/* pow.c * * Power function * * * * SYNOPSIS: * * double x, y, z, pow(); * * z = pow( x, y ); * * * * DESCRIPTION: * * Computes x raised to the yth power. Analytically, * * x**y = exp( y log(x) ). * * Following Cody and Waite, this program uses a lookup table * of 2**-i/16 and pseudo extended precision arithmetic to * obtain an extra three bits of accuracy in both the logarithm * and the exponential. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -26,26 30000 4.2e-16 7.7e-17 * DEC -26,26 60000 4.8e-17 9.1e-18 * 1/26 < x < 26, with log(x) uniformly distributed. * -26 < y < 26, y uniformly distributed. * IEEE 0,8700 30000 1.5e-14 2.1e-15 * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed. * * * ERROR MESSAGES: * * message condition value returned * pow overflow x**y > MAXNUM INFINITY * pow underflow x**y < 1/MAXNUM 0.0 * pow domain x<0 and y noninteger 0.0 * */ /* Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1995, 2000 by Stephen L. Moshier Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "mconf.h" static char fname[] = {"pow"}; #define SQRTH 0.70710678118654752440 #ifdef UNK static double P[] = { 4.97778295871696322025E-1, 3.73336776063286838734E0, 7.69994162726912503298E0, 4.66651806774358464979E0 }; static double Q[] = { /* 1.00000000000000000000E0, */ 9.33340916416696166113E0, 2.79999886606328401649E1, 3.35994905342304405431E1, 1.39995542032307539578E1 }; /* 2^(-i/16), IEEE precision */ static double A[] = { 1.00000000000000000000E0, 9.57603280698573700036E-1, 9.17004043204671215328E-1, 8.78126080186649726755E-1, 8.40896415253714502036E-1, 8.05245165974627141736E-1, 7.71105412703970372057E-1, 7.38413072969749673113E-1, 7.07106781186547572737E-1, 6.77127773468446325644E-1, 6.48419777325504820276E-1, 6.20928906036742001007E-1, 5.94603557501360513449E-1, 5.69394317378345782288E-1, 5.45253866332628844837E-1, 5.22136891213706877402E-1, 5.00000000000000000000E-1 }; static double B[] = { 0.00000000000000000000E0, 1.64155361212281360176E-17, 4.09950501029074826006E-17, 3.97491740484881042808E-17, -4.83364665672645672553E-17, 1.26912513974441574796E-17, 1.99100761573282305549E-17, -1.52339103990623557348E-17, 0.00000000000000000000E0 }; static double R[] = { 1.49664108433729301083E-5, 1.54010762792771901396E-4, 1.33335476964097721140E-3, 9.61812908476554225149E-3, 5.55041086645832347466E-2, 2.40226506959099779976E-1, 6.93147180559945308821E-1 }; #define douba(k) A[k] #define doubb(k) B[k] #define MEXP 16383.0 #ifdef DENORMAL #define MNEXP -17183.0 #else #define MNEXP -16383.0 #endif #endif #ifdef DEC static unsigned short P[] = { 0037776,0156313,0175332,0163602, 0040556,0167577,0052366,0174245, 0040766,0062753,0175707,0055564, 0040625,0052035,0131344,0155636, }; static unsigned short Q[] = { /*0040200,0000000,0000000,0000000,*/ 0041025,0052644,0154404,0105155, 0041337,0177772,0007016,0047646, 0041406,0062740,0154273,0020020, 0041137,0177054,0106127,0044555, }; static unsigned short A[] = { 0040200,0000000,0000000,0000000, 0040165,0022575,0012444,0103314, 0040152,0140306,0163735,0022071, 0040140,0146336,0166052,0112341, 0040127,0042374,0145326,0116553, 0040116,0022214,0012437,0102201, 0040105,0063452,0010525,0003333, 0040075,0004243,0117530,0006067, 0040065,0002363,0031771,0157145, 0040055,0054076,0165102,0120513, 0040045,0177326,0124661,0050471, 0040036,0172462,0060221,0120422, 0040030,0033760,0050615,0134251, 0040021,0141723,0071653,0010703, 0040013,0112701,0161752,0105727, 0040005,0125303,0063714,0044173, 0040000,0000000,0000000,0000000 }; static unsigned short B[] = { 0000000,0000000,0000000,0000000, 0021473,0040265,0153315,0140671, 0121074,0062627,0042146,0176454, 0121413,0003524,0136332,0066212, 0121767,0046404,0166231,0012553, 0121257,0015024,0002357,0043574, 0021736,0106532,0043060,0056206, 0121310,0020334,0165705,0035326, 0000000,0000000,0000000,0000000 }; static unsigned short R[] = { 0034173,0014076,0137624,0115771, 0035041,0076763,0003744,0111311, 0035656,0141766,0041127,0074351, 0036435,0112533,0073611,0116664, 0037143,0054106,0134040,0152223, 0037565,0176757,0176026,0025551, 0040061,0071027,0173721,0147572 }; /* static double R[] = { 0.14928852680595608186e-4, 0.15400290440989764601e-3, 0.13333541313585784703e-2, 0.96181290595172416964e-2, 0.55504108664085595326e-1, 0.24022650695909537056e0, 0.69314718055994529629e0 }; */ #define douba(k) (*(double *)&A[(k)<<2]) #define doubb(k) (*(double *)&B[(k)<<2]) #define MEXP 2031.0 #define MNEXP -2031.0 #endif #ifdef IBMPC static unsigned short P[] = { 0x5cf0,0x7f5b,0xdb99,0x3fdf, 0xdf15,0xea9e,0xddef,0x400d, 0xeb6f,0x7f78,0xccbd,0x401e, 0x9b74,0xb65c,0xaa83,0x4012, }; static unsigned short Q[] = { /*0x0000,0x0000,0x0000,0x3ff0,*/ 0x914e,0x9b20,0xaab4,0x4022, 0xc9f5,0x41c1,0xffff,0x403b, 0x6402,0x1b17,0xccbc,0x4040, 0xe92e,0x918a,0xffc5,0x402b, }; static unsigned short A[] = { 0x0000,0x0000,0x0000,0x3ff0, 0x90da,0xa2a4,0xa4af,0x3fee, 0xa487,0xdcfb,0x5818,0x3fed, 0x529c,0xdd85,0x199b,0x3fec, 0xd3ad,0x995a,0xe89f,0x3fea, 0xf090,0x82a3,0xc491,0x3fe9, 0xa0db,0x422a,0xace5,0x3fe8, 0x0187,0x73eb,0xa114,0x3fe7, 0x3bcd,0x667f,0xa09e,0x3fe6, 0x5429,0xdd48,0xab07,0x3fe5, 0x2a27,0xd536,0xbfda,0x3fe4, 0x3422,0x4c12,0xdea6,0x3fe3, 0xb715,0x0a31,0x06fe,0x3fe3, 0x6238,0x6e75,0x387a,0x3fe2, 0x517b,0x3c7d,0x72b8,0x3fe1, 0x890f,0x6cf9,0xb558,0x3fe0, 0x0000,0x0000,0x0000,0x3fe0 }; static unsigned short B[] = { 0x0000,0x0000,0x0000,0x0000, 0x3707,0xd75b,0xed02,0x3c72, 0xcc81,0x345d,0xa1cd,0x3c87, 0x4b27,0x5686,0xe9f1,0x3c86, 0x6456,0x13b2,0xdd34,0xbc8b, 0x42e2,0xafec,0x4397,0x3c6d, 0x82e4,0xd231,0xf46a,0x3c76, 0x8a76,0xb9d7,0x9041,0xbc71, 0x0000,0x0000,0x0000,0x0000 }; static unsigned short R[] = { 0x937f,0xd7f2,0x6307,0x3eef, 0x9259,0x60fc,0x2fbe,0x3f24, 0xef1d,0xc84a,0xd87e,0x3f55, 0x33b7,0x6ef1,0xb2ab,0x3f83, 0x1a92,0xd704,0x6b08,0x3fac, 0xc56d,0xff82,0xbfbd,0x3fce, 0x39ef,0xfefa,0x2e42,0x3fe6 }; #define douba(k) (*(double *)&A[(k)<<2]) #define doubb(k) (*(double *)&B[(k)<<2]) #define MEXP 16383.0 #ifdef DENORMAL #define MNEXP -17183.0 #else #define MNEXP -16383.0 #endif #endif #ifdef MIEEE static unsigned short P[] = { 0x3fdf,0xdb99,0x7f5b,0x5cf0, 0x400d,0xddef,0xea9e,0xdf15, 0x401e,0xccbd,0x7f78,0xeb6f, 0x4012,0xaa83,0xb65c,0x9b74 }; static unsigned short Q[] = { 0x4022,0xaab4,0x9b20,0x914e, 0x403b,0xffff,0x41c1,0xc9f5, 0x4040,0xccbc,0x1b17,0x6402, 0x402b,0xffc5,0x918a,0xe92e }; static unsigned short A[] = { 0x3ff0,0x0000,0x0000,0x0000, 0x3fee,0xa4af,0xa2a4,0x90da, 0x3fed,0x5818,0xdcfb,0xa487, 0x3fec,0x199b,0xdd85,0x529c, 0x3fea,0xe89f,0x995a,0xd3ad, 0x3fe9,0xc491,0x82a3,0xf090, 0x3fe8,0xace5,0x422a,0xa0db, 0x3fe7,0xa114,0x73eb,0x0187, 0x3fe6,0xa09e,0x667f,0x3bcd, 0x3fe5,0xab07,0xdd48,0x5429, 0x3fe4,0xbfda,0xd536,0x2a27, 0x3fe3,0xdea6,0x4c12,0x3422, 0x3fe3,0x06fe,0x0a31,0xb715, 0x3fe2,0x387a,0x6e75,0x6238, 0x3fe1,0x72b8,0x3c7d,0x517b, 0x3fe0,0xb558,0x6cf9,0x890f, 0x3fe0,0x0000,0x0000,0x0000 }; static unsigned short B[] = { 0x0000,0x0000,0x0000,0x0000, 0x3c72,0xed02,0xd75b,0x3707, 0x3c87,0xa1cd,0x345d,0xcc81, 0x3c86,0xe9f1,0x5686,0x4b27, 0xbc8b,0xdd34,0x13b2,0x6456, 0x3c6d,0x4397,0xafec,0x42e2, 0x3c76,0xf46a,0xd231,0x82e4, 0xbc71,0x9041,0xb9d7,0x8a76, 0x0000,0x0000,0x0000,0x0000 }; static unsigned short R[] = { 0x3eef,0x6307,0xd7f2,0x937f, 0x3f24,0x2fbe,0x60fc,0x9259, 0x3f55,0xd87e,0xc84a,0xef1d, 0x3f83,0xb2ab,0x6ef1,0x33b7, 0x3fac,0x6b08,0xd704,0x1a92, 0x3fce,0xbfbd,0xff82,0xc56d, 0x3fe6,0x2e42,0xfefa,0x39ef }; #define douba(k) (*(double *)&A[(k)<<2]) #define doubb(k) (*(double *)&B[(k)<<2]) #define MEXP 16383.0 #ifdef DENORMAL #define MNEXP -17183.0 #else #define MNEXP -16383.0 #endif #endif /* log2(e) - 1 */ #define LOG2EA 0.44269504088896340736 #define F W #define Fa Wa #define Fb Wb #define G W #define Ga Wa #define Gb u #define H W #define Ha Wb #define Hb Wb #ifdef ANSIPROT extern double floor ( double ); extern double fabs ( double ); extern double frexp ( double, int * ); extern double ldexp ( double, int ); extern double polevl ( double, void *, int ); extern double p1evl ( double, void *, int ); extern double c_powi ( double, int ); extern int signbit ( double ); extern int isnan ( double ); extern int isfinite ( double ); static double reduc ( double ); #else double floor(), fabs(), frexp(), ldexp(); double polevl(), p1evl(), c_powi(); int signbit(), isnan(), isfinite(); static double reduc(); #endif extern double MAXNUM; #ifdef INFINITIES extern double INFINITY; #endif #ifdef NANS extern double NAN; #endif #ifdef MINUSZERO extern double NEGZERO; #endif double c_pow( x, y ) double x, y; { double w, z, W, Wa, Wb, ya, yb, u; /* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */ double aw, ay, wy; int e, i, nflg, iyflg, yoddint; if( y == 0.0 ) return( 1.0 ); #ifdef NANS if( isnan(x) ) return( x ); if( isnan(y) ) return( y ); #endif if( y == 1.0 ) return( x ); #ifdef INFINITIES if( !isfinite(y) && (x == 1.0 || x == -1.0) ) { mtherr( "pow", DOMAIN ); #ifdef NANS return( NAN ); #else return( INFINITY ); #endif } #endif if( x == 1.0 ) return( 1.0 ); if( y >= MAXNUM ) { #ifdef INFINITIES if( x > 1.0 ) return( INFINITY ); #else if( x > 1.0 ) return( MAXNUM ); #endif if( x > 0.0 && x < 1.0 ) return( 0.0); if( x < -1.0 ) { #ifdef INFINITIES return( INFINITY ); #else return( MAXNUM ); #endif } if( x > -1.0 && x < 0.0 ) return( 0.0 ); } if( y <= -MAXNUM ) { if( x > 1.0 ) return( 0.0 ); #ifdef INFINITIES if( x > 0.0 && x < 1.0 ) return( INFINITY ); #else if( x > 0.0 && x < 1.0 ) return( MAXNUM ); #endif if( x < -1.0 ) return( 0.0 ); #ifdef INFINITIES if( x > -1.0 && x < 0.0 ) return( INFINITY ); #else if( x > -1.0 && x < 0.0 ) return( MAXNUM ); #endif } if( x >= MAXNUM ) { #if INFINITIES if( y > 0.0 ) return( INFINITY ); #else if( y > 0.0 ) return( MAXNUM ); #endif return(0.0); } /* Set iyflg to 1 if y is an integer. */ iyflg = 0; w = floor(y); if( w == y ) iyflg = 1; /* Test for odd integer y. */ yoddint = 0; if( iyflg ) { ya = fabs(y); ya = floor(0.5 * ya); yb = 0.5 * fabs(w); if( ya != yb ) yoddint = 1; } if( x <= -MAXNUM ) { if( y > 0.0 ) { #ifdef INFINITIES if( yoddint ) return( -INFINITY ); return( INFINITY ); #else if( yoddint ) return( -MAXNUM ); return( MAXNUM ); #endif } if( y < 0.0 ) { #ifdef MINUSZERO if( yoddint ) return( NEGZERO ); #endif return( 0.0 ); } } nflg = 0; /* flag = 1 if x<0 raised to integer power */ if( x <= 0.0 ) { if( x == 0.0 ) { if( y < 0.0 ) { #ifdef MINUSZERO if( signbit(x) && yoddint ) return( -INFINITY ); #endif #ifdef INFINITIES return( INFINITY ); #else return( MAXNUM ); #endif } if( y > 0.0 ) { #ifdef MINUSZERO if( signbit(x) && yoddint ) return( NEGZERO ); #endif return( 0.0 ); } return( 1.0 ); } else { if( iyflg == 0 ) { /* noninteger power of negative number */ mtherr( fname, DOMAIN ); #ifdef NANS return(NAN); #else return(0.0L); #endif } nflg = 1; } } /* Integer power of an integer. */ if( iyflg ) { i = (int)w; w = floor(x); if( (w == x) && (fabs(y) < 32768.0) ) { w = c_powi( x, (int) y ); return( w ); } } if( nflg ) x = fabs(x); /* For results close to 1, use a series expansion. */ w = x - 1.0; aw = fabs(w); ay = fabs(y); wy = w * y; ya = fabs(wy); if((aw <= 1.0e-3 && ay <= 1.0) || (ya <= 1.0e-3 && ay >= 1.0)) { z = (((((w*(y-5.)/720. + 1./120.)*w*(y-4.) + 1./24.)*w*(y-3.) + 1./6.)*w*(y-2.) + 0.5)*w*(y-1.) )*wy + wy + 1.; goto done; } /* These are probably too much trouble. */ #if 0 w = y * log(x); if (aw > 1.0e-3 && fabs(w) < 1.0e-3) { z = (((((( w/7. + 1.)*w/6. + 1.)*w/5. + 1.)*w/4. + 1.)*w/3. + 1.)*w/2. + 1.)*w + 1.; goto done; } if(ya <= 1.0e-3 && aw <= 1.0e-4) { z = ((((( wy*1./720. + (-w*1./48. + 1./120.) )*wy + ((w*17./144. - 1./12.)*w + 1./24.) )*wy + (((-w*5./16. + 7./24.)*w - 1./4.)*w + 1./6.) )*wy + ((((w*137./360. - 5./12.)*w + 11./24.)*w - 1./2.)*w + 1./2.) )*wy + (((((-w*1./6. + 1./5.)*w - 1./4)*w + 1./3.)*w -1./2.)*w ) )*wy + wy + 1.0; goto done; } #endif /* separate significand from exponent */ x = frexp( x, &e ); #if 0 /* For debugging, check for gross overflow. */ if( (e * y) > (MEXP + 1024) ) goto overflow; #endif /* Find significand of x in antilog table A[]. */ i = 1; if( x <= douba(9) ) i = 9; if( x <= douba(i+4) ) i += 4; if( x <= douba(i+2) ) i += 2; if( x >= douba(1) ) i = -1; i += 1; /* Find (x - A[i])/A[i] * in order to compute log(x/A[i]): * * log(x) = log( a x/a ) = log(a) + log(x/a) * * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a */ x -= douba(i); x -= doubb(i/2); x /= douba(i); /* rational approximation for log(1+v): * * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v) */ z = x*x; w = x * ( z * polevl( x, P, 3 ) / p1evl( x, Q, 4 ) ); w = w - ldexp( z, -1 ); /* w - 0.5 * z */ /* Convert to base 2 logarithm: * multiply by log2(e) */ w = w + LOG2EA * w; /* Note x was not yet added in * to above rational approximation, * so do it now, while multiplying * by log2(e). */ z = w + LOG2EA * x; z = z + x; /* Compute exponent term of the base 2 logarithm. */ w = -i; w = ldexp( w, -4 ); /* divide by 16 */ w += e; /* Now base 2 log of x is w + z. */ /* Multiply base 2 log by y, in extended precision. */ /* separate y into large part ya * and small part yb less than 1/16 */ ya = reduc(y); yb = y - ya; F = z * y + w * yb; Fa = reduc(F); Fb = F - Fa; G = Fa + w * ya; Ga = reduc(G); Gb = G - Ga; H = Fb + Gb; Ha = reduc(H); w = ldexp( Ga+Ha, 4 ); /* Test the power of 2 for overflow */ if( w > MEXP ) { #ifndef INFINITIES mtherr( fname, OVERFLOW ); #endif #ifdef INFINITIES if( nflg && yoddint ) return( -INFINITY ); return( INFINITY ); #else if( nflg && yoddint ) return( -MAXNUM ); return( MAXNUM ); #endif } if( w < (MNEXP - 1) ) { #ifndef DENORMAL mtherr( fname, UNDERFLOW ); #endif #ifdef MINUSZERO if( nflg && yoddint ) return( NEGZERO ); #endif return( 0.0 ); } e = (int)w; Hb = H - Ha; if( Hb > 0.0 ) { e += 1; Hb -= 0.0625; } /* Now the product y * log2(x) = Hb + e/16.0. * * Compute base 2 exponential of Hb, * where -0.0625 <= Hb <= 0. */ z = Hb * polevl( Hb, R, 6 ); /* z = 2**Hb - 1 */ /* Express e/16 as an integer plus a negative number of 16ths. * Find lookup table entry for the fractional power of 2. */ if( e < 0 ) i = 0; else i = 1; i = e/16 + i; e = 16*i - e; w = douba( e ); z = w + w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */ z = ldexp( z, i ); /* multiply by integer power of 2 */ done: /* Negate if odd integer power of negative number */ if( nflg && yoddint ) { #ifdef MINUSZERO if( z == 0.0 ) z = NEGZERO; else #endif z = -z; } return( z ); } /* Find a multiple of 1/16 that is within 1/16 of x. */ static double reduc(x) double x; { double t; t = ldexp( x, 4 ); t = floor( t ); t = ldexp( t, -4 ); return(t); }