raze/libraries/lzma/C/CpuArch.c

824 lines
21 KiB
C
Raw Normal View History

/* CpuArch.c -- CPU specific code
2023-05-18 : Igor Pavlov : Public domain */
#include "Precomp.h"
// #include <stdio.h>
#include "CpuArch.h"
#ifdef MY_CPU_X86_OR_AMD64
#undef NEED_CHECK_FOR_CPUID
#if !defined(MY_CPU_AMD64)
#define NEED_CHECK_FOR_CPUID
#endif
/*
cpuid instruction supports (subFunction) parameter in ECX,
that is used only with some specific (function) parameter values.
But we always use only (subFunction==0).
*/
/*
__cpuid(): MSVC and GCC/CLANG use same function/macro name
but parameters are different.
We use MSVC __cpuid() parameters style for our z7_x86_cpuid() function.
*/
#if defined(__GNUC__) /* && (__GNUC__ >= 10) */ \
|| defined(__clang__) /* && (__clang_major__ >= 10) */
/* there was some CLANG/GCC compilers that have issues with
rbx(ebx) handling in asm blocks in -fPIC mode (__PIC__ is defined).
compiler's <cpuid.h> contains the macro __cpuid() that is similar to our code.
The history of __cpuid() changes in CLANG/GCC:
GCC:
2007: it preserved ebx for (__PIC__ && __i386__)
2013: it preserved rbx and ebx for __PIC__
2014: it doesn't preserves rbx and ebx anymore
we suppose that (__GNUC__ >= 5) fixed that __PIC__ ebx/rbx problem.
CLANG:
2014+: it preserves rbx, but only for 64-bit code. No __PIC__ check.
Why CLANG cares about 64-bit mode only, and doesn't care about ebx (in 32-bit)?
Do we need __PIC__ test for CLANG or we must care about rbx even if
__PIC__ is not defined?
*/
#define ASM_LN "\n"
#if defined(MY_CPU_AMD64) && defined(__PIC__) \
&& ((defined (__GNUC__) && (__GNUC__ < 5)) || defined(__clang__))
#define x86_cpuid_MACRO(p, func) { \
__asm__ __volatile__ ( \
ASM_LN "mov %%rbx, %q1" \
ASM_LN "cpuid" \
ASM_LN "xchg %%rbx, %q1" \
: "=a" ((p)[0]), "=&r" ((p)[1]), "=c" ((p)[2]), "=d" ((p)[3]) : "0" (func), "2"(0)); }
/* "=&r" selects free register. It can select even rbx, if that register is free.
"=&D" for (RDI) also works, but the code can be larger with "=&D"
"2"(0) means (subFunction = 0),
2 is (zero-based) index in the output constraint list "=c" (ECX). */
#elif defined(MY_CPU_X86) && defined(__PIC__) \
&& ((defined (__GNUC__) && (__GNUC__ < 5)) || defined(__clang__))
#define x86_cpuid_MACRO(p, func) { \
__asm__ __volatile__ ( \
ASM_LN "mov %%ebx, %k1" \
ASM_LN "cpuid" \
ASM_LN "xchg %%ebx, %k1" \
: "=a" ((p)[0]), "=&r" ((p)[1]), "=c" ((p)[2]), "=d" ((p)[3]) : "0" (func), "2"(0)); }
#else
#define x86_cpuid_MACRO(p, func) { \
__asm__ __volatile__ ( \
ASM_LN "cpuid" \
: "=a" ((p)[0]), "=b" ((p)[1]), "=c" ((p)[2]), "=d" ((p)[3]) : "0" (func), "2"(0)); }
#endif
void Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func)
{
x86_cpuid_MACRO(p, func)
}
Z7_NO_INLINE
UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void)
{
#if defined(NEED_CHECK_FOR_CPUID)
#define EFALGS_CPUID_BIT 21
UInt32 a;
__asm__ __volatile__ (
ASM_LN "pushf"
ASM_LN "pushf"
ASM_LN "pop %0"
// ASM_LN "movl %0, %1"
// ASM_LN "xorl $0x200000, %0"
ASM_LN "btc %1, %0"
ASM_LN "push %0"
ASM_LN "popf"
ASM_LN "pushf"
ASM_LN "pop %0"
ASM_LN "xorl (%%esp), %0"
ASM_LN "popf"
ASM_LN
: "=&r" (a) // "=a"
: "i" (EFALGS_CPUID_BIT)
);
if ((a & (1 << EFALGS_CPUID_BIT)) == 0)
return 0;
#endif
{
UInt32 p[4];
x86_cpuid_MACRO(p, 0)
return p[0];
}
}
#undef ASM_LN
#elif !defined(_MSC_VER)
/*
// for gcc/clang and other: we can try to use __cpuid macro:
#include <cpuid.h>
void Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func)
{
__cpuid(func, p[0], p[1], p[2], p[3]);
}
UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void)
{
return (UInt32)__get_cpuid_max(0, NULL);
}
*/
// for unsupported cpuid:
void Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func)
{
UNUSED_VAR(func)
p[0] = p[1] = p[2] = p[3] = 0;
}
UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void)
{
return 0;
}
#else // _MSC_VER
#if !defined(MY_CPU_AMD64)
UInt32 __declspec(naked) Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void)
{
#if defined(NEED_CHECK_FOR_CPUID)
#define EFALGS_CPUID_BIT 21
__asm pushfd
__asm pushfd
/*
__asm pop eax
// __asm mov edx, eax
__asm btc eax, EFALGS_CPUID_BIT
__asm push eax
*/
__asm btc dword ptr [esp], EFALGS_CPUID_BIT
__asm popfd
__asm pushfd
__asm pop eax
// __asm xor eax, edx
__asm xor eax, [esp]
// __asm push edx
__asm popfd
__asm and eax, (1 shl EFALGS_CPUID_BIT)
__asm jz end_func
#endif
__asm push ebx
__asm xor eax, eax // func
__asm xor ecx, ecx // subFunction (optional) for (func == 0)
__asm cpuid
__asm pop ebx
#if defined(NEED_CHECK_FOR_CPUID)
end_func:
#endif
__asm ret 0
}
void __declspec(naked) Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func)
{
UNUSED_VAR(p)
UNUSED_VAR(func)
__asm push ebx
__asm push edi
__asm mov edi, ecx // p
__asm mov eax, edx // func
__asm xor ecx, ecx // subfunction (optional) for (func == 0)
__asm cpuid
__asm mov [edi ], eax
__asm mov [edi + 4], ebx
__asm mov [edi + 8], ecx
__asm mov [edi + 12], edx
__asm pop edi
__asm pop ebx
__asm ret 0
}
#else // MY_CPU_AMD64
2022-07-02 07:58:48 +00:00
#if _MSC_VER >= 1600
#include <intrin.h>
#define MY_cpuidex __cpuidex
2022-07-02 07:58:48 +00:00
#else
/*
__cpuid (func == (0 or 7)) requires subfunction number in ECX.
2022-07-02 07:58:48 +00:00
MSDN: The __cpuid intrinsic clears the ECX register before calling the cpuid instruction.
__cpuid() in new MSVC clears ECX.
__cpuid() in old MSVC (14.00) x64 doesn't clear ECX
We still can use __cpuid for low (func) values that don't require ECX,
but __cpuid() in old MSVC will be incorrect for some func values: (func == 7).
2022-07-02 07:58:48 +00:00
So here we use the hack for old MSVC to send (subFunction) in ECX register to cpuid instruction,
where ECX value is first parameter for FASTCALL / NO_INLINE func,
So the caller of MY_cpuidex_HACK() sets ECX as subFunction, and
2022-07-02 07:58:48 +00:00
old MSVC for __cpuid() doesn't change ECX and cpuid instruction gets (subFunction) value.
DON'T remove Z7_NO_INLINE and Z7_FASTCALL for MY_cpuidex_HACK(): !!!
2022-07-02 07:58:48 +00:00
*/
static
Z7_NO_INLINE void Z7_FASTCALL MY_cpuidex_HACK(UInt32 subFunction, UInt32 func, int *CPUInfo)
2022-07-02 07:58:48 +00:00
{
UNUSED_VAR(subFunction)
__cpuid(CPUInfo, func);
2022-07-02 07:58:48 +00:00
}
#define MY_cpuidex(info, func, func2) MY_cpuidex_HACK(func2, func, info)
#pragma message("======== MY_cpuidex_HACK WAS USED ========")
#endif // _MSC_VER >= 1600
#if !defined(MY_CPU_AMD64)
/* inlining for __cpuid() in MSVC x86 (32-bit) produces big ineffective code,
so we disable inlining here */
Z7_NO_INLINE
2022-07-02 07:58:48 +00:00
#endif
void Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func)
{
MY_cpuidex((int *)p, (int)func, 0);
}
Z7_NO_INLINE
UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void)
{
int a[4];
MY_cpuidex(a, 0, 0);
return a[0];
}
2022-07-02 07:58:48 +00:00
#endif // MY_CPU_AMD64
#endif // _MSC_VER
2022-07-02 07:58:48 +00:00
#if defined(NEED_CHECK_FOR_CPUID)
#define CHECK_CPUID_IS_SUPPORTED { if (z7_x86_cpuid_GetMaxFunc() == 0) return 0; }
#else
#define CHECK_CPUID_IS_SUPPORTED
#endif
#undef NEED_CHECK_FOR_CPUID
static
BoolInt x86cpuid_Func_1(UInt32 *p)
{
CHECK_CPUID_IS_SUPPORTED
z7_x86_cpuid(p, 1);
return True;
}
/*
static const UInt32 kVendors[][1] =
{
{ 0x756E6547 }, // , 0x49656E69, 0x6C65746E },
{ 0x68747541 }, // , 0x69746E65, 0x444D4163 },
{ 0x746E6543 } // , 0x48727561, 0x736C7561 }
};
*/
/*
typedef struct
{
UInt32 maxFunc;
UInt32 vendor[3];
UInt32 ver;
UInt32 b;
UInt32 c;
UInt32 d;
} Cx86cpuid;
enum
{
CPU_FIRM_INTEL,
CPU_FIRM_AMD,
CPU_FIRM_VIA
};
int x86cpuid_GetFirm(const Cx86cpuid *p);
#define x86cpuid_ver_GetFamily(ver) (((ver >> 16) & 0xff0) | ((ver >> 8) & 0xf))
#define x86cpuid_ver_GetModel(ver) (((ver >> 12) & 0xf0) | ((ver >> 4) & 0xf))
#define x86cpuid_ver_GetStepping(ver) (ver & 0xf)
int x86cpuid_GetFirm(const Cx86cpuid *p)
{
unsigned i;
for (i = 0; i < sizeof(kVendors) / sizeof(kVendors[0]); i++)
{
const UInt32 *v = kVendors[i];
if (v[0] == p->vendor[0]
// && v[1] == p->vendor[1]
// && v[2] == p->vendor[2]
)
return (int)i;
}
return -1;
}
BoolInt CPU_Is_InOrder()
{
Cx86cpuid p;
UInt32 family, model;
if (!x86cpuid_CheckAndRead(&p))
return True;
family = x86cpuid_ver_GetFamily(p.ver);
model = x86cpuid_ver_GetModel(p.ver);
switch (x86cpuid_GetFirm(&p))
{
case CPU_FIRM_INTEL: return (family < 6 || (family == 6 && (
// In-Order Atom CPU
model == 0x1C // 45 nm, N4xx, D4xx, N5xx, D5xx, 230, 330
|| model == 0x26 // 45 nm, Z6xx
|| model == 0x27 // 32 nm, Z2460
|| model == 0x35 // 32 nm, Z2760
|| model == 0x36 // 32 nm, N2xxx, D2xxx
)));
case CPU_FIRM_AMD: return (family < 5 || (family == 5 && (model < 6 || model == 0xA)));
case CPU_FIRM_VIA: return (family < 6 || (family == 6 && model < 0xF));
}
return False; // v23 : unknown processors are not In-Order
}
*/
#ifdef _WIN32
#include "7zWindows.h"
#endif
#if !defined(MY_CPU_AMD64) && defined(_WIN32)
/* for legacy SSE ia32: there is no user-space cpu instruction to check
that OS supports SSE register storing/restoring on context switches.
So we need some OS-specific function to check that it's safe to use SSE registers.
*/
Z7_FORCE_INLINE
static BoolInt CPU_Sys_Is_SSE_Supported(void)
{
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4996) // `GetVersion': was declared deprecated
#endif
/* low byte is major version of Windows
We suppose that any Windows version since
Windows2000 (major == 5) supports SSE registers */
return (Byte)GetVersion() >= 5;
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
}
#define CHECK_SYS_SSE_SUPPORT if (!CPU_Sys_Is_SSE_Supported()) return False;
#else
#define CHECK_SYS_SSE_SUPPORT
#endif
2022-07-02 07:58:48 +00:00
#if !defined(MY_CPU_AMD64)
BoolInt CPU_IsSupported_CMOV(void)
2022-07-02 07:58:48 +00:00
{
UInt32 a[4];
if (!x86cpuid_Func_1(&a[0]))
return 0;
return (a[3] >> 15) & 1;
}
BoolInt CPU_IsSupported_SSE(void)
{
UInt32 a[4];
2022-07-02 07:58:48 +00:00
CHECK_SYS_SSE_SUPPORT
if (!x86cpuid_Func_1(&a[0]))
return 0;
return (a[3] >> 25) & 1;
}
BoolInt CPU_IsSupported_SSE2(void)
{
UInt32 a[4];
CHECK_SYS_SSE_SUPPORT
if (!x86cpuid_Func_1(&a[0]))
return 0;
return (a[3] >> 26) & 1;
}
#endif
static UInt32 x86cpuid_Func_1_ECX(void)
{
UInt32 a[4];
CHECK_SYS_SSE_SUPPORT
if (!x86cpuid_Func_1(&a[0]))
2022-07-02 07:58:48 +00:00
return 0;
return a[2];
2022-07-02 07:58:48 +00:00
}
BoolInt CPU_IsSupported_AES(void)
2022-07-02 07:58:48 +00:00
{
return (x86cpuid_Func_1_ECX() >> 25) & 1;
2022-07-02 07:58:48 +00:00
}
BoolInt CPU_IsSupported_SSSE3(void)
2022-07-02 07:58:48 +00:00
{
return (x86cpuid_Func_1_ECX() >> 9) & 1;
2022-07-02 07:58:48 +00:00
}
BoolInt CPU_IsSupported_SSE41(void)
2022-07-02 07:58:48 +00:00
{
return (x86cpuid_Func_1_ECX() >> 19) & 1;
2022-07-02 07:58:48 +00:00
}
BoolInt CPU_IsSupported_SHA(void)
2022-07-02 07:58:48 +00:00
{
CHECK_SYS_SSE_SUPPORT
if (z7_x86_cpuid_GetMaxFunc() < 7)
2022-07-02 07:58:48 +00:00
return False;
{
UInt32 d[4];
z7_x86_cpuid(d, 7);
2022-07-02 07:58:48 +00:00
return (d[1] >> 29) & 1;
}
}
/*
MSVC: _xgetbv() intrinsic is available since VS2010SP1.
MSVC also defines (_XCR_XFEATURE_ENABLED_MASK) macro in
<immintrin.h> that we can use or check.
For any 32-bit x86 we can use asm code in MSVC,
but MSVC asm code is huge after compilation.
So _xgetbv() is better
ICC: _xgetbv() intrinsic is available (in what version of ICC?)
ICC defines (__GNUC___) and it supports gnu assembler
also ICC supports MASM style code with -use-msasm switch.
but ICC doesn't support __attribute__((__target__))
GCC/CLANG 9:
_xgetbv() is macro that works via __builtin_ia32_xgetbv()
and we need __attribute__((__target__("xsave")).
But with __target__("xsave") the function will be not
inlined to function that has no __target__("xsave") attribute.
If we want _xgetbv() call inlining, then we should use asm version
instead of calling _xgetbv().
Note:intrinsic is broke before GCC 8.2:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85684
*/
2022-07-02 07:58:48 +00:00
#if defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 1100) \
|| defined(_MSC_VER) && (_MSC_VER >= 1600) && (_MSC_FULL_VER >= 160040219) \
|| defined(__GNUC__) && (__GNUC__ >= 9) \
|| defined(__clang__) && (__clang_major__ >= 9)
// we define ATTRIB_XGETBV, if we want to use predefined _xgetbv() from compiler
#if defined(__INTEL_COMPILER)
#define ATTRIB_XGETBV
#elif defined(__GNUC__) || defined(__clang__)
// we don't define ATTRIB_XGETBV here, because asm version is better for inlining.
// #define ATTRIB_XGETBV __attribute__((__target__("xsave")))
#else
#define ATTRIB_XGETBV
#endif
#endif
#if defined(ATTRIB_XGETBV)
#include <immintrin.h>
2022-07-02 07:58:48 +00:00
#endif
// XFEATURE_ENABLED_MASK/XCR0
#define MY_XCR_XFEATURE_ENABLED_MASK 0
#if defined(ATTRIB_XGETBV)
ATTRIB_XGETBV
#endif
static UInt64 x86_xgetbv_0(UInt32 num)
2022-07-02 07:58:48 +00:00
{
#if defined(ATTRIB_XGETBV)
{
return
#if (defined(_MSC_VER))
_xgetbv(num);
#else
__builtin_ia32_xgetbv(
#if !defined(__clang__)
(int)
#endif
num);
#endif
}
#elif defined(__GNUC__) || defined(__clang__) || defined(__SUNPRO_CC)
UInt32 a, d;
#if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4))
__asm__
(
"xgetbv"
: "=a"(a), "=d"(d) : "c"(num) : "cc"
);
#else // is old gcc
__asm__
(
".byte 0x0f, 0x01, 0xd0" "\n\t"
: "=a"(a), "=d"(d) : "c"(num) : "cc"
);
#endif
return ((UInt64)d << 32) | a;
// return a;
#elif defined(_MSC_VER) && !defined(MY_CPU_AMD64)
UInt32 a, d;
__asm {
push eax
push edx
push ecx
mov ecx, num;
// xor ecx, ecx // = MY_XCR_XFEATURE_ENABLED_MASK
_emit 0x0f
_emit 0x01
_emit 0xd0
mov a, eax
mov d, edx
pop ecx
pop edx
pop eax
}
return ((UInt64)d << 32) | a;
// return a;
#else // it's unknown compiler
// #error "Need xgetbv function"
UNUSED_VAR(num)
// for MSVC-X64 we could call external function from external file.
/* Actually we had checked OSXSAVE/AVX in cpuid before.
So it's expected that OS supports at least AVX and below. */
// if (num != MY_XCR_XFEATURE_ENABLED_MASK) return 0; // if not XCR0
return
// (1 << 0) | // x87
(1 << 1) // SSE
| (1 << 2); // AVX
#endif
}
2022-07-02 07:58:48 +00:00
#ifdef _WIN32
/*
Windows versions do not know about new ISA extensions that
can be introduced. But we still can use new extensions,
even if Windows doesn't report about supporting them,
But we can use new extensions, only if Windows knows about new ISA extension
that changes the number or size of registers: SSE, AVX/XSAVE, AVX512
So it's enough to check
MY_PF_AVX_INSTRUCTIONS_AVAILABLE
instead of
MY_PF_AVX2_INSTRUCTIONS_AVAILABLE
*/
#define MY_PF_XSAVE_ENABLED 17
// #define MY_PF_SSSE3_INSTRUCTIONS_AVAILABLE 36
// #define MY_PF_SSE4_1_INSTRUCTIONS_AVAILABLE 37
// #define MY_PF_SSE4_2_INSTRUCTIONS_AVAILABLE 38
// #define MY_PF_AVX_INSTRUCTIONS_AVAILABLE 39
// #define MY_PF_AVX2_INSTRUCTIONS_AVAILABLE 40
// #define MY_PF_AVX512F_INSTRUCTIONS_AVAILABLE 41
#endif
BoolInt CPU_IsSupported_AVX(void)
{
2022-07-02 07:58:48 +00:00
#ifdef _WIN32
if (!IsProcessorFeaturePresent(MY_PF_XSAVE_ENABLED))
2022-07-02 07:58:48 +00:00
return False;
/* PF_AVX_INSTRUCTIONS_AVAILABLE probably is supported starting from
some latest Win10 revisions. But we need AVX in older Windows also.
So we don't use the following check: */
/*
if (!IsProcessorFeaturePresent(MY_PF_AVX_INSTRUCTIONS_AVAILABLE))
return False;
*/
2022-07-02 07:58:48 +00:00
#endif
/*
OS must use new special XSAVE/XRSTOR instructions to save
AVX registers when it required for context switching.
At OS statring:
OS sets CR4.OSXSAVE flag to signal the processor that OS supports the XSAVE extensions.
Also OS sets bitmask in XCR0 register that defines what
registers will be processed by XSAVE instruction:
XCR0.SSE[bit 0] - x87 registers and state
XCR0.SSE[bit 1] - SSE registers and state
XCR0.AVX[bit 2] - AVX registers and state
CR4.OSXSAVE is reflected to CPUID.1:ECX.OSXSAVE[bit 27].
So we can read that bit in user-space.
XCR0 is available for reading in user-space by new XGETBV instruction.
*/
{
const UInt32 c = x86cpuid_Func_1_ECX();
if (0 == (1
& (c >> 28) // AVX instructions are supported by hardware
& (c >> 27))) // OSXSAVE bit: XSAVE and related instructions are enabled by OS.
return False;
}
/* also we can check
CPUID.1:ECX.XSAVE [bit 26] : that shows that
XSAVE, XRESTOR, XSETBV, XGETBV instructions are supported by hardware.
But that check is redundant, because if OSXSAVE bit is set, then XSAVE is also set */
/* If OS have enabled XSAVE extension instructions (OSXSAVE == 1),
in most cases we expect that OS also will support storing/restoring
for AVX and SSE states at least.
But to be ensure for that we call user-space instruction
XGETBV(0) to get XCR0 value that contains bitmask that defines
what exact states(registers) OS have enabled for storing/restoring.
*/
{
const UInt32 bm = (UInt32)x86_xgetbv_0(MY_XCR_XFEATURE_ENABLED_MASK);
// printf("\n=== XGetBV=%d\n", bm);
return 1
& (bm >> 1) // SSE state is supported (set by OS) for storing/restoring
& (bm >> 2); // AVX state is supported (set by OS) for storing/restoring
}
// since Win7SP1: we can use GetEnabledXStateFeatures();
}
BoolInt CPU_IsSupported_AVX2(void)
{
if (!CPU_IsSupported_AVX())
2022-07-02 07:58:48 +00:00
return False;
if (z7_x86_cpuid_GetMaxFunc() < 7)
2022-07-02 07:58:48 +00:00
return False;
{
UInt32 d[4];
z7_x86_cpuid(d, 7);
2022-07-02 07:58:48 +00:00
// printf("\ncpuid(7): ebx=%8x ecx=%8x\n", d[1], d[2]);
return 1
& (d[1] >> 5); // avx2
}
}
BoolInt CPU_IsSupported_VAES_AVX2(void)
{
if (!CPU_IsSupported_AVX())
2022-07-02 07:58:48 +00:00
return False;
if (z7_x86_cpuid_GetMaxFunc() < 7)
2022-07-02 07:58:48 +00:00
return False;
{
UInt32 d[4];
z7_x86_cpuid(d, 7);
2022-07-02 07:58:48 +00:00
// printf("\ncpuid(7): ebx=%8x ecx=%8x\n", d[1], d[2]);
return 1
& (d[1] >> 5) // avx2
// & (d[1] >> 31) // avx512vl
& (d[2] >> 9); // vaes // VEX-256/EVEX
}
}
BoolInt CPU_IsSupported_PageGB(void)
{
CHECK_CPUID_IS_SUPPORTED
{
UInt32 d[4];
z7_x86_cpuid(d, 0x80000000);
if (d[0] < 0x80000001)
return False;
z7_x86_cpuid(d, 0x80000001);
return (d[3] >> 26) & 1;
}
}
2022-07-02 07:58:48 +00:00
#elif defined(MY_CPU_ARM_OR_ARM64)
#ifdef _WIN32
#include "7zWindows.h"
2022-07-02 07:58:48 +00:00
BoolInt CPU_IsSupported_CRC32(void) { return IsProcessorFeaturePresent(PF_ARM_V8_CRC32_INSTRUCTIONS_AVAILABLE) ? 1 : 0; }
BoolInt CPU_IsSupported_CRYPTO(void) { return IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE) ? 1 : 0; }
BoolInt CPU_IsSupported_NEON(void) { return IsProcessorFeaturePresent(PF_ARM_NEON_INSTRUCTIONS_AVAILABLE) ? 1 : 0; }
2022-07-02 07:58:48 +00:00
#else
#if defined(__APPLE__)
/*
#include <stdio.h>
#include <string.h>
static void Print_sysctlbyname(const char *name)
{
size_t bufSize = 256;
char buf[256];
int res = sysctlbyname(name, &buf, &bufSize, NULL, 0);
{
int i;
printf("\nres = %d : %s : '%s' : bufSize = %d, numeric", res, name, buf, (unsigned)bufSize);
for (i = 0; i < 20; i++)
printf(" %2x", (unsigned)(Byte)buf[i]);
}
}
*/
/*
Print_sysctlbyname("hw.pagesize");
Print_sysctlbyname("machdep.cpu.brand_string");
*/
2022-07-02 07:58:48 +00:00
static BoolInt z7_sysctlbyname_Get_BoolInt(const char *name)
2022-07-02 07:58:48 +00:00
{
UInt32 val = 0;
if (z7_sysctlbyname_Get_UInt32(name, &val) == 0 && val == 1)
2022-07-02 07:58:48 +00:00
return 1;
return 0;
}
BoolInt CPU_IsSupported_CRC32(void)
{
return z7_sysctlbyname_Get_BoolInt("hw.optional.armv8_crc32");
2022-07-02 07:58:48 +00:00
}
BoolInt CPU_IsSupported_NEON(void)
{
return z7_sysctlbyname_Get_BoolInt("hw.optional.neon");
2022-07-02 07:58:48 +00:00
}
#ifdef MY_CPU_ARM64
#define APPLE_CRYPTO_SUPPORT_VAL 1
#else
#define APPLE_CRYPTO_SUPPORT_VAL 0
#endif
BoolInt CPU_IsSupported_SHA1(void) { return APPLE_CRYPTO_SUPPORT_VAL; }
BoolInt CPU_IsSupported_SHA2(void) { return APPLE_CRYPTO_SUPPORT_VAL; }
BoolInt CPU_IsSupported_AES (void) { return APPLE_CRYPTO_SUPPORT_VAL; }
#else // __APPLE__
#include <sys/auxv.h>
#define USE_HWCAP
#ifdef USE_HWCAP
#include <asm/hwcap.h>
#define MY_HWCAP_CHECK_FUNC_2(name1, name2) \
BoolInt CPU_IsSupported_ ## name1() { return (getauxval(AT_HWCAP) & (HWCAP_ ## name2)) ? 1 : 0; }
#ifdef MY_CPU_ARM64
#define MY_HWCAP_CHECK_FUNC(name) \
MY_HWCAP_CHECK_FUNC_2(name, name)
MY_HWCAP_CHECK_FUNC_2(NEON, ASIMD)
// MY_HWCAP_CHECK_FUNC (ASIMD)
#elif defined(MY_CPU_ARM)
#define MY_HWCAP_CHECK_FUNC(name) \
BoolInt CPU_IsSupported_ ## name() { return (getauxval(AT_HWCAP2) & (HWCAP2_ ## name)) ? 1 : 0; }
MY_HWCAP_CHECK_FUNC_2(NEON, NEON)
#endif
#else // USE_HWCAP
#define MY_HWCAP_CHECK_FUNC(name) \
BoolInt CPU_IsSupported_ ## name() { return 0; }
MY_HWCAP_CHECK_FUNC(NEON)
#endif // USE_HWCAP
MY_HWCAP_CHECK_FUNC (CRC32)
MY_HWCAP_CHECK_FUNC (SHA1)
MY_HWCAP_CHECK_FUNC (SHA2)
MY_HWCAP_CHECK_FUNC (AES)
#endif // __APPLE__
#endif // _WIN32
#endif // MY_CPU_ARM_OR_ARM64
#ifdef __APPLE__
#include <sys/sysctl.h>
int z7_sysctlbyname_Get(const char *name, void *buf, size_t *bufSize)
2022-07-02 07:58:48 +00:00
{
return sysctlbyname(name, buf, bufSize, NULL, 0);
}
int z7_sysctlbyname_Get_UInt32(const char *name, UInt32 *val)
2022-07-02 07:58:48 +00:00
{
size_t bufSize = sizeof(*val);
const int res = z7_sysctlbyname_Get(name, val, &bufSize);
2022-07-02 07:58:48 +00:00
if (res == 0 && bufSize != sizeof(*val))
return EFAULT;
return res;
}
#endif