raze-gles/source/common/scripting/jit/jit_call.cpp

691 lines
18 KiB
C++

#include "jitintern.h"
#include <map>
#include <memory>
void JitCompiler::EmitPARAM()
{
ParamOpcodes.Push(pc);
}
void JitCompiler::EmitPARAMI()
{
ParamOpcodes.Push(pc);
}
void JitCompiler::EmitRESULT()
{
// This instruction is just a placeholder to indicate where a return
// value should be stored. It does nothing on its own and should not
// be executed.
}
void JitCompiler::EmitVTBL()
{
// This instruction is handled in the CALL/CALL_K instruction following it
}
void JitCompiler::EmitVtbl(const VMOP *op)
{
int a = op->a;
int b = op->b;
int c = op->c;
auto label = EmitThrowExceptionLabel(X_READ_NIL);
cc.test(regA[b], regA[b]);
cc.jz(label);
cc.mov(regA[a], asmjit::x86::qword_ptr(regA[b], myoffsetof(DObject, Class)));
cc.mov(regA[a], asmjit::x86::qword_ptr(regA[a], myoffsetof(PClass, Virtuals) + myoffsetof(FArray, Array)));
cc.mov(regA[a], asmjit::x86::qword_ptr(regA[a], c * (int)sizeof(void*)));
}
void JitCompiler::EmitCALL()
{
EmitVMCall(regA[A], nullptr);
pc += C; // Skip RESULTs
}
void JitCompiler::EmitCALL_K()
{
VMFunction *target = static_cast<VMFunction*>(konsta[A].v);
VMNativeFunction *ntarget = nullptr;
if (target && (target->VarFlags & VARF_Native))
ntarget = static_cast<VMNativeFunction *>(target);
if (ntarget && ntarget->DirectNativeCall)
{
EmitNativeCall(ntarget);
}
else
{
auto ptr = newTempIntPtr();
cc.mov(ptr, asmjit::imm_ptr(target));
EmitVMCall(ptr, target);
}
pc += C; // Skip RESULTs
}
void JitCompiler::EmitVMCall(asmjit::X86Gp vmfunc, VMFunction *target)
{
using namespace asmjit;
CheckVMFrame();
int numparams = StoreCallParams();
if (numparams != B)
I_Error("OP_CALL parameter count does not match the number of preceding OP_PARAM instructions");
if (pc > sfunc->Code && (pc - 1)->op == OP_VTBL)
EmitVtbl(pc - 1);
FillReturns(pc + 1, C);
X86Gp paramsptr = newTempIntPtr();
cc.lea(paramsptr, x86::ptr(vmframe, offsetParams));
auto scriptcall = newTempIntPtr();
cc.mov(scriptcall, x86::ptr(vmfunc, myoffsetof(VMScriptFunction, ScriptCall)));
auto result = newResultInt32();
auto call = cc.call(scriptcall, FuncSignature5<int, VMFunction *, VMValue*, int, VMReturn*, int>());
call->setRet(0, result);
call->setArg(0, vmfunc);
call->setArg(1, paramsptr);
call->setArg(2, Imm(B));
call->setArg(3, GetCallReturns());
call->setArg(4, Imm(C));
call->setInlineComment(target ? target->PrintableName.GetChars() : "VMCall");
LoadInOuts();
LoadReturns(pc + 1, C);
ParamOpcodes.Clear();
}
int JitCompiler::StoreCallParams()
{
using namespace asmjit;
X86Gp stackPtr = newTempIntPtr();
X86Gp tmp = newTempIntPtr();
X86Xmm tmp2 = newTempXmmSd();
int numparams = 0;
for (unsigned int i = 0; i < ParamOpcodes.Size(); i++)
{
int slot = numparams++;
if (ParamOpcodes[i]->op == OP_PARAMI)
{
int abcs = ParamOpcodes[i]->i24;
cc.mov(asmjit::x86::dword_ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, i)), abcs);
continue;
}
int bc = ParamOpcodes[i]->i16u;
switch (ParamOpcodes[i]->a)
{
case REGT_NIL:
cc.mov(x86::ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, a)), (int64_t)0);
break;
case REGT_INT:
cc.mov(x86::dword_ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, i)), regD[bc]);
break;
case REGT_INT | REGT_ADDROF:
cc.lea(stackPtr, x86::ptr(vmframe, offsetD + (int)(bc * sizeof(int32_t))));
cc.mov(x86::dword_ptr(stackPtr), regD[bc]);
cc.mov(x86::ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, a)), stackPtr);
break;
case REGT_INT | REGT_KONST:
cc.mov(x86::dword_ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, i)), konstd[bc]);
break;
case REGT_STRING:
cc.mov(x86::ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, sp)), regS[bc]);
break;
case REGT_STRING | REGT_ADDROF:
cc.mov(x86::ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, a)), regS[bc]);
break;
case REGT_STRING | REGT_KONST:
cc.mov(tmp, asmjit::imm_ptr(&konsts[bc]));
cc.mov(x86::ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, sp)), tmp);
break;
case REGT_POINTER:
cc.mov(x86::ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, a)), regA[bc]);
break;
case REGT_POINTER | REGT_ADDROF:
cc.lea(stackPtr, x86::ptr(vmframe, offsetA + (int)(bc * sizeof(void*))));
cc.mov(x86::ptr(stackPtr), regA[bc]);
cc.mov(x86::ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, a)), stackPtr);
break;
case REGT_POINTER | REGT_KONST:
cc.mov(tmp, asmjit::imm_ptr(konsta[bc].v));
cc.mov(x86::ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, a)), tmp);
break;
case REGT_FLOAT:
cc.movsd(x86::qword_ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, f)), regF[bc]);
break;
case REGT_FLOAT | REGT_MULTIREG2:
for (int j = 0; j < 2; j++)
{
cc.movsd(x86::qword_ptr(vmframe, offsetParams + (slot + j) * sizeof(VMValue) + myoffsetof(VMValue, f)), regF[bc + j]);
}
numparams++;
break;
case REGT_FLOAT | REGT_MULTIREG3:
for (int j = 0; j < 3; j++)
{
cc.movsd(x86::qword_ptr(vmframe, offsetParams + (slot + j) * sizeof(VMValue) + myoffsetof(VMValue, f)), regF[bc + j]);
}
numparams += 2;
break;
case REGT_FLOAT | REGT_ADDROF:
cc.lea(stackPtr, x86::ptr(vmframe, offsetF + (int)(bc * sizeof(double))));
// When passing the address to a float we don't know if the receiving function will treat it as float, vec2 or vec3.
for (int j = 0; j < 3; j++)
{
if ((unsigned int)(bc + j) < regF.Size())
cc.movsd(x86::qword_ptr(stackPtr, j * sizeof(double)), regF[bc + j]);
}
cc.mov(x86::ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, a)), stackPtr);
break;
case REGT_FLOAT | REGT_KONST:
cc.mov(tmp, asmjit::imm_ptr(konstf + bc));
cc.movsd(tmp2, asmjit::x86::qword_ptr(tmp));
cc.movsd(x86::qword_ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, f)), tmp2);
break;
default:
I_Error("Unknown REGT value passed to EmitPARAM\n");
break;
}
}
return numparams;
}
void JitCompiler::LoadInOuts()
{
for (unsigned int i = 0; i < ParamOpcodes.Size(); i++)
{
const VMOP &param = *ParamOpcodes[i];
if (param.op == OP_PARAM && (param.a & REGT_ADDROF))
{
LoadCallResult(param.a, param.i16u, true);
}
}
}
void JitCompiler::LoadReturns(const VMOP *retval, int numret)
{
for (int i = 0; i < numret; ++i)
{
if (retval[i].op != OP_RESULT)
I_Error("Expected OP_RESULT to follow OP_CALL\n");
LoadCallResult(retval[i].b, retval[i].c, false);
}
}
void JitCompiler::LoadCallResult(int type, int regnum, bool addrof)
{
switch (type & REGT_TYPE)
{
case REGT_INT:
cc.mov(regD[regnum], asmjit::x86::dword_ptr(vmframe, offsetD + regnum * sizeof(int32_t)));
break;
case REGT_FLOAT:
cc.movsd(regF[regnum], asmjit::x86::qword_ptr(vmframe, offsetF + regnum * sizeof(double)));
if (addrof)
{
// When passing the address to a float we don't know if the receiving function will treat it as float, vec2 or vec3.
if ((unsigned int)regnum + 1 < regF.Size())
cc.movsd(regF[regnum + 1], asmjit::x86::qword_ptr(vmframe, offsetF + (regnum + 1) * sizeof(double)));
if ((unsigned int)regnum + 2 < regF.Size())
cc.movsd(regF[regnum + 2], asmjit::x86::qword_ptr(vmframe, offsetF + (regnum + 2) * sizeof(double)));
}
else if (type & REGT_MULTIREG2)
{
cc.movsd(regF[regnum + 1], asmjit::x86::qword_ptr(vmframe, offsetF + (regnum + 1) * sizeof(double)));
}
else if (type & REGT_MULTIREG3)
{
cc.movsd(regF[regnum + 1], asmjit::x86::qword_ptr(vmframe, offsetF + (regnum + 1) * sizeof(double)));
cc.movsd(regF[regnum + 2], asmjit::x86::qword_ptr(vmframe, offsetF + (regnum + 2) * sizeof(double)));
}
break;
case REGT_STRING:
// We don't have to do anything in this case. String values are never moved to virtual registers.
break;
case REGT_POINTER:
cc.mov(regA[regnum], asmjit::x86::ptr(vmframe, offsetA + regnum * sizeof(void*)));
break;
default:
I_Error("Unknown OP_RESULT/OP_PARAM type encountered in LoadCallResult\n");
break;
}
}
void JitCompiler::FillReturns(const VMOP *retval, int numret)
{
using namespace asmjit;
for (int i = 0; i < numret; ++i)
{
if (retval[i].op != OP_RESULT)
{
I_Error("Expected OP_RESULT to follow OP_CALL\n");
}
int type = retval[i].b;
int regnum = retval[i].c;
if (type & REGT_KONST)
{
I_Error("OP_RESULT with REGT_KONST is not allowed\n");
}
auto regPtr = newTempIntPtr();
switch (type & REGT_TYPE)
{
case REGT_INT:
cc.lea(regPtr, x86::ptr(vmframe, offsetD + (int)(regnum * sizeof(int32_t))));
break;
case REGT_FLOAT:
cc.lea(regPtr, x86::ptr(vmframe, offsetF + (int)(regnum * sizeof(double))));
break;
case REGT_STRING:
cc.lea(regPtr, x86::ptr(vmframe, offsetS + (int)(regnum * sizeof(FString))));
break;
case REGT_POINTER:
cc.lea(regPtr, x86::ptr(vmframe, offsetA + (int)(regnum * sizeof(void*))));
break;
default:
I_Error("Unknown OP_RESULT type encountered in FillReturns\n");
break;
}
cc.mov(x86::ptr(GetCallReturns(), i * sizeof(VMReturn) + myoffsetof(VMReturn, Location)), regPtr);
cc.mov(x86::byte_ptr(GetCallReturns(), i * sizeof(VMReturn) + myoffsetof(VMReturn, RegType)), type);
}
}
void JitCompiler::EmitNativeCall(VMNativeFunction *target)
{
using namespace asmjit;
if (pc > sfunc->Code && (pc - 1)->op == OP_VTBL)
{
I_Error("Native direct member function calls not implemented\n");
}
if (target->ImplicitArgs > 0)
{
auto label = EmitThrowExceptionLabel(X_READ_NIL);
assert(ParamOpcodes.Size() > 0);
const VMOP *param = ParamOpcodes[0];
const int bc = param->i16u;
asmjit::X86Gp *reg = nullptr;
switch (param->a & REGT_TYPE)
{
case REGT_STRING: reg = &regS[bc]; break;
case REGT_POINTER: reg = &regA[bc]; break;
default:
I_Error("Unexpected register type for self pointer\n");
break;
}
cc.test(*reg, *reg);
cc.jz(label);
}
asmjit::CBNode *cursorBefore = cc.getCursor();
auto call = cc.call(imm_ptr(target->DirectNativeCall), CreateFuncSignature());
call->setInlineComment(target->PrintableName.GetChars());
asmjit::CBNode *cursorAfter = cc.getCursor();
cc.setCursor(cursorBefore);
X86Gp tmp;
X86Xmm tmp2;
int numparams = 0;
for (unsigned int i = 0; i < ParamOpcodes.Size(); i++)
{
int slot = numparams++;
if (ParamOpcodes[i]->op == OP_PARAMI)
{
int abcs = ParamOpcodes[i]->i24;
call->setArg(slot, imm(abcs));
}
else // OP_PARAM
{
int bc = ParamOpcodes[i]->i16u;
switch (ParamOpcodes[i]->a)
{
case REGT_NIL:
call->setArg(slot, imm(0));
break;
case REGT_INT:
call->setArg(slot, regD[bc]);
break;
case REGT_INT | REGT_KONST:
call->setArg(slot, imm(konstd[bc]));
break;
case REGT_STRING | REGT_ADDROF: // AddrOf string is essentially the same - a reference to the register, just not constant on the receiving side.
case REGT_STRING:
call->setArg(slot, regS[bc]);
break;
case REGT_STRING | REGT_KONST:
tmp = newTempIntPtr();
cc.mov(tmp, imm_ptr(&konsts[bc]));
call->setArg(slot, tmp);
break;
case REGT_POINTER:
call->setArg(slot, regA[bc]);
break;
case REGT_POINTER | REGT_KONST:
tmp = newTempIntPtr();
cc.mov(tmp, imm_ptr(konsta[bc].v));
call->setArg(slot, tmp);
break;
case REGT_FLOAT:
call->setArg(slot, regF[bc]);
break;
case REGT_FLOAT | REGT_MULTIREG2:
for (int j = 0; j < 2; j++)
call->setArg(slot + j, regF[bc + j]);
numparams++;
break;
case REGT_FLOAT | REGT_MULTIREG3:
for (int j = 0; j < 3; j++)
call->setArg(slot + j, regF[bc + j]);
numparams += 2;
break;
case REGT_FLOAT | REGT_KONST:
tmp = newTempIntPtr();
tmp2 = newTempXmmSd();
cc.mov(tmp, asmjit::imm_ptr(konstf + bc));
cc.movsd(tmp2, asmjit::x86::qword_ptr(tmp));
call->setArg(slot, tmp2);
break;
case REGT_INT | REGT_ADDROF:
case REGT_POINTER | REGT_ADDROF:
case REGT_FLOAT | REGT_ADDROF:
I_Error("REGT_ADDROF not implemented for native direct calls\n");
break;
default:
I_Error("Unknown REGT value passed to EmitPARAM\n");
break;
}
}
}
if (numparams != B)
I_Error("OP_CALL parameter count does not match the number of preceding OP_PARAM instructions\n");
// Note: the usage of newResultXX is intentional. Asmjit has a register allocation bug
// if the return virtual register is already allocated in an argument slot.
const VMOP *retval = pc + 1;
int numret = C;
// Check if first return value was placed in the function's real return value slot
int startret = 1;
if (numret > 0)
{
int type = retval[0].b;
switch (type)
{
case REGT_INT:
case REGT_FLOAT:
case REGT_POINTER:
break;
default:
startret = 0;
break;
}
}
// Pass return pointers as arguments
for (int i = startret; i < numret; ++i)
{
int type = retval[i].b;
int regnum = retval[i].c;
if (type & REGT_KONST)
{
I_Error("OP_RESULT with REGT_KONST is not allowed\n");
}
CheckVMFrame();
if ((type & REGT_TYPE) == REGT_STRING)
{
// For strings we already have them on the stack and got named registers for them.
call->setArg(numparams + i - startret, regS[regnum]);
}
else
{
auto regPtr = newTempIntPtr();
switch (type & REGT_TYPE)
{
case REGT_INT:
cc.lea(regPtr, x86::ptr(vmframe, offsetD + (int)(regnum * sizeof(int32_t))));
break;
case REGT_FLOAT:
cc.lea(regPtr, x86::ptr(vmframe, offsetF + (int)(regnum * sizeof(double))));
break;
case REGT_STRING:
cc.lea(regPtr, x86::ptr(vmframe, offsetS + (int)(regnum * sizeof(FString))));
break;
case REGT_POINTER:
cc.lea(regPtr, x86::ptr(vmframe, offsetA + (int)(regnum * sizeof(void*))));
break;
default:
I_Error("Unknown OP_RESULT type encountered\n");
break;
}
call->setArg(numparams + i - startret, regPtr);
}
}
cc.setCursor(cursorAfter);
if (startret == 1 && numret > 0)
{
int type = retval[0].b;
int regnum = retval[0].c;
switch (type)
{
case REGT_INT:
tmp = newResultInt32();
call->setRet(0, tmp);
cc.mov(regD[regnum], tmp);
break;
case REGT_FLOAT:
tmp2 = newResultXmmSd();
call->setRet(0, tmp2);
cc.movsd(regF[regnum], tmp2);
break;
case REGT_POINTER:
tmp = newResultIntPtr();
call->setRet(0, tmp);
cc.mov(regA[regnum], tmp);
break;
}
}
// Move the result into virtual registers
for (int i = startret; i < numret; ++i)
{
int type = retval[i].b;
int regnum = retval[i].c;
switch (type)
{
case REGT_INT:
cc.mov(regD[regnum], asmjit::x86::dword_ptr(vmframe, offsetD + regnum * sizeof(int32_t)));
break;
case REGT_FLOAT:
cc.movsd(regF[regnum], asmjit::x86::qword_ptr(vmframe, offsetF + regnum * sizeof(double)));
break;
case REGT_FLOAT | REGT_MULTIREG2:
cc.movsd(regF[regnum], asmjit::x86::qword_ptr(vmframe, offsetF + regnum * sizeof(double)));
cc.movsd(regF[regnum + 1], asmjit::x86::qword_ptr(vmframe, offsetF + (regnum + 1) * sizeof(double)));
break;
case REGT_FLOAT | REGT_MULTIREG3:
cc.movsd(regF[regnum], asmjit::x86::qword_ptr(vmframe, offsetF + regnum * sizeof(double)));
cc.movsd(regF[regnum + 1], asmjit::x86::qword_ptr(vmframe, offsetF + (regnum + 1) * sizeof(double)));
cc.movsd(regF[regnum + 2], asmjit::x86::qword_ptr(vmframe, offsetF + (regnum + 2) * sizeof(double)));
break;
case REGT_STRING:
// We don't have to do anything in this case. String values are never moved to virtual registers.
break;
case REGT_POINTER:
cc.mov(regA[regnum], asmjit::x86::ptr(vmframe, offsetA + regnum * sizeof(void*)));
break;
default:
I_Error("Unknown OP_RESULT type encountered\n");
break;
}
}
ParamOpcodes.Clear();
}
static std::map<FString, std::unique_ptr<TArray<uint8_t>>> argsCache;
asmjit::FuncSignature JitCompiler::CreateFuncSignature()
{
using namespace asmjit;
TArray<uint8_t> args;
FString key;
// First add parameters as args to the signature
for (unsigned int i = 0; i < ParamOpcodes.Size(); i++)
{
if (ParamOpcodes[i]->op == OP_PARAMI)
{
args.Push(TypeIdOf<int>::kTypeId);
key += "i";
}
else // OP_PARAM
{
int bc = ParamOpcodes[i]->i16u;
switch (ParamOpcodes[i]->a)
{
case REGT_NIL:
case REGT_POINTER:
case REGT_POINTER | REGT_KONST:
case REGT_STRING | REGT_ADDROF:
case REGT_INT | REGT_ADDROF:
case REGT_POINTER | REGT_ADDROF:
case REGT_FLOAT | REGT_ADDROF:
args.Push(TypeIdOf<void*>::kTypeId);
key += "v";
break;
case REGT_INT:
case REGT_INT | REGT_KONST:
args.Push(TypeIdOf<int>::kTypeId);
key += "i";
break;
case REGT_STRING:
case REGT_STRING | REGT_KONST:
args.Push(TypeIdOf<void*>::kTypeId);
key += "s";
break;
case REGT_FLOAT:
case REGT_FLOAT | REGT_KONST:
args.Push(TypeIdOf<double>::kTypeId);
key += "f";
break;
case REGT_FLOAT | REGT_MULTIREG2:
args.Push(TypeIdOf<double>::kTypeId);
args.Push(TypeIdOf<double>::kTypeId);
key += "ff";
break;
case REGT_FLOAT | REGT_MULTIREG3:
args.Push(TypeIdOf<double>::kTypeId);
args.Push(TypeIdOf<double>::kTypeId);
args.Push(TypeIdOf<double>::kTypeId);
key += "fff";
break;
default:
I_Error("Unknown REGT value passed to EmitPARAM\n");
break;
}
}
}
const VMOP *retval = pc + 1;
int numret = C;
uint32_t rettype = TypeIdOf<void>::kTypeId;
// Check if first return value can be placed in the function's real return value slot
int startret = 1;
if (numret > 0)
{
if (retval[0].op != OP_RESULT)
{
I_Error("Expected OP_RESULT to follow OP_CALL\n");
}
int type = retval[0].b;
switch (type)
{
case REGT_INT:
rettype = TypeIdOf<int>::kTypeId;
key += "ri";
break;
case REGT_FLOAT:
rettype = TypeIdOf<double>::kTypeId;
key += "rf";
break;
case REGT_POINTER:
rettype = TypeIdOf<void*>::kTypeId;
key += "rv";
break;
case REGT_STRING:
default:
startret = 0;
break;
}
}
// Add any additional return values as function arguments
for (int i = startret; i < numret; ++i)
{
if (retval[i].op != OP_RESULT)
{
I_Error("Expected OP_RESULT to follow OP_CALL\n");
}
args.Push(TypeIdOf<void*>::kTypeId);
key += "v";
}
// FuncSignature only keeps a pointer to its args array. Store a copy of each args array variant.
std::unique_ptr<TArray<uint8_t>> &cachedArgs = argsCache[key];
if (!cachedArgs) cachedArgs.reset(new TArray<uint8_t>(args));
FuncSignature signature;
signature.init(CallConv::kIdHost, rettype, cachedArgs->Data(), cachedArgs->Size());
return signature;
}