raze-gles/polymer/eduke32/source/lunatic/geom.lua
helixhorned 1febaae767 Lunatic: various minor tweaks and fixes.
- Pass original module name (dot=dirsep) to module via our require()
- geom.lua: fix some operations using the vector type constructor
- geom.lua: provide constructor for ivec3, useable like vec3

git-svn-id: https://svn.eduke32.com/eduke32@3894 1a8010ca-5511-0410-912e-c29ae57300e0
2013-06-22 11:31:09 +00:00

208 lines
5.8 KiB
Lua

-- Geometry module for Lunatic.
local require = require
local ffi = require("ffi")
local math = require("math")
local abs = math.abs
local sqrt = math.sqrt
local type = type
local error = error
module(...)
-- The integer 3-vector can be useful for calculations expecting integer
-- values, e.g. geom.ivec3(x, y, z) is a reasonable way to round a vec3. It can
-- also be used as the RHS to the vec2/vec3 arithmetic methods.
-- NOTE: We must have a typedef with that exact name, because for Lunatic
-- (i.e. not stand-alone), the type was already declared in defs_common.lua.
ffi.cdef "typedef struct { int32_t x, y, z; } vec3_t;"
local ivec3_t = ffi.typeof("vec3_t")
local dvec2_t = ffi.typeof("struct { double x, y; }")
local dvec3_t = ffi.typeof("struct { double x, y, z; }")
local vec2_mt = {
__add = function(a, b) return dvec2_t(a.x+b.x, a.y+b.y) end,
__sub = function(a, b) return dvec2_t(a.x-b.x, a.y-b.y) end,
__unm = function(a) return dvec2_t(-a.x, -a.y) end,
__mul = function(a,b)
if (type(a)=="number") then
return dvec2_t(a*b.x, a*b.y)
end
if (type(b)~="number") then
error("number expected in vec2 multiplication", 2)
end
return dvec2_t(a.x*b, a.y*b)
end,
__div = function(a,b)
if (type(b)~="number") then
error("number expected in vec2 division", 2)
end
return dvec2_t(a.x/b, a.y/b)
end,
__tostring = function(a) return "vec2("..a.x..", "..a.y..")" end,
__index = {
lensq = function(a) return a.x*a.x + a.y*a.y end,
mhlen = function(a) return abs(a.x)+abs(a.y) end,
},
}
local arshift = require("bit").arshift
-- The vec3 metatable is shared between the integer- and double-based 3-vector
-- types. However, some operations are slightly different.
local vec3_mt = {
-- Arithmetic operations. Note that they always return a dvec3.
__add = function(a, b) return dvec3_t(a.x+b.x, a.y+b.y, a.z+b.z) end,
__sub = function(a, b) return dvec3_t(a.x-b.x, a.y-b.y, a.z-b.z) end,
__unm = function(a) return dvec3_t(-a.x, -a.y, -a.z) end,
__mul = function(a,b)
if (type(a)=="number") then
return dvec3_t(a*b.x, a*b.y, a*b.z)
end
if (type(b)~="number") then
error("number expected in vec3 multiplication", 2)
end
return dvec3_t(a.x*b, a.y*b, a.z*b)
end,
__div = function(a,b)
if (type(b)~="number") then
error("number expected in vec3 division", 2)
end
return dvec3_t(a.x/b, a.y/b, a.z/b)
end,
-- '^' is the "translate upwards" operator, returns same-typed vector.
__pow = function(v, zofs)
return v:_ctor(v.x, v.y, v.z-zofs)
end,
-- XXX: Rewrite using _serialize internal API instead.
__tostring = function(a)
return (a:_isi() and "i" or "").."vec3("..a.x..", "..a.y..", "..a.z..")"
end,
__index = {
-- Euclidean 3D length.
len = function(a) return sqrt(a.x*a.x + a.y*a.y + a.z*a.z) end,
-- Euclidean 3D squared length.
lensq = function(a) return a.x*a.x + a.y*a.y + a.z*a.z end,
-- Euclidean 2D length.
len2 = function(a) return sqrt(a.x*a.x + a.y*a.y) end,
-- Euclidean 2D squared length.
len2sq = function(a) return a.x*a.x + a.y*a.y end,
-- Manhattan-distance 3D length:
mhlen = function(a) return abs(a.x)+abs(a.y)+abs(a.z) end,
toivec3 = function(v) return ivec3_t(v.x, v.y, v.z) end,
-- BUILD-coordinate (z scaled by 16) <-> uniform conversions.
touniform = function(v)
return v:_isi()
and v:_ctor(v.x, v.y, arshift(v.z, 4))
or v:_ctor(v.x, v.y, v.z/16)
end,
tobuild = function(v) return v:_ctor(v.x, v.y, 16*v.z) end,
-- PRIVATE methods --
-- Get the type constructor for this vector.
_ctor = function(v, ...)
return v:_isi() and ivec3_t(...) or dvec3_t(...)
end,
-- Is <v> integer vec3? INTERNAL.
_isi = function(v)
return ffi.istype(ivec3_t, v)
end,
},
}
ffi.metatype(dvec2_t, vec2_mt)
ffi.metatype(dvec3_t, vec3_mt)
ffi.metatype(ivec3_t, vec3_mt)
-- VEC2 user data constructor.
-- * vec2([x [, y]]), assuming that x and y are numbers. Vacant positions are
-- assumed to be 0.
-- * vec2(<compound>), <compound> can be anything indexable with "x" and "y"
function vec2(...)
local x, y = ...
if (type(x)=="number" or x==nil) then
return dvec2_t(...)
else
return dvec2_t(x.x, x.y)
end
end
-- VEC3 user data constructor.
-- Analogous to VEC2.
function vec3(...)
local x, y, z = ...
if (type(x)=="number" or x==nil) then
return dvec3_t(...)
else
return dvec3_t(x.x, x.y, x.z)
end
end
-- IVEC3 user data constructor.
function ivec3(...)
local x, y, z = ...
if (type(x)=="number" or x==nil) then
return ivec3_t(...)
else
return ivec3_t(x.x, x.y, x.z)
end
end
-- Two-element vector cross product.
-- Anti-commutative, distributive.
local function cross2(v, w)
return v.y*w.x - v.x*w.y
end
-- Finds the intersection point of two lines given by
-- point a and vector v
-- and
-- point b and vector w
--
-- Returns:
-- if <TODO>, nil
-- if retpoint_p evaluates to a non-true value, coefficients cv and cw such that <TODO>
-- else, the intersection point
function intersect(a,v, b,w, retpoint_p)
local vxw = cross2(v,w)
if (vxw ~= 0) then
local btoa = vec2(a) - vec2(b)
local cv, cw = cross2(w, btoa)/vxw, cross2(v, btoa)/vxw
if (retpoint_p) then
return vec2(a) + cv*vec2(v)
else
return cv, cw
end
end
-- return nil if v and w parallel (or either of them is a point), or if
-- they contain NaNs
end