raze/source/build/src/engine.cpp

1042 lines
27 KiB
C++
Raw Normal View History

// "Build Engine & Tools" Copyright (c) 1993-1997 Ken Silverman
// "Build Engine & Tools" Copyright (c) 1993-1997 Ken Silverman
// Ken Silverman's official web site: "http://www.advsys.net/ken"
// See the included license file "BUILDLIC.TXT" for license info.
//
// This file has been modified from Ken Silverman's original release
// by Jonathon Fowler (jf@jonof.id.au)
// by the EDuke32 team (development@voidpoint.com)
#define engine_c_
#include "gl_load.h"
#include "build.h"
2020-09-06 10:44:58 +00:00
#include "automap.h"
#include "imagehelpers.h"
#include "engine_priv.h"
#include "palette.h"
2019-10-23 16:36:48 +00:00
#include "gamecvars.h"
2019-11-06 22:40:10 +00:00
#include "c_console.h"
#include "v_2ddrawer.h"
#include "v_draw.h"
#include "stats.h"
#include "razemenu.h"
#include "version.h"
#include "earcut.hpp"
#include "gamestate.h"
#include "inputstate.h"
#include "printf.h"
#include "gamecontrol.h"
#include "render.h"
#include "gamefuncs.h"
#include "hw_voxels.h"
#include "coreactor.h"
#ifdef USE_OPENGL
# include "mdsprite.h"
# include "polymost.h"
#include "v_video.h"
#include "../../glbackend/glbackend.h"
#include "gl_renderer.h"
#endif
2021-11-20 22:20:43 +00:00
TArray<sectortype> sector;
2021-11-20 22:42:01 +00:00
TArray<walltype> wall;
int32_t mdtims, omdtims;
2020-01-28 21:54:57 +00:00
float fcosglobalang, fsinglobalang;
2021-02-25 11:16:21 +00:00
float fydimen, fviewingrange;
uint8_t globalr = 255, globalg = 255, globalb = 255;
int16_t pskybits_override = -1;
static int16_t radarang[1280];
// adapted from build.c
static void getclosestpointonwall_internal(vec2_t const p, int32_t const dawall, vec2_t *const closest)
{
vec2_t const w = wall[dawall].pos;
2021-12-01 23:54:11 +00:00
vec2_t const w2 = wall[dawall].point2Wall()->pos;
vec2_t const d = { w2.x - w.x, w2.y - w.y };
int64_t i = d.x * ((int64_t)p.x - w.x) + d.y * ((int64_t)p.y - w.y);
if (i <= 0)
{
*closest = w;
return;
}
int64_t const j = (int64_t)d.x * d.x + (int64_t)d.y * d.y;
if (i >= j)
{
*closest = w2;
return;
}
i = ((i << 15) / j) << 15;
*closest = { (int32_t)(w.x + ((d.x * i) >> 30)), (int32_t)(w.y + ((d.y * i) >> 30)) };
}
int32_t xdimen = -1, xdimenscale, xdimscale;
float fxdimen = -1.f;
int32_t ydimen;
int32_t globalposx, globalposy, globalposz;
fixed_t qglobalhoriz;
float fglobalposx, fglobalposy, fglobalposz;
int16_t globalang, globalcursectnum;
fixed_t qglobalang;
int32_t globalpal, globalfloorpal, cosglobalang, singlobalang;
int32_t cosviewingrangeglobalang, sinviewingrangeglobalang;
int32_t viewingrangerecip;
int32_t globalshade, globalorientation;
int16_t globalpicnum;
static int32_t globaly1, globalx2;
int16_t pointhighlight=-1, linehighlight=-1, highlightcnt=0;
static int16_t numhits;
//
// Internal Engine Functions
//
BEGIN_BLD_NS
int qanimateoffs(int a1, int a2);
END_BLD_NS
//
// animateoffs (internal)
//
int32_t animateoffs(int const tilenum, int fakevar)
{
if (isBlood())
{
return Blood::qanimateoffs(tilenum, fakevar);
}
int const animnum = picanm[tilenum].num;
if (animnum <= 0)
return 0;
int const i = (int) I_GetBuildTime() >> (picanm[tilenum].sf & PICANM_ANIMSPEED_MASK);
int offs = 0;
switch (picanm[tilenum].sf & PICANM_ANIMTYPE_MASK)
{
case PICANM_ANIMTYPE_OSC:
{
int k = (i % (animnum << 1));
offs = (k < animnum) ? k : (animnum << 1) - k;
}
break;
case PICANM_ANIMTYPE_FWD: offs = i % (animnum + 1); break;
case PICANM_ANIMTYPE_BACK: offs = -(i % (animnum + 1)); break;
}
return offs;
}
static int32_t engineLoadTables(void)
{
static char tablesloaded = 0;
if (tablesloaded == 0)
{
int32_t i;
for (i=0; i<=512; i++)
sintable[i] = int(sin(i * BAngRadian) * +SINTABLEUNIT);
for (i=513; i<1024; i++)
sintable[i] = sintable[1024-i];
for (i=1024; i<2048; i++)
sintable[i] = -sintable[i-1024];
for (i=0; i<640; i++)
radarang[i] = atan((639.5 - i) / 160.) * (-64. / BAngRadian);
for (i=0; i<640; i++)
radarang[1279-i] = -radarang[i];
tablesloaded = 1;
}
return 0;
}
//
// lintersect (internal)
//
int32_t lintersect(const int32_t originX, const int32_t originY, const int32_t originZ,
const int32_t destX, const int32_t destY, const int32_t destZ,
const int32_t lineStartX, const int32_t lineStartY, const int32_t lineEndX, const int32_t lineEndY,
int32_t *intersectionX, int32_t *intersectionY, int32_t *intersectionZ)
{
const vec2_t ray = { destX-originX,
destY-originY };
const vec2_t lineVec = { lineEndX-lineStartX,
lineEndY-lineStartY };
const vec2_t originDiff = { lineStartX-originX,
lineStartY-originY };
const int32_t rayCrossLineVec = ray.x*lineVec.y - ray.y*lineVec.x;
const int32_t originDiffCrossRay = originDiff.x*ray.y - originDiff.y*ray.x;
if (rayCrossLineVec == 0)
{
if (originDiffCrossRay != 0 || enginecompatibility_mode != ENGINECOMPATIBILITY_NONE)
{
// line segments are parallel
return 0;
}
// line segments are collinear
const int32_t rayLengthSquared = ray.x*ray.x + ray.y*ray.y;
const int32_t rayDotOriginDiff = ray.x*originDiff.x + ray.y*originDiff.y;
const int32_t rayDotLineEndDiff = rayDotOriginDiff + ray.x*lineVec.x + ray.y*lineVec.y;
int64_t t = min(rayDotOriginDiff, rayDotLineEndDiff);
if (rayDotOriginDiff < 0)
{
if (rayDotLineEndDiff < 0)
return 0;
t = 0;
}
else if (rayDotOriginDiff > rayLengthSquared)
{
if (rayDotLineEndDiff > rayLengthSquared)
return 0;
t = rayDotLineEndDiff;
}
2020-07-14 18:21:16 +00:00
t = (t << 24) / rayLengthSquared;
*intersectionX = originX + MulScale(ray.x, t, 24);
*intersectionY = originY + MulScale(ray.y, t, 24);
*intersectionZ = originZ + MulScale(destZ-originZ, t, 24);
return 1;
}
const int32_t originDiffCrossLineVec = originDiff.x*lineVec.y - originDiff.y*lineVec.x;
static const int32_t signBit = 1u<<31u;
// Any point on either line can be expressed as p+t*r and q+u*s
// The two line segments intersect when we can find a t & u such that p+t*r = q+u*s
// If the point is outside of the bounds of the line segment, we know we don't have an intersection.
// t is < 0 if (originDiffCrossLineVec^rayCrossLineVec) & signBit)
// u is < 0 if (originDiffCrossRay^rayCrossLineVec) & signBit
// t is > 1 if abs(originDiffCrossLineVec) > abs(rayCrossLineVec)
// u is > 1 if abs(originDiffCrossRay) > abs(rayCrossLineVec)
// where int32_t u = tabledivide64(((int64_t) originDiffCrossRay) << 24L, rayCrossLineVec);
if (((originDiffCrossLineVec^rayCrossLineVec) & signBit) ||
((originDiffCrossRay^rayCrossLineVec) & signBit) ||
abs(originDiffCrossLineVec) > abs(rayCrossLineVec) ||
abs(originDiffCrossRay) > abs(rayCrossLineVec))
{
// line segments do not overlap
return 0;
}
2020-07-14 18:21:16 +00:00
int64_t t = (int64_t(originDiffCrossLineVec) << 24) / rayCrossLineVec;
// For sake of completeness/readability, alternative to the above approach for an early out & avoidance of an extra division:
*intersectionX = originX + MulScale(ray.x, t, 24);
*intersectionY = originY + MulScale(ray.y, t, 24);
*intersectionZ = originZ + MulScale(destZ-originZ, t, 24);
return 1;
}
//
// rintersect (internal)
//
// returns: -1 if didn't intersect, coefficient (x3--x4 fraction)<<16 else
int32_t rintersect(int32_t x1, int32_t y1, int32_t z1,
int32_t vx, int32_t vy, int32_t vz,
int32_t x3, int32_t y3, int32_t x4, int32_t y4,
int32_t *intx, int32_t *inty, int32_t *intz)
{
//p1 towards p2 is a ray
int64_t const x34=x3-x4, y34=y3-y4;
int64_t const x31=x3-x1, y31=y3-y1;
int64_t const bot = vx*y34 - vy*x34;
int64_t const topt = x31*y34 - y31*x34;
if (bot == 0)
return -1;
int64_t const topu = vx*y31 - vy*x31;
if (bot > 0 && (topt < 0 || topu < 0 || topu >= bot))
return -1;
else if (bot < 0 && (topt > 0 || topu > 0 || topu <= bot))
return -1;
int64_t t = (topt << 16) / bot;
*intx = x1 + ((vx*t) >> 16);
*inty = y1 + ((vy*t) >> 16);
*intz = z1 + ((vz*t) >> 16);
t = (topu << 16) / bot;
assert((unsigned)t < 65536);
return t;
}
//
// multi-pskies
//
psky_t * tileSetupSky(int32_t const tilenum)
{
for (auto& sky : multipskies)
if (tilenum == sky.tilenum)
{
return &sky;
}
multipskies.Reserve(1);
multipskies.Last() = {};
multipskies.Last().tilenum = tilenum;
multipskies.Last().yscale = 65536;
return &multipskies.Last();
}
psky_t * defineSky(int32_t const tilenum, int horiz, int lognumtiles, const uint16_t *tileofs, int yoff, int yoff2)
{
auto sky = tileSetupSky(tilenum);
sky->horizfrac = horiz;
sky->lognumtiles = lognumtiles;
sky->yoffs = yoff;
sky->yoffs2 = yoff2 == 0x7fffffff ? yoff : yoff2;
memcpy(sky->tileofs, tileofs, 2 << lognumtiles);
return sky;
}
// Get properties of parallaxed sky to draw.
// Returns: pointer to tile offset array. Sets-by-pointer the other three.
const int16_t* getpsky(int32_t picnum, int32_t* dapyscale, int32_t* dapskybits, int32_t* dapyoffs, int32_t* daptileyscale, bool alt)
{
psky_t const* const psky = getpskyidx(picnum);
if (dapskybits)
*dapskybits = (pskybits_override == -1 ? psky->lognumtiles : pskybits_override);
if (dapyscale)
*dapyscale = (parallaxyscale_override == 0 ? psky->horizfrac : parallaxyscale_override);
if (dapyoffs)
*dapyoffs = (alt? psky->yoffs2 : psky->yoffs) + parallaxyoffs_override;
if (daptileyscale)
*daptileyscale = psky->yscale;
return psky->tileofs;
}
//
// initengine
//
int32_t engineInit(void)
{
engineLoadTables();
g_visibility = 512;
return 0;
}
//
// inside
//
// See http://fabiensanglard.net/duke3d/build_engine_internals.php,
// "Inside details" for the idea behind the algorithm.
int32_t inside(int32_t x, int32_t y, const sectortype* sect)
{
if (sect)
{
unsigned cnt = 0;
vec2_t xy = { x, y };
for(auto& wal : wallsofsector(sect))
{
vec2_t v1 = wal.pos - xy;
vec2_t v2 = wal.point2Wall()->pos - xy;
// If their signs differ[*], ...
//
// [*] where '-' corresponds to <0 and '+' corresponds to >=0.
// Equivalently, the branch is taken iff
// y1 != y2 AND y_m <= y < y_M,
// where y_m := min(y1, y2) and y_M := max(y1, y2).
if ((v1.y^v2.y) < 0)
cnt ^= (((v1.x^v2.x) >= 0) ? v1.x : (v1.x*v2.y-v2.x*v1.y)^v2.y);
}
return cnt>>31;
}
return -1;
}
int32_t getangle(int32_t xvect, int32_t yvect)
{
int32_t rv;
if ((xvect | yvect) == 0)
rv = 0;
else if (xvect == 0)
rv = 512 + ((yvect < 0) << 10);
else if (yvect == 0)
rv = ((xvect < 0) << 10);
else if (xvect == yvect)
rv = 256 + ((xvect < 0) << 10);
else if (xvect == -yvect)
rv = 768 + ((xvect > 0) << 10);
else if (abs(xvect) > abs(yvect))
rv = ((radarang[640 + Scale(160, yvect, xvect)] >> 6) + ((xvect < 0) << 10)) & 2047;
else rv = ((radarang[640 - Scale(160, xvect, yvect)] >> 6) + 512 + ((yvect < 0) << 10)) & 2047;
return rv;
}
// Gets the BUILD unit height and z offset of a sprite.
// Returns the z offset, 'height' may be NULL.
int32_t spriteheightofsptr(uspriteptr_t spr, int32_t *height, int32_t alsotileyofs)
{
int32_t hei, zofs=0;
const int32_t picnum=spr->picnum, yrepeat=spr->yrepeat;
hei = (tileHeight(picnum)*yrepeat)<<2;
if (height != NULL)
*height = hei;
if (spr->cstat&128)
zofs = hei>>1;
// NOTE: a positive per-tile yoffset translates the sprite into the
// negative world z direction (i.e. upward).
if (alsotileyofs)
2020-05-24 10:31:38 +00:00
zofs -= tileTopOffset(picnum) *yrepeat<<2;
return zofs;
}
//
// nextsectorneighborz
//
// -1: ceiling or up
// 1: floor or down
sectortype* nextsectorneighborzptr(sectortype* sectp, int refz, int topbottom, int direction)
{
int nextz = (direction==1) ? INT32_MAX : INT32_MIN;
sectortype* sectortouse = nullptr;
for(auto& wal : wallsofsector(sectp))
{
if (wal.twoSided())
{
auto ns = wal.nextSector();
const int32_t testz = (topbottom == 1) ? ns->floorz : ns->ceilingz;
const int32_t update = (direction == 1) ?
(nextz > testz && testz > refz) :
(nextz < testz && testz < refz);
if (update)
{
nextz = testz;
sectortouse = ns;
}
}
}
return sectortouse;
}
//
// cansee
//
int cansee(int x1, int y1, int z1, sectortype* sect1, int x2, int y2, int z2, sectortype* sect2)
{
if (!sect1 || !sect2) return false;
const int32_t x21 = x2-x1, y21 = y2-y1, z21 = z2-z1;
if (x1 == x2 && y1 == y2)
return (sect1 == sect2);
BFSSectorSearch search(sect1);
while (auto sec = search.GetNext())
{
uwallptr_t wal;
int cnt;
for (cnt=sec->wallnum,wal=(uwallptr_t)sec->firstWall(); cnt>0; cnt--,wal++)
{
auto const wal2 = (uwallptr_t)wal->point2Wall();
const int32_t x31 = wal->x-x1, x34 = wal->x-wal2->x;
const int32_t y31 = wal->y-y1, y34 = wal->y-wal2->y;
int32_t x, y, z, t, bot;
int32_t cfz[2];
bot = y21*x34-x21*y34; if (bot <= 0) continue;
// XXX: OVERFLOW
t = y21*x31-x21*y31; if ((unsigned)t >= (unsigned)bot) continue;
t = y31*x34-x31*y34;
if ((unsigned)t >= (unsigned)bot)
{
continue;
}
if (!wal->twoSided() || wal->cstat&32)
return 0;
t = DivScale(t,bot, 24);
x = x1 + MulScale(x21,t, 24);
y = y1 + MulScale(y21,t, 24);
z = z1 + MulScale(z21,t, 24);
getzsofslopeptr(sec, x,y, &cfz[0],&cfz[1]);
if (z <= cfz[0] || z >= cfz[1])
{
return 0;
}
auto nexts = wal->nextSector();
getzsofslopeptr(nexts, x,y, &cfz[0],&cfz[1]);
if (z <= cfz[0] || z >= cfz[1])
return 0;
search.Add(nexts);
}
}
return search.Check(sect2);
}
//
// neartag
//
void neartag(const vec3_t& sv, sectortype* sect, int ange, HitInfoBase& result, int neartagrange, int tagsearch)
{
const int32_t vx = MulScale(bcos(ange), neartagrange, 14);
const int32_t vy = MulScale(bsin(ange), neartagrange, 14);
vec3_t hitv = { sv.x+vx, sv.y+vy, 0 };
result.clearObj();
result.hitpos.x = 0;
if (!sect || (tagsearch & 3) == 0)
return;
BFSSectorSearch search(sect);
while (auto dasect = search.GetNext())
{
for (auto& w : wallsofsector(dasect))
{
auto wal = &w;
auto const wal2 = (uwallptr_t)wal->point2Wall();
const auto nextsect = wal->nextSector();
const int32_t x1 = wal->x, y1 = wal->y, x2 = wal2->x, y2 = wal2->y;
int32_t intx, inty, intz, good = 0;
if (wal->twoSided())
{
if ((tagsearch & 1) && nextsect->lotag) good |= 1;
if ((tagsearch & 2) && nextsect->hitag) good |= 1;
}
if ((tagsearch & 1) && wal->lotag) good |= 2;
if ((tagsearch & 2) && wal->hitag) good |= 2;
if ((good == 0) && (!wal->twoSided())) continue;
if ((coord_t)(x1 - sv.x) * (y2 - sv.y) < (coord_t)(x2 - sv.x) * (y1 - sv.y)) continue;
if (lintersect(sv.x, sv.y, sv.z, hitv.x, hitv.y, hitv.z, x1, y1, x2, y2, &intx, &inty, &intz) == 1)
{
if (good != 0)
{
if (good & 1) result.hitSector = nextsect;
if (good & 2) result.hitWall = wal;
result.hitpos.x = DMulScale(intx - sv.x, bcos(ange), inty - sv.y, bsin(ange), 14);
hitv.x = intx; hitv.y = inty; hitv.z = intz;
}
if (wal->twoSided())
{
search.Add(nextsect);
}
}
}
if (tagsearch & 4)
continue; // skip sprite search
TSectIterator<DCoreActor> it(dasect);
while (auto actor = it.Next())
{
auto const spr = &actor->s();
if (spr->cstat2 & CSTAT2_SPRITE_NOFIND)
continue;
if (((tagsearch&1) && spr->lotag) || ((tagsearch&2) && spr->hitag))
{
if (try_facespr_intersect(spr, sv, vx, vy, 0, &hitv, 1))
{
result.hitActor = actor;
result.hitpos.x = DMulScale(hitv.x-sv.x, bcos(ange), hitv.y-sv.y, bsin(ange), 14);
}
}
}
}
}
//
// dragpoint
//
void dragpoint(int w, int32_t dax, int32_t day)
{
BFSSearch walbitmap(numwalls);
int clockwise = 0;
const int tmpstartwall = w;
int cnt = 16384; // limit the number of iterations.
while (1)
{
auto wal = &wall[w];
sector[wal->sector].dirty = EDirty::AllDirty;
wal->x = dax;
wal->y = day;
walbitmap.Set(w);
if (!clockwise) //search points CCW
{
if (wal->nextwall >= 0)
w = wall[wal->nextwall].point2;
else
{
w = tmpstartwall;
clockwise = 1;
}
}
cnt--;
if (cnt==0)
{
Printf("dragpoint %d: infinite loop!\n", w);
break;
}
if (clockwise)
{
int32_t thelastwall = lastwall(w);
if (wall[thelastwall].nextwall >= 0)
w = wall[thelastwall].nextwall;
else
break;
}
if (walbitmap.Check(w))
{
if (clockwise)
break;
w = tmpstartwall;
clockwise = 1;
continue;
}
}
}
//
// lastwall
//
int32_t lastwall(int16_t point)
{
if (point > 0 && wall[point-1].point2 == point)
return point-1;
int i = point, cnt = numwalls;
do
{
int const j = wall[i].point2;
if (j == point)
{
point = i;
break;
}
i = j;
}
while (--cnt);
return point;
}
////////// UPDATESECTOR* FAMILY OF FUNCTIONS //////////
/* Different "is inside" predicates.
* NOTE: The redundant bound checks are expected to be optimized away in the
* inlined code. */
/* NOTE: no bound check */
static inline int inside_z_p(int32_t const x, int32_t const y, int32_t const z, int const sectnum)
{
int32_t cz, fz;
getzsofslope(sectnum, x, y, &cz, &fz);
return (z >= cz && z <= fz && inside_p(x, y, sectnum));
}
int32_t getwalldist(vec2_t const in, int const wallnum)
{
vec2_t closest;
getclosestpointonwall_internal(in, wallnum, &closest);
return abs(closest.x - in.x) + abs(closest.y - in.y);
}
int32_t getwalldist(vec2_t const in, int const wallnum, vec2_t * const out)
{
getclosestpointonwall_internal(in, wallnum, out);
return abs(out->x - in.x) + abs(out->y - in.y);
}
int32_t getsectordist(vec2_t const in, int const sectnum, vec2_t * const out /*= nullptr*/)
{
if (inside_p(in.x, in.y, sectnum))
{
if (out)
*out = in;
return 0;
}
int32_t distance = INT32_MAX;
vec2_t closest = {};
2021-12-01 23:34:31 +00:00
for (auto& wal : wallsofsector(sectnum))
{
vec2_t p;
2021-12-01 23:34:31 +00:00
int32_t const walldist = getwalldist(in, wallnum(&wal), &p);
if (walldist < distance)
{
distance = walldist;
closest = p;
}
}
if (out)
*out = closest;
return distance;
}
template<class Inside>
void updatesectorneighborz(int32_t const x, int32_t const y, int32_t const z, int* const sectnum, int32_t maxDistance, Inside checker)
{
int const initialsectnum = *sectnum;
if ((validSectorIndex(initialsectnum)))
{
if (checker(x, y, z, initialsectnum))
return;
BFSSearch search(numsectors, *sectnum);
int iter = 0;
for (unsigned listsectnum; (listsectnum = search.GetNext()) != BFSSearch::EOL;)
{
if (checker(x, y, z, listsectnum))
{
*sectnum = listsectnum;
return;
}
for (auto& wal : wallsofsector(listsectnum))
{
if (wal.nextsector >= 0 && (iter == 0 || getsectordist({ x, y }, wal.nextsector) <= maxDistance))
search.Add(wal.nextsector);
}
iter++;
}
}
*sectnum = -1;
}
void updatesectorneighbor(int32_t const x, int32_t const y, int* const sectnum, int32_t maxDistance)
{
updatesectorneighborz(x, y, 0, sectnum, maxDistance, inside_p0);
}
//
// updatesector[z]
//
void updatesector(int32_t const x, int32_t const y, int * const sectnum)
{
int sect = *sectnum;
updatesectorneighbor(x, y, &sect, MAXUPDATESECTORDIST);
if (sect != -1)
SET_AND_RETURN(*sectnum, sect);
// we need to support passing in a sectnum of -1, unfortunately
for (int i = numsectors - 1; i >= 0; --i)
if (inside_p(x, y, i))
SET_AND_RETURN(*sectnum, i);
*sectnum = -1;
}
void updatesectorz(int32_t const x, int32_t const y, int32_t const z, int* const sectnum)
{
int sect = *sectnum;
updatesectorneighborz(x, y, z, &sect, MAXUPDATESECTORDIST, inside_z_p);
if (sect != -1)
SET_AND_RETURN(*sectnum, sect);
// we need to support passing in a sectnum of -1, unfortunately
for (int i = numsectors - 1; i >= 0; --i)
if (inside_z_p(x, y, z, i))
SET_AND_RETURN(*sectnum, i);
*sectnum = -1;
}
//
// rotatepoint
//
void rotatepoint(vec2_t const pivot, vec2_t p, int16_t const daang, vec2_t * const p2)
{
int const dacos = bcos(daang);
int const dasin = bsin(daang);
p.x -= pivot.x;
p.y -= pivot.y;
p2->x = DMulScale(p.x, dacos, -p.y, dasin, 14) + pivot.x;
p2->y = DMulScale(p.y, dacos, p.x, dasin, 14) + pivot.y;
}
//
// setview
//
void videoSetViewableArea(int32_t x1, int32_t y1, int32_t x2, int32_t y2)
{
2019-12-31 18:02:55 +00:00
windowxy1.x = x1;
windowxy1.y = y1;
windowxy2.x = x2;
windowxy2.y = y2;
xdimen = (x2-x1)+1;
ydimen = (y2-y1)+1;
fxdimen = (float) xdimen;
fydimen = (float) ydimen;
videoSetCorrectedAspect();
}
#include "v_2ddrawer.h"
//MUST USE RESTOREFORDRAWROOMS AFTER DRAWING
static int32_t setviewcnt = 0; // interface layers use this now
static int32_t bakxsiz, bakysiz;
static vec2_t bakwindowxy1, bakwindowxy2;
//
// setviewtotile
//
FCanvasTexture* renderSetTarget(int16_t tilenume)
{
auto tex = tileGetTexture(tilenume);
if (!tex || !tex->isHardwareCanvas()) return nullptr;
auto canvas = static_cast<FCanvasTexture*>(tex->GetTexture());
if (!canvas) return nullptr;
int xsiz = tex->GetTexelWidth(), ysiz = tex->GetTexelHeight();
if (setviewcnt > 0 || xsiz <= 0 || ysiz <= 0)
return nullptr;
//DRAWROOMS TO TILE BACKUP&SET CODE
bakxsiz = xdim; bakysiz = ydim;
bakwindowxy1 = windowxy1;
bakwindowxy2 = windowxy2;
setviewcnt++;
xdim = ysiz;
ydim = xsiz;
videoSetViewableArea(0,0,ysiz-1,xsiz-1);
renderSetAspect(65536,65536);
return canvas;
}
//
// setviewback
//
void renderRestoreTarget()
{
if (setviewcnt <= 0) return;
setviewcnt--;
xdim = bakxsiz;
ydim = bakysiz;
videoSetViewableArea(bakwindowxy1.x,bakwindowxy1.y,
bakwindowxy2.x,bakwindowxy2.y);
}
int32_t getceilzofslopeptr(usectorptr_t sec, int32_t dax, int32_t day)
{
if (!(sec->ceilingstat&2))
return sec->ceilingz;
auto const wal = (uwallptr_t)sec->firstWall();
auto const wal2 = (uwallptr_t)wal->point2Wall();
vec2_t const w = *(vec2_t const *)wal;
vec2_t const d = { wal2->x - w.x, wal2->y - w.y };
int const i = ksqrt(uhypsq(d.x,d.y))<<5;
if (i == 0) return sec->ceilingz;
int const j = DMulScale(d.x, day-w.y, -d.y, dax-w.x, 3);
int const shift = enginecompatibility_mode != ENGINECOMPATIBILITY_NONE ? 0 : 1;
return sec->ceilingz + (Scale(sec->ceilingheinum,j>>shift,i)<<shift);
}
int32_t getflorzofslopeptr(usectorptr_t sec, int32_t dax, int32_t day)
{
if (!(sec->floorstat&2))
return sec->floorz;
auto const wal = (uwallptr_t)sec->firstWall();
auto const wal2 = (uwallptr_t)wal->point2Wall();
vec2_t const w = *(vec2_t const *)wal;
vec2_t const d = { wal2->x - w.x, wal2->y - w.y };
int const i = ksqrt(uhypsq(d.x,d.y))<<5;
if (i == 0) return sec->floorz;
int const j = DMulScale(d.x, day-w.y, -d.y, dax-w.x, 3);
int const shift = enginecompatibility_mode != ENGINECOMPATIBILITY_NONE ? 0 : 1;
return sec->floorz + (Scale(sec->floorheinum,j>>shift,i)<<shift);
}
void getzsofslopeptr(usectorptr_t sec, int32_t dax, int32_t day, int32_t *ceilz, int32_t *florz)
{
*ceilz = sec->ceilingz; *florz = sec->floorz;
if (((sec->ceilingstat|sec->floorstat)&2) != 2)
return;
auto const wal = (uwallptr_t)sec->firstWall();
auto const wal2 = (uwallptr_t)wal->point2Wall();
vec2_t const d = { wal2->x - wal->x, wal2->y - wal->y };
int const i = ksqrt(uhypsq(d.x,d.y))<<5;
if (i == 0) return;
int const j = DMulScale(d.x,day-wal->y, -d.y,dax-wal->x, 3);
int const shift = enginecompatibility_mode != ENGINECOMPATIBILITY_NONE ? 0 : 1;
if (sec->ceilingstat&2)
*ceilz += Scale(sec->ceilingheinum,j>>shift,i)<<shift;
if (sec->floorstat&2)
*florz += Scale(sec->floorheinum,j>>shift,i)<<shift;
}
//
// alignceilslope
//
void alignceilslope(int16_t dasect, int32_t x, int32_t y, int32_t z)
{
2021-12-01 23:34:31 +00:00
auto sect = &sector[dasect];
auto const wal = (uwallptr_t)sect->firstWall();
const int32_t dax = wal->point2Wall()->x-wal->x;
const int32_t day = wal->point2Wall()->y-wal->y;
const int32_t i = (y-wal->y)*dax - (x-wal->x)*day;
if (i == 0)
return;
2021-12-01 23:34:31 +00:00
sect->ceilingheinum = Scale((z-sect->ceilingz)<<8,
ksqrt(uhypsq(dax,day)), i);
2021-12-01 23:34:31 +00:00
if (sect->ceilingheinum == 0)
sect->ceilingstat &= ~2;
else sect->ceilingstat |= 2;
}
//
// alignflorslope
//
void alignflorslope(int16_t dasect, int32_t x, int32_t y, int32_t z)
{
2021-12-01 23:34:31 +00:00
auto sect = &sector[dasect];
auto const wal = (uwallptr_t)sect->firstWall();
const int32_t dax = wal->point2Wall()->x-wal->x;
const int32_t day = wal->point2Wall()->y-wal->y;
const int32_t i = (y-wal->y)*dax - (x-wal->x)*day;
if (i == 0)
return;
2021-12-01 23:34:31 +00:00
sect->floorheinum = Scale((z-sect->floorz)<<8,
ksqrt(uhypsq(dax,day)), i);
2021-12-01 23:34:31 +00:00
if (sect->floorheinum == 0)
sect->floorstat &= ~2;
else sect->floorstat |= 2;
}
int tilehasmodelorvoxel(int const tilenume, int pal)
{
return
(mdinited && hw_models && tile2model[Ptile2tile(tilenume, pal)].modelid != -1) ||
(r_voxels && tiletovox[tilenume] != -1);
}
CCMD(updatesectordebug)
{
int sect = 319;
updatesector(1792, 24334, &sect);
int blah = sect;
}