mirror of
https://github.com/ZDoom/Raze.git
synced 2025-01-19 23:21:07 +00:00
- Make TRotator<T>
available as constexpr.
This commit is contained in:
parent
275d43cff6
commit
8980f5592e
1 changed files with 27 additions and 27 deletions
|
@ -1585,45 +1585,45 @@ struct TRotator
|
|||
Angle Yaw; // left/right
|
||||
Angle Roll; // rotation about the forward axis.
|
||||
|
||||
TRotator() = default;
|
||||
constexpr TRotator() = default;
|
||||
|
||||
TRotator (const Angle &p, const Angle &y, const Angle &r)
|
||||
constexpr TRotator (const Angle &p, const Angle &y, const Angle &r)
|
||||
: Pitch(p), Yaw(y), Roll(r)
|
||||
{
|
||||
}
|
||||
|
||||
TRotator(const TRotator &other) = default;
|
||||
TRotator &operator= (const TRotator &other) = default;
|
||||
constexpr TRotator(const TRotator &other) = default;
|
||||
constexpr TRotator &operator= (const TRotator &other) = default;
|
||||
|
||||
void Zero()
|
||||
constexpr void Zero()
|
||||
{
|
||||
Roll = Yaw = Pitch = nullAngle;
|
||||
}
|
||||
|
||||
bool isZero() const
|
||||
constexpr bool isZero() const
|
||||
{
|
||||
return Pitch == nullAngle && Yaw == nullAngle && Roll == nullAngle;
|
||||
}
|
||||
|
||||
// Access angles as an array
|
||||
Angle &operator[] (int index)
|
||||
constexpr Angle &operator[] (int index)
|
||||
{
|
||||
return *(&Pitch + index);
|
||||
}
|
||||
|
||||
const Angle &operator[] (int index) const
|
||||
constexpr const Angle &operator[] (int index) const
|
||||
{
|
||||
return *(&Pitch + index);
|
||||
}
|
||||
|
||||
// Test for equality
|
||||
bool operator== (const TRotator &other) const
|
||||
constexpr bool operator== (const TRotator &other) const
|
||||
{
|
||||
return Pitch == other.Pitch && Yaw == other.Yaw && Roll == other.Roll;
|
||||
}
|
||||
|
||||
// Test for inequality
|
||||
bool operator!= (const TRotator &other) const
|
||||
constexpr bool operator!= (const TRotator &other) const
|
||||
{
|
||||
return Pitch != other.Pitch || Yaw != other.Yaw || Roll != other.Roll;
|
||||
}
|
||||
|
@ -1643,104 +1643,104 @@ struct TRotator
|
|||
}
|
||||
|
||||
// Unary negation
|
||||
TRotator operator- () const
|
||||
constexpr TRotator operator- () const
|
||||
{
|
||||
return TRotator(-Pitch, -Yaw, -Roll);
|
||||
}
|
||||
|
||||
// Scalar addition
|
||||
TRotator &operator+= (const Angle &scalar)
|
||||
constexpr TRotator &operator+= (const Angle &scalar)
|
||||
{
|
||||
Pitch += scalar, Yaw += scalar, Roll += scalar;
|
||||
return *this;
|
||||
}
|
||||
|
||||
friend TRotator operator+ (const TRotator &v, const Angle &scalar)
|
||||
constexpr friend TRotator operator+ (const TRotator &v, const Angle &scalar)
|
||||
{
|
||||
return TRotator(v.Pitch + scalar, v.Yaw + scalar, v.Roll + scalar);
|
||||
}
|
||||
|
||||
friend TRotator operator+ (const Angle &scalar, const TRotator &v)
|
||||
constexpr friend TRotator operator+ (const Angle &scalar, const TRotator &v)
|
||||
{
|
||||
return TRotator(v.Pitch + scalar, v.Yaw + scalar, v.Roll + scalar);
|
||||
}
|
||||
|
||||
// Scalar subtraction
|
||||
TRotator &operator-= (const Angle &scalar)
|
||||
constexpr TRotator &operator-= (const Angle &scalar)
|
||||
{
|
||||
Pitch -= scalar, Yaw -= scalar, Roll -= scalar;
|
||||
return *this;
|
||||
}
|
||||
|
||||
TRotator operator- (const Angle &scalar) const
|
||||
constexpr TRotator operator- (const Angle &scalar) const
|
||||
{
|
||||
return TRotator(Pitch - scalar, Yaw - scalar, Roll - scalar);
|
||||
}
|
||||
|
||||
// Scalar multiplication
|
||||
TRotator &operator*= (const Angle &scalar)
|
||||
constexpr TRotator &operator*= (const Angle &scalar)
|
||||
{
|
||||
Pitch *= scalar, Yaw *= scalar, Roll *= scalar;
|
||||
return *this;
|
||||
}
|
||||
|
||||
friend TRotator operator* (const TRotator &v, const Angle &scalar)
|
||||
constexpr friend TRotator operator* (const TRotator &v, const Angle &scalar)
|
||||
{
|
||||
return TRotator(v.Pitch * scalar, v.Yaw * scalar, v.Roll * scalar);
|
||||
}
|
||||
|
||||
friend TRotator operator* (const Angle &scalar, const TRotator &v)
|
||||
constexpr friend TRotator operator* (const Angle &scalar, const TRotator &v)
|
||||
{
|
||||
return TRotator(v.Pitch * scalar, v.Yaw * scalar, v.Roll * scalar);
|
||||
}
|
||||
|
||||
// Scalar division
|
||||
TRotator &operator/= (const Angle &scalar)
|
||||
constexpr TRotator &operator/= (const Angle &scalar)
|
||||
{
|
||||
Angle mul(1 / scalar.Degrees_);
|
||||
Pitch *= mul, Yaw *= mul, Roll *= mul;
|
||||
return *this;
|
||||
}
|
||||
|
||||
TRotator &operator/= (const vec_t &scalar)
|
||||
constexpr TRotator &operator/= (const vec_t &scalar)
|
||||
{
|
||||
const auto mul = 1. / scalar;
|
||||
Pitch *= mul, Yaw *= mul, Roll *= mul;
|
||||
return *this;
|
||||
}
|
||||
|
||||
TRotator operator/ (const Angle &scalar) const
|
||||
constexpr TRotator operator/ (const Angle &scalar) const
|
||||
{
|
||||
Angle mul(1 / scalar.Degrees_);
|
||||
return TRotator(Pitch * mul, Yaw * mul, Roll * mul);
|
||||
}
|
||||
|
||||
TRotator operator/ (const vec_t &scalar) const
|
||||
constexpr TRotator operator/ (const vec_t &scalar) const
|
||||
{
|
||||
const auto mul = 1. / scalar;
|
||||
return TRotator(Pitch * mul, Yaw * mul, Roll * mul);
|
||||
}
|
||||
|
||||
// Vector addition
|
||||
TRotator &operator+= (const TRotator &other)
|
||||
constexpr TRotator &operator+= (const TRotator &other)
|
||||
{
|
||||
Pitch += other.Pitch, Yaw += other.Yaw, Roll += other.Roll;
|
||||
return *this;
|
||||
}
|
||||
|
||||
TRotator operator+ (const TRotator &other) const
|
||||
constexpr TRotator operator+ (const TRotator &other) const
|
||||
{
|
||||
return TRotator(Pitch + other.Pitch, Yaw + other.Yaw, Roll + other.Roll);
|
||||
}
|
||||
|
||||
// Vector subtraction
|
||||
TRotator &operator-= (const TRotator &other)
|
||||
constexpr TRotator &operator-= (const TRotator &other)
|
||||
{
|
||||
Pitch -= other.Pitch, Yaw -= other.Yaw, Roll -= other.Roll;
|
||||
return *this;
|
||||
}
|
||||
|
||||
TRotator operator- (const TRotator &other) const
|
||||
constexpr TRotator operator- (const TRotator &other) const
|
||||
{
|
||||
return TRotator(Pitch - other.Pitch, Yaw - other.Yaw, Roll - other.Roll);
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue