Bunches[closest]))
{
case 0: // i is in front
closest = i;
continue;
case 1: // i is behind
continue;
default: // can't determine
CompareData.Push(i); // mark for later comparison
continue;
}
}
// we need to do a second pass to see how the marked bunches relate to the currently closest one.
for (unsigned i = 0; i < CompareData.Size(); i++)
{
switch (BunchInFront(&Bunches[CompareData[i]], &Bunches[closest]))
{
case 0: // is in front
closest = CompareData[i];
CompareData[i] = CompareData.Last();
CompareData.Pop();
i = 0; // we need to recheck everything that's still marked.
continue;
case 1: // is behind
CompareData[i] = CompareData.Last();
CompareData.Pop();
i--;
continue;
default:
continue;
}
}
return closest;
}
//==========================================================================
//
//
//
//==========================================================================
void ProcessSector(int sectnum)
{
if (gotsector[sectnum]) return;
gotsector.Set(sectnum);
Bsp.Clock();
auto sect = &sector[sectnum];
bool inbunch;
angle_t startangle;
//if (sect->validcount == StartTime) return;
//sect->validcount = StartTime;
#if 0//ndef BUILD_TEST
DoSector(sectnum, false);
#endif
//Todo: process subsectors
inbunch = false;
for (int i = 0; i < sect->wallnum; i++)
{
auto thiswall = &wall[sect->wallptr + i];
#ifdef _DEBUG
// For displaying positions in debugger
DVector2 start = { WallStartX(thiswall), WallStartY(thiswall) };
DVector2 end = { WallStartX(thiswall->point2), WallStartY(thiswall->point2) };
#endif
angle_t ang1 = thiswall->clipangle;
angle_t ang2 = wall[thiswall->point2].clipangle;
if (ang1 - ang2 < ANGLE_180)
{
// Backside
inbunch = false;
}
else if (!clipper.SafeCheckRange(ang1, ang2))
{
// is it visible?
inbunch = false;
}
else if (!inbunch || ang2 - startangle >= ANGLE_180)
{
// don't let a bunch span more than 180° to avoid problems.
// This limitation ensures that the combined range of 2
// bunches will always be less than 360° which simplifies
// the distance comparison code because it prevents a
// situation where 2 bunches may overlap at both ends.
startangle = ang1;
StartBunch(sectnum, sect->wallptr + i, ang1, ang2);
inbunch = true;
}
else
{
AddLineToBunch(sect->wallptr + i, ang2);
}
if (thiswall->point2 != sect->wallptr + i + 1) inbunch = false;
}
Bsp.Unclock();
}
//==========================================================================
//
//
//
//==========================================================================
public:
void RenderScene(int viewsector)
{
ProcessSector(viewsector);
while (Bunches.Size() > 0)
{
int closest = FindClosestBunch();
ProcessBunch(closest);
DeleteBunch(closest);
}
}
};
//-----------------------------------------------------------------------------
//
// R_FrustumAngle
//
//-----------------------------------------------------------------------------
static void SetProjection(const FRotator& rotation, FAngle fov)
{
auto vrmode = VRMode::GetVRMode(false);
const int eyeCount = vrmode->mEyeCount;
const auto& eye = vrmode->mEyes[0];
int width = (windowxy2.x - windowxy1.x + 1);
int height = (windowxy2.y - windowxy1.y + 1);
float ratio = ActiveRatio(width, height, nullptr);
float fovratio;
if (ratio >= 1.3f)
{
fovratio = 1.333333f;
}
else
{
fovratio = ratio;
}
ratio *= aspect_factor; // this factor gets applied by the original code - must check if needed or just an artifact of the weird math.
fovratio *= aspect_factor;
auto rotmat = eye.GetProjection(fov.Degrees, ratio, fovratio);
renderSetProjectionMatrix(rotmat.get());
}
static void SetViewMatrix(const FRotator& angles, float vx, float vy, float vz, bool mirror, bool planemirror)
{
float mult = mirror ? -1.f : 1.f;
float planemult = planemirror ? -aspect_factor : aspect_factor;// Level->info->pixelstretch : Level->info->pixelstretch;
VSMatrix mViewMatrix;
mViewMatrix.loadIdentity();
mViewMatrix.rotate(angles.Roll.Degrees, 0.0f, 0.0f, 1.0f);
mViewMatrix.rotate(angles.Pitch.Degrees, 1.0f, 0.0f, 0.0f);
mViewMatrix.rotate(angles.Yaw.Degrees, 0.0f, mult, 0.0f);
mViewMatrix.translate(vx * mult, -vz * planemult, -vy);
mViewMatrix.scale(-mult, planemult, 1);
renderSetViewMatrix(mViewMatrix.get());
}
}
using namespace Newrender;
void render_drawrooms(vec3_t& position, int sectnum, fixed_t q16angle, fixed_t q16horizon, float rollang, float fov, bool mirror, bool planemirror)
{
GLInterface.ClearDepth();
GLInterface.EnableBlend(false);
GLInterface.EnableAlphaTest(false);
GLInterface.EnableDepthTest(true);
GLInterface.SetDepthFunc(DF_LEqual);
GLInterface.SetRenderStyle(LegacyRenderStyles[STYLE_Translucent]);
FRotator rotation;
rotation.Yaw = -90.f + q16ang(q16angle).asdeg();
rotation.Pitch = -HorizToPitch(q16horizon);
rotation.Roll = rollang;
SetProjection(rotation, fov);
SetViewMatrix(rotation, position.x / 16.f, -position.y / 16.f, -position.z / 256.f, mirror, planemirror);
renderSetViewpoint(position.x / 16.f, -position.y / 16.f, -position.z / 256.f);
renderSetVisibility((1.f / (65536.f * 65536.f)) * g_visibility / r_ambientlight);// MulScale(g_visibility, MulScale(xdimenscale * viewingrangerecip * fviewingrange / r_ambientlight);
renderBeginScene();
Clipper clipper;
// fixme: This does not consider the roll angle yet. Pitch disabled to get consistent values during testing.
auto fa = FrustumAngle(16.f / 9, r_fov, 0);// rotation.Pitch.Degrees);
angle_t rotang = q16ang(q16angle).asbam();
clipper.SafeAddClipRangeRealAngles(rotang + fa, rotang - fa);
BunchDrawer drawer(clipper, position.vec2);
drawer.RenderScene(sectnum);
renderFinishScene();
GLInterface.SetDepthFunc(DF_LEqual);
}

View file

@ -0,0 +1,68 @@
#pragma once
#include "build.h"
// y is negated so that the orientation is the same as in GZDoom, in order to use its utilities.
// The render code should NOT use Build coordinates for anything!
inline double WallStartX(int wallnum)
{
return wall[wallnum].x * (1 / 16.);
}
inline double WallStartY(int wallnum)
{
return wall[wallnum].y * (1 / -16.);
}
inline double WallEndX(int wallnum)
{
return wall[wall[wallnum].point2].x * (1 / 16.);
}
inline double WallEndY(int wallnum)
{
return wall[wall[wallnum].point2].y * (1 / -16.);
}
inline double WallStartX(const walltype* wallnum)
{
return wallnum->x * (1 / 16.);
}
inline double WallStartY(const walltype* wallnum)
{
return wallnum->y * (1 / -16.);
}
inline double WallEndX(const walltype* wallnum)
{
return wall[wallnum->point2].x * (1 / 16.);
}
inline double WallEndY(const walltype* wallnum)
{
return wall[wallnum->point2].y * (1 / -16.);
}
inline double SpriteX(int wallnum)
{
return sprite[wallnum].x * (1 / 16.);
}
inline double SpriteY(int wallnum)
{
return sprite[wallnum].y * (1 / -16.);
}
inline double PointOnLineSide(double x, double y, double linex, double liney, double deltax, double deltay)
{
return (x - linex) * deltay - (y - liney) * deltax;
}
float CeilingAtPoint(sectortype* sec, float dax, float day);
float FloorAtPoint(usectorptr_t sec, float dax, float day);
void PlanesAtPoint(usectorptr_t sec, float dax, float day, float* ceilz, float* florz);
void render_drawrooms(vec3_t& position, int sectnum, fixed_t q16angle, fixed_t q16horizon, float rollang, float fov, bool mirror, bool planemirror);

View file

@ -32,7 +32,6 @@ class Clipper
DVector2 viewpoint;
bool blocked = false;
static angle_t AngleToPseudo(angle_t ang);
bool IsRangeVisible(angle_t startangle, angle_t endangle);
void RemoveRange(ClipNode * cn);
void AddClipRange(angle_t startangle, angle_t endangle);
@ -44,6 +43,7 @@ public:
Clipper();
void Clear();
static angle_t AngleToPseudo(angle_t ang);
void Free(ClipNode *node)
{

View file

@ -0,0 +1,392 @@
#pragma once
//==========================================================================
//
// One wall segment in the draw list
//
//==========================================================================
#include "renderstyle.h"
#include "textures.h"
#include "fcolormap.h"
#include "build.h"
#ifdef _MSC_VER
#pragma warning(disable:4244)
#endif
struct HWHorizonInfo;
struct HWSkyInfo;
class FMaterial;
struct FTexCoordInfo;
struct FSectorPortalGroup;
struct FFlatVertex;
struct FLinePortalSpan;
struct FDynLightData;
class VSMatrix;
struct FSpriteModelFrame;
class FRenderState;
struct HWDecal;
struct HWSectorPlane
{
FTextureID texture;
//secplane_t plane;
float Texheight;
float Angle;
FVector2 Offs;
FVector2 Scale;
void GetFromSector(sectortype* sec, int ceiling)
{
/*
Offs.X = (float)sec->GetXOffset(ceiling);
Offs.Y = (float)sec->GetYOffset(ceiling);
Scale.X = (float)sec->GetXScale(ceiling);
Scale.Y = (float)sec->GetYScale(ceiling);
Angle = (float)sec->GetAngle(ceiling).Degrees;
texture = sec->GetTexture(ceiling);
plane = sec->GetSecPlane(ceiling);
Texheight = (float)((ceiling == sector_t::ceiling) ? plane.fD() : -plane.fD());
*/
}
};
enum HWRenderStyle
{
STYLEHW_Normal, // default
STYLEHW_Solid, // drawn solid (needs special treatment for sprites)
STYLEHW_NoAlphaTest, // disable alpha test
};
enum WallTypes
{
RENDERWALL_NONE,
RENDERWALL_TOP,
RENDERWALL_M1S,
RENDERWALL_M2S,
RENDERWALL_BOTTOM,
RENDERWALL_FOGBOUNDARY,
RENDERWALL_MIRRORSURFACE,
RENDERWALL_M2SNF,
RENDERWALL_COLOR,
// Insert new types at the end!
};
enum PortalTypes
{
PORTALTYPE_SKY,
PORTALTYPE_HORIZON,
PORTALTYPE_SKYBOX,
PORTALTYPE_SECTORSTACK,
PORTALTYPE_PLANEMIRROR,
PORTALTYPE_MIRROR,
PORTALTYPE_LINETOLINE,
};
//==========================================================================
//
// One sector plane, still in fixed point
//
//==========================================================================
struct HWSeg
{
float x1,x2;
float y1,y2;
float fracleft, fracright;
FVector3 Normal() const
{
// we do not use the vector math inlines here because they are not optimized for speed but accuracy in the playsim and this is called quite frequently.
float x = y2 - y1;
float y = x1 - x2;
float ilength = 1.f / sqrtf(x*x + y*y);
return FVector3(x * ilength, 0, y * ilength);
}
};
struct texcoord
{
float u,v;
};
struct HWDrawInfo;
class HWWall
{
public:
static const char passflag[];
enum
{
HWF_CLAMPX=1,
HWF_CLAMPY=2,
HWF_SKYHACK=4,
HWF_NOSPLIT=64,
HWF_TRANSLUCENT = 128,
HWF_NOSLICE = 256
};
enum
{
RWF_BLANK = 0,
RWF_TEXTURED = 1, // actually not being used anymore because with buffers it's even less efficient not writing the texture coordinates - but leave it here
RWF_NORENDER = 8,
};
enum
{
LOLFT,
UPLFT,
UPRGT,
LORGT,
};
friend struct HWDrawList;
friend class HWPortal;
FGameTexture *texture;
HWSeg glseg;
float ztop[2],zbottom[2];
texcoord tcs[4];
float alpha;
ERenderStyle RenderStyle;
float ViewDistance;
float visibility;
short shade, palette, floorpal;
uint16_t flags;
uint8_t type;
int dynlightindex;
/*
union
{
// it's either one of them but never more!
FSectorPortal *secportal; // sector portal (formerly skybox)
HWSkyInfo * sky; // for normal sky
HWHorizonInfo * horizon; // for horizon information
FSectorPortalGroup * portal; // stacked sector portals
secplane_t * planemirror; // for plane mirrors
FLinePortalSpan *lineportal; // line-to-line portals
};
*/
// these are not the same as ytop and ybottom!!!
float zceil[2];
float zfloor[2];
unsigned int vertindex;
unsigned int vertcount;
public:
walltype * seg;
sectortype *frontsector, *backsector;
//private:
void PutWall(HWDrawInfo *di, bool translucent);
void PutPortal(HWDrawInfo *di, int ptype, int plane);
void CheckTexturePosition();
void SetupLights(HWDrawInfo *di, FDynLightData &lightdata);
void MakeVertices(HWDrawInfo *di, bool nosplit);
void SkyPlane(HWDrawInfo *di, sectortype *sector, int plane, bool allowmirror);
void SkyLine(HWDrawInfo *di, sectortype *sec, walltype *line);
void SkyNormal(HWDrawInfo* di, sectortype* fs, FVector2& v1, FVector2& v2) {}
void SkyTop(HWDrawInfo *di, walltype * seg,sectortype * fs,sectortype * bs, FVector2& v1, FVector2& v2) {}
void SkyBottom(HWDrawInfo *di, walltype * seg,sectortype * fs,sectortype * bs, FVector2& v1, FVector2& v2) {}
bool DoHorizon(HWDrawInfo *di, walltype * seg,sectortype * fs, DVector2& v1, DVector2& v2);
bool SetWallCoordinates(walltype* seg, float topleft, float topright, float bottomleft, float bottomright);
void DoTexture(HWDrawInfo* di, walltype* wal, walltype* refwall, float yref, float topleft, float topright, float bottomleft, float bottomright);
void DoOneSidedTexture(HWDrawInfo *di, walltype * seg, sectortype* frontsector, sectortype* backsector, float topleft,float topright, float bottomleft,float bottomright);
void DoUpperTexture(HWDrawInfo* di, walltype* seg, sectortype* frontsector, sectortype* backsector, float topleft, float topright, float bottomleft, float bottomright);
void DoLowerTexture(HWDrawInfo* di, walltype* seg, sectortype* frontsector, sectortype* backsector, float topleft, float topright, float bottomleft, float bottomright);
void DoMidTexture(HWDrawInfo *di, walltype * seg,
sectortype * front, sectortype * back,
float fch1, float fch2, float ffh1, float ffh2,
float bch1, float bch2, float bfh1, float bfh2);
//void ProcessDecal(HWDrawInfo *di, DBaseDecal *decal, const FVector3 &normal);
//void ProcessDecals(HWDrawInfo *di);
int CreateVertices(FFlatVertex *&ptr, bool nosplit);
//int CountVertices();
void RenderWall(HWDrawInfo *di, FRenderState &state, int textured);
void RenderFogBoundary(HWDrawInfo *di, FRenderState &state);
void RenderMirrorSurface(HWDrawInfo *di, FRenderState &state);
void RenderTexturedWall(HWDrawInfo *di, FRenderState &state, int rflags);
void RenderTranslucentWall(HWDrawInfo *di, FRenderState &state);
public:
void Process(HWDrawInfo* di, walltype* seg, sectortype* frontsector, sectortype* backsector);
float PointOnSide(float x,float y)
{
return -((y-glseg.y1)*(glseg.x2-glseg.x1)-(x-glseg.x1)*(glseg.y2-glseg.y1));
}
void DrawWall(HWDrawInfo *di, FRenderState &state, bool translucent);
};
//==========================================================================
//
// One flat plane in the draw list
//
//==========================================================================
class HWFlat
{
public:
sectortype * sector;
FGameTexture *texture;
float z; // the z position of the flat (only valid for non-sloped planes)
FColormap Colormap; // light and fog
PalEntry FlatColor;
PalEntry AddColor;
ERenderStyle renderstyle;
float alpha;
HWSectorPlane plane;
int lightlevel;
bool stack;
bool ceiling;
uint8_t renderflags;
uint8_t hacktype;
int iboindex;
//int vboheight;
int dynlightindex;
void CreateSkyboxVertices(FFlatVertex *buffer);
//void SetupLights(HWDrawInfo *di, FLightNode *head, FDynLightData &lightdata, int portalgroup);
void PutFlat(HWDrawInfo *di, bool fog = false);
void Process(HWDrawInfo *di, sectortype * model, int whichplane, bool notexture);
void ProcessSector(HWDrawInfo *di, sectortype * frontsector, int which = 7 /*SSRF_RENDERALL*/); // cannot use constant due to circular dependencies.
void DrawSubsectors(HWDrawInfo *di, FRenderState &state);
void DrawFlat(HWDrawInfo *di, FRenderState &state, bool translucent);
void DrawOtherPlanes(HWDrawInfo *di, FRenderState &state);
void DrawFloodPlanes(HWDrawInfo *di, FRenderState &state);
};
//==========================================================================
//
// One sprite in the draw list
//
//==========================================================================
class HWSprite
{
public:
int lightlevel;
uint8_t foglevel;
uint8_t hw_styleflags;
bool fullbright;
bool polyoffset;
FColormap Colormap;
FSpriteModelFrame * modelframe;
FRenderStyle RenderStyle;
int OverrideShader;
int translation;
int index;
float depth;
int vertexindex;
float topclip;
float bottomclip;
float x,y,z; // needed for sorting!
float ul,ur;
float vt,vb;
float x1,y1,z1;
float x2,y2,z2;
float trans;
int dynlightindex;
FGameTexture *texture;
spritetype * actor;
//TArray<lightlist_t> *lightlist;
DRotator Angles;
void SplitSprite(HWDrawInfo *di, sectortype * frontsector, bool translucent);
void PerformSpriteClipAdjustment(AActor *thing, const DVector2 &thingpos, float spriteheight);
bool CalculateVertices(HWDrawInfo *di, FVector3 *v, DVector3 *vp);
public:
void CreateVertices(HWDrawInfo *di);
void PutSprite(HWDrawInfo *di, bool translucent);
void Process(HWDrawInfo *di, AActor* thing,sectortype * sector, int thruportal = false);
void DrawSprite(HWDrawInfo *di, FRenderState &state, bool translucent);
};
struct DecalVertex
{
float x, y, z;
float u, v;
};
/*
struct HWDecal
{
FGameTexture *texture;
TArray<lightlist_t> *lightlist;
DBaseDecal *decal;
DecalVertex dv[4];
float zcenter;
unsigned int vertindex;
FRenderStyle renderstyle;
int lightlevel;
int rellight;
float alpha;
FColormap Colormap;
int dynlightindex;
sectortype *frontsector;
FVector3 Normal;
void DrawDecal(HWDrawInfo *di, FRenderState &state);
};
*/
inline float Dist2(float x1,float y1,float x2,float y2)
{
return sqrtf((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
bool hw_SetPlaneTextureRotation(const HWSectorPlane * secplane, FGameTexture * gltexture, VSMatrix &mat);
void hw_GetDynModelLight(AActor *self, FDynLightData &modellightdata);
extern const float LARGE_VALUE;
struct FDynLightData;
struct FDynamicLight;
bool GetLight(FDynLightData& dld, int group, Plane& p, FDynamicLight* light, bool checkside);
void AddLightToList(FDynLightData &dld, int group, FDynamicLight* light, bool forceAttenuate);

File diff suppressed because it is too large Load diff

View file

@ -389,6 +389,11 @@ void renderSetVisibility(float vis)
vp.mGlobVis = vis;
}
void renderSetViewpoint(float x, float y, float z)
{
vp.mCameraPos = {x, y, z, 0};
}
void renderBeginScene()
{
assert(BufferLock == 0);

View file

@ -345,6 +345,7 @@ extern F2DDrawer twodpsp;
void renderSetProjectionMatrix(const float* p);
void renderSetViewMatrix(const float* p);
void renderSetVisibility(float v);
void renderSetViewpoint(float x, float y, float z);
void renderBeginScene();
void renderFinishScene();
void DrawRateStuff();