raze-gles/source/build/src/klzw.cpp
terminx b0a4b6a1ee Convert loops using unsigned integers as iterators to use regular signed ints instead
https://kristerw.blogspot.com/2016/02/how-undefined-signed-overflow-enables.html

Doing this as cleanly as possible involved demoting several function parameters concerning object sizes and counts from size_t to int--I'm fine with this change as the functions in question are not actually capable of handling input with sizes larger than what can be stored in a signed 32-bit integer, making the use of size_t here misleading at best.

git-svn-id: https://svn.eduke32.com/eduke32@7673 1a8010ca-5511-0410-912e-c29ae57300e0

# Conflicts:
#	source/build/src/polymost.cpp
#	source/build/src/texcache.cpp
#	source/build/src/tilepacker.cpp
2019-09-20 10:04:24 +02:00

359 lines
9.3 KiB
C++

// "Build Engine & Tools" Copyright (c) 1993-1997 Ken Silverman
// Ken Silverman's official web site: "http://www.advsys.net/ken"
// See the included license file "BUILDLIC.TXT" for license info.
//
// This file has been modified from Ken Silverman's original release
// by Jonathon Fowler (jf@jonof.id.au)
// by the EDuke32 team (development@voidpoint.com)
#include "compat.h"
#include "klzw.h"
//Internal LZW variables
#define LZWSIZE 16384 //Watch out for shorts!
#define LZWSIZEPAD (LZWSIZE+(LZWSIZE>>4))
// lzwrawbuf LZWSIZE+1 (formerly): see (*) below
// XXX: lzwrawbuf size increased again :-/
static char lzwtmpbuf[LZWSIZEPAD], lzwrawbuf[LZWSIZEPAD], lzwcompbuf[LZWSIZEPAD];
static int16_t lzwbuf2[LZWSIZEPAD], lzwbuf3[LZWSIZEPAD];
////////// CORE COMPRESSION FUNCTIONS //////////
static int32_t lzwcompress(const char *lzwinbuf, int32_t uncompleng, char *lzwoutbuf)
{
int32_t i, addr, addrcnt, *intptr;
int32_t bytecnt1, bitcnt, numbits, oneupnumbits;
int16_t *shortptr;
int16_t *const lzwcodehead = lzwbuf2;
int16_t *const lzwcodenext = lzwbuf3;
for (i=255; i>=4; i-=4)
{
lzwtmpbuf[i] = i, lzwcodenext[i] = (i+1)&255;
lzwtmpbuf[i-1] = i-1, lzwcodenext[i-1] = (i) &255;
lzwtmpbuf[i-2] = i-2, lzwcodenext[i-2] = (i-1)&255;
lzwtmpbuf[i-3] = i-3, lzwcodenext[i-3] = (i-2)&255;
lzwcodehead[i] = lzwcodehead[i-1] = lzwcodehead[i-2] = lzwcodehead[i-3] = -1;
}
for (; i>=0; i--)
{
lzwtmpbuf[i] = i;
lzwcodenext[i] = (i+1)&255;
lzwcodehead[i] = -1;
}
Bmemset(lzwoutbuf, 0, 4+uncompleng+1);
// clearbuf(lzwoutbuf,((uncompleng+15)+3)>>2,0L);
addrcnt = 256; bytecnt1 = 0; bitcnt = (4<<3);
numbits = 8; oneupnumbits = (1<<8);
do
{
addr = lzwinbuf[bytecnt1];
do
{
int32_t newaddr;
if (++bytecnt1 == uncompleng)
break; // (*) see XXX below
if (lzwcodehead[addr] < 0)
{
lzwcodehead[addr] = addrcnt;
break;
}
newaddr = lzwcodehead[addr];
while (lzwtmpbuf[newaddr] != lzwinbuf[bytecnt1])
{
if (lzwcodenext[newaddr] < 0)
{
lzwcodenext[newaddr] = addrcnt;
break;
}
newaddr = lzwcodenext[newaddr];
}
if (lzwcodenext[newaddr] == addrcnt)
break;
addr = newaddr;
}
while (addr >= 0);
lzwtmpbuf[addrcnt] = lzwinbuf[bytecnt1]; // XXX: potential oob access of lzwinbuf via (*) above
lzwcodehead[addrcnt] = -1;
lzwcodenext[addrcnt] = -1;
intptr = (int32_t *)&lzwoutbuf[bitcnt>>3];
intptr[0] |= B_LITTLE32(addr<<(bitcnt&7));
bitcnt += numbits;
if ((addr&((oneupnumbits>>1)-1)) > ((addrcnt-1)&((oneupnumbits>>1)-1)))
bitcnt--;
addrcnt++;
if (addrcnt > oneupnumbits)
{ numbits++; oneupnumbits <<= 1; }
}
while ((bytecnt1 < uncompleng) && (bitcnt < (uncompleng<<3)));
intptr = (int32_t *)&lzwoutbuf[bitcnt>>3];
intptr[0] |= B_LITTLE32(addr<<(bitcnt&7));
bitcnt += numbits;
if ((addr&((oneupnumbits>>1)-1)) > ((addrcnt-1)&((oneupnumbits>>1)-1)))
bitcnt--;
shortptr = (int16_t *)lzwoutbuf;
shortptr[0] = B_LITTLE16((int16_t)uncompleng);
if (((bitcnt+7)>>3) < uncompleng)
{
shortptr[1] = B_LITTLE16((int16_t)addrcnt);
return (bitcnt+7)>>3;
}
// Failed compressing, mark this in the stream.
shortptr[1] = 0;
for (i=0; i<uncompleng-4; i+=4)
{
lzwoutbuf[i+4] = lzwinbuf[i];
lzwoutbuf[i+5] = lzwinbuf[i+1];
lzwoutbuf[i+6] = lzwinbuf[i+2];
lzwoutbuf[i+7] = lzwinbuf[i+3];
}
for (; i<uncompleng; i++)
lzwoutbuf[i+4] = lzwinbuf[i];
return uncompleng+4;
}
static int32_t lzwuncompress(const char *lzwinbuf, int32_t compleng, char *lzwoutbuf)
{
int32_t currstr, numbits, oneupnumbits;
int32_t i, bitcnt, outbytecnt;
const int16_t *const shortptr = (const int16_t *)lzwinbuf;
const int32_t strtot = B_LITTLE16(shortptr[1]);
const int32_t uncompleng = B_LITTLE16(shortptr[0]);
if (strtot == 0)
{
if (lzwoutbuf==lzwrawbuf && lzwinbuf==lzwcompbuf)
{
Bassert((compleng-4)+3+0u < sizeof(lzwrawbuf));
Bassert((compleng-4)+3+0u < sizeof(lzwcompbuf)-4);
}
Bmemcpy(lzwoutbuf, lzwinbuf+4, (compleng-4)+3);
return uncompleng;
}
for (i=255; i>=4; i-=4)
{
lzwbuf2[i] = lzwbuf3[i] = i;
lzwbuf2[i-1] = lzwbuf3[i-1] = i-1;
lzwbuf2[i-2] = lzwbuf3[i-2] = i-2;
lzwbuf2[i-3] = lzwbuf3[i-3] = i-3;
}
lzwbuf2[i] = lzwbuf3[i] = i;
lzwbuf2[i-1] = lzwbuf3[i-1] = i-1;
lzwbuf2[i-2] = lzwbuf3[i-2] = i-2;
currstr = 256; bitcnt = (4<<3); outbytecnt = 0;
numbits = 8; oneupnumbits = (1<<8);
do
{
const int32_t *const intptr = (const int32_t *)&lzwinbuf[bitcnt>>3];
int32_t dat = ((B_LITTLE32(intptr[0])>>(bitcnt&7)) & (oneupnumbits-1));
int32_t leng;
bitcnt += numbits;
if ((dat&((oneupnumbits>>1)-1)) > ((currstr-1)&((oneupnumbits>>1)-1)))
{ dat &= ((oneupnumbits>>1)-1); bitcnt--; }
lzwbuf3[currstr] = dat;
for (leng=0; dat>=256; leng++,dat=lzwbuf3[dat])
lzwtmpbuf[leng] = lzwbuf2[dat];
lzwoutbuf[outbytecnt++] = dat;
for (i=leng-1; i>=4; i-=4, outbytecnt+=4)
{
lzwoutbuf[outbytecnt] = lzwtmpbuf[i];
lzwoutbuf[outbytecnt+1] = lzwtmpbuf[i-1];
lzwoutbuf[outbytecnt+2] = lzwtmpbuf[i-2];
lzwoutbuf[outbytecnt+3] = lzwtmpbuf[i-3];
}
for (; i>=0; i--)
lzwoutbuf[outbytecnt++] = lzwtmpbuf[i];
lzwbuf2[currstr-1] = dat; lzwbuf2[currstr] = dat;
currstr++;
if (currstr > oneupnumbits)
{ numbits++; oneupnumbits <<= 1; }
}
while (currstr < strtot);
return uncompleng;
}
////////// COMPRESSED READ //////////
struct decompress_info
{
klzw_readfunc readfunc;
intptr_t f;
int32_t kgoal;
};
static int decompress_part(struct decompress_info * x)
{
intptr_t const f = x->f;
auto readfunc = x->readfunc;
// Read compressed length first.
int16_t leng;
if (readfunc(f, &leng, sizeof(leng)) != sizeof(leng))
return 1;
leng = B_LITTLE16(leng);
if (readfunc(f, lzwcompbuf, leng) != leng)
return 1;
x->kgoal = lzwuncompress(lzwcompbuf, leng, lzwrawbuf);
return 0;
}
// Read from 'f' into 'buffer'.
int32_t klzw_read_compressed(void *buffer, int dasizeof, int count, intptr_t const f, klzw_readfunc readfunc)
{
char *ptr = (char *)buffer;
if (dasizeof > LZWSIZE)
{
count *= dasizeof;
dasizeof = 1;
}
struct decompress_info x;
x.readfunc = readfunc;
x.f = f;
if (decompress_part(&x))
return -1;
Bmemcpy(ptr, lzwrawbuf, (int32_t)dasizeof);
for (int i=1, k=dasizeof; i<count; i++)
{
if (k >= x.kgoal)
{
k = decompress_part(&x);
if (k) return -1;
}
int j = 0;
if (dasizeof >= 4)
{
for (; j<dasizeof-4; j+=4)
{
ptr[j+dasizeof] = ((ptr[j]+lzwrawbuf[j+k])&255);
ptr[j+1+dasizeof] = ((ptr[j+1]+lzwrawbuf[j+1+k])&255);
ptr[j+2+dasizeof] = ((ptr[j+2]+lzwrawbuf[j+2+k])&255);
ptr[j+3+dasizeof] = ((ptr[j+3]+lzwrawbuf[j+3+k])&255);
}
}
for (; j<dasizeof; j++)
ptr[j+dasizeof] = ((ptr[j]+lzwrawbuf[j+k])&255);
k += dasizeof;
ptr += dasizeof;
}
return count;
}
////////// COMPRESSED WRITE //////////
struct compress_info
{
klzw_writefunc writefunc;
intptr_t f;
int32_t k;
};
static void compress_part(struct compress_info * x)
{
const int16_t leng = (int16_t)lzwcompress(lzwrawbuf, x->k, lzwcompbuf);
const int16_t swleng = B_LITTLE16(leng);
intptr_t const f = x->f;
auto writefunc = x->writefunc;
x->k = 0;
writefunc(f, &swleng, sizeof(swleng));
writefunc(f, lzwcompbuf, leng);
}
// Write from 'buffer' to 'f'.
void klzw_write_compressed(const void * const buffer, int dasizeof, int count, intptr_t const f, klzw_writefunc writefunc)
{
char const *ptr = (char const *)buffer;
if (dasizeof > LZWSIZE)
{
count *= dasizeof;
dasizeof = 1;
}
Bmemcpy(lzwrawbuf, ptr, (int32_t)dasizeof);
struct compress_info x;
x.writefunc = writefunc;
x.f = f;
if ((x.k = dasizeof) > LZWSIZE-dasizeof)
compress_part(&x);
for (int i=1; i<count; i++)
{
int j = 0;
if (dasizeof >= 4)
{
for (; j<dasizeof-4; j+=4)
{
lzwrawbuf[j+x.k] = ((ptr[j+dasizeof]-ptr[j])&255);
lzwrawbuf[j+1+x.k] = ((ptr[j+1+dasizeof]-ptr[j+1])&255);
lzwrawbuf[j+2+x.k] = ((ptr[j+2+dasizeof]-ptr[j+2])&255);
lzwrawbuf[j+3+x.k] = ((ptr[j+3+dasizeof]-ptr[j+3])&255);
}
}
for (; j<dasizeof; j++)
lzwrawbuf[j+x.k] = ((ptr[j+dasizeof]-ptr[j])&255);
if ((x.k += dasizeof) > LZWSIZE-dasizeof)
compress_part(&x);
ptr += dasizeof;
}
if (x.k > 0)
compress_part(&x);
}