// libdivide.h - Optimized integer division // https://libdivide.com // // Copyright (C) 2010 - 2019 ridiculous_fish, <libdivide@ridiculousfish.com> // Copyright (C) 2016 - 2019 Kim Walisch, <kim.walisch@gmail.com> // // libdivide is dual-licensed under the Boost or zlib licenses. // You may use libdivide under the terms of either of these. // See LICENSE.txt for more details. #ifndef LIBDIVIDE_H #define LIBDIVIDE_H #define LIBDIVIDE_VERSION "2.0" #define LIBDIVIDE_VERSION_MAJOR 2 #define LIBDIVIDE_VERSION_MINOR 0 #include <stdint.h> #if defined(__cplusplus) #include <cstdlib> #include <cstdio> #else #include <stdlib.h> #include <stdio.h> #endif #if defined(__x86_64__) || defined(_M_X64) #define LIBDIVIDE_X86_64 #endif #if defined LIBDIVIDE_X86_64 || defined __SSE2__ || (defined _M_IX86_FP && _M_IX86_FP == 2) #define LIBDIVIDE_SSE2 1 #endif #if defined(LIBDIVIDE_AVX512) #include <immintrin.h> #elif defined(LIBDIVIDE_AVX2) #include <immintrin.h> #elif defined(LIBDIVIDE_SSE2) #include <emmintrin.h> #endif #if defined(_MSC_VER) #include <intrin.h> // disable warning C4146: unary minus operator applied // to unsigned type, result still unsigned #pragma warning(disable: 4146) #define LIBDIVIDE_VC #endif #if !defined(__has_builtin) #define __has_builtin(x) 0 #endif #if defined(__SIZEOF_INT128__) #define HAS_INT128_T // clang-cl on Windows does not yet support 128-bit division #if !(defined(__clang__) && defined(LIBDIVIDE_VC)) #define HAS_INT128_DIV #endif #endif #if defined(__i386__) #define LIBDIVIDE_i386 #endif #if defined(__GNUC__) || defined(__clang__) #define LIBDIVIDE_GCC_STYLE_ASM #endif #if defined(__cplusplus) || defined(LIBDIVIDE_VC) #define LIBDIVIDE_FUNCTION __FUNCTION__ #else #define LIBDIVIDE_FUNCTION __func__ #endif #if 0 #define LIBDIVIDE_ERROR(msg) \ do { \ fprintf(stderr, "libdivide.h:%d: %s(): Error: %s\n", \ __LINE__, LIBDIVIDE_FUNCTION, msg); \ exit(-1); \ } while (0) #else #define LIBDIVIDE_ERROR(msg) #endif #if defined(LIBDIVIDE_ASSERTIONS_ON) #define LIBDIVIDE_ASSERT(x) \ do { \ if (!(x)) { \ fprintf(stderr, "libdivide.h:%d: %s(): Assertion failed: %s\n", \ __LINE__, LIBDIVIDE_FUNCTION, #x); \ exit(-1); \ } \ } while (0) #else #define LIBDIVIDE_ASSERT(x) #endif #ifdef __cplusplus namespace libdivide { #endif // pack divider structs to prevent compilers from padding. // This reduces memory usage by up to 43% when using a large // array of libdivide dividers and improves performance // by up to 10% because of reduced memory bandwidth. #pragma pack(push, 1) struct libdivide_u32_t { uint32_t magic; uint8_t more; }; struct libdivide_s32_t { int32_t magic; uint8_t more; }; struct libdivide_u64_t { uint64_t magic; uint8_t more; }; struct libdivide_s64_t { int64_t magic; uint8_t more; }; struct libdivide_u32_branchfree_t { uint32_t magic; uint8_t more; }; struct libdivide_s32_branchfree_t { int32_t magic; uint8_t more; }; struct libdivide_u64_branchfree_t { uint64_t magic; uint8_t more; }; struct libdivide_s64_branchfree_t { int64_t magic; uint8_t more; }; #pragma pack(pop) // Explanation of the "more" field: // // * Bits 0-5 is the shift value (for shift path or mult path). // * Bit 6 is the add indicator for mult path. // * Bit 7 is set if the divisor is negative. We use bit 7 as the negative // divisor indicator so that we can efficiently use sign extension to // create a bitmask with all bits set to 1 (if the divisor is negative) // or 0 (if the divisor is positive). // // u32: [0-4] shift value // [5] ignored // [6] add indicator // magic number of 0 indicates shift path // // s32: [0-4] shift value // [5] ignored // [6] add indicator // [7] indicates negative divisor // magic number of 0 indicates shift path // // u64: [0-5] shift value // [6] add indicator // magic number of 0 indicates shift path // // s64: [0-5] shift value // [6] add indicator // [7] indicates negative divisor // magic number of 0 indicates shift path // // In s32 and s64 branchfree modes, the magic number is negated according to // whether the divisor is negated. In branchfree strategy, it is not negated. enum { LIBDIVIDE_32_SHIFT_MASK = 0x1F, LIBDIVIDE_64_SHIFT_MASK = 0x3F, LIBDIVIDE_ADD_MARKER = 0x40, LIBDIVIDE_NEGATIVE_DIVISOR = 0x80 }; static inline struct libdivide_s32_t libdivide_s32_gen(int32_t d); static inline struct libdivide_u32_t libdivide_u32_gen(uint32_t d); static inline struct libdivide_s64_t libdivide_s64_gen(int64_t d); static inline struct libdivide_u64_t libdivide_u64_gen(uint64_t d); static inline struct libdivide_s32_branchfree_t libdivide_s32_branchfree_gen(int32_t d); static inline struct libdivide_u32_branchfree_t libdivide_u32_branchfree_gen(uint32_t d); static inline struct libdivide_s64_branchfree_t libdivide_s64_branchfree_gen(int64_t d); static inline struct libdivide_u64_branchfree_t libdivide_u64_branchfree_gen(uint64_t d); static inline int32_t libdivide_s32_do(int32_t numer, const struct libdivide_s32_t *denom); static inline uint32_t libdivide_u32_do(uint32_t numer, const struct libdivide_u32_t *denom); static inline int64_t libdivide_s64_do(int64_t numer, const struct libdivide_s64_t *denom); static inline uint64_t libdivide_u64_do(uint64_t numer, const struct libdivide_u64_t *denom); static inline int32_t libdivide_s32_branchfree_do(int32_t numer, const struct libdivide_s32_branchfree_t *denom); static inline uint32_t libdivide_u32_branchfree_do(uint32_t numer, const struct libdivide_u32_branchfree_t *denom); static inline int64_t libdivide_s64_branchfree_do(int64_t numer, const struct libdivide_s64_branchfree_t *denom); static inline uint64_t libdivide_u64_branchfree_do(uint64_t numer, const struct libdivide_u64_branchfree_t *denom); static inline int32_t libdivide_s32_recover(const struct libdivide_s32_t *denom); static inline uint32_t libdivide_u32_recover(const struct libdivide_u32_t *denom); static inline int64_t libdivide_s64_recover(const struct libdivide_s64_t *denom); static inline uint64_t libdivide_u64_recover(const struct libdivide_u64_t *denom); static inline int32_t libdivide_s32_branchfree_recover(const struct libdivide_s32_branchfree_t *denom); static inline uint32_t libdivide_u32_branchfree_recover(const struct libdivide_u32_branchfree_t *denom); static inline int64_t libdivide_s64_branchfree_recover(const struct libdivide_s64_branchfree_t *denom); static inline uint64_t libdivide_u64_branchfree_recover(const struct libdivide_u64_branchfree_t *denom); //////// Internal Utility Functions static inline uint32_t libdivide_mullhi_u32(uint32_t x, uint32_t y) { uint64_t xl = x, yl = y; uint64_t rl = xl * yl; return (uint32_t)(rl >> 32); } static inline int32_t libdivide_mullhi_s32(int32_t x, int32_t y) { int64_t xl = x, yl = y; int64_t rl = xl * yl; // needs to be arithmetic shift return (int32_t)(rl >> 32); } static inline uint64_t libdivide_mullhi_u64(uint64_t x, uint64_t y) { #if defined(LIBDIVIDE_VC) && \ defined(LIBDIVIDE_X86_64) return __umulh(x, y); #elif defined(HAS_INT128_T) __uint128_t xl = x, yl = y; __uint128_t rl = xl * yl; return (uint64_t)(rl >> 64); #else // full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64) uint32_t mask = 0xFFFFFFFF; uint32_t x0 = (uint32_t)(x & mask); uint32_t x1 = (uint32_t)(x >> 32); uint32_t y0 = (uint32_t)(y & mask); uint32_t y1 = (uint32_t)(y >> 32); uint32_t x0y0_hi = libdivide_mullhi_u32(x0, y0); uint64_t x0y1 = x0 * (uint64_t)y1; uint64_t x1y0 = x1 * (uint64_t)y0; uint64_t x1y1 = x1 * (uint64_t)y1; uint64_t temp = x1y0 + x0y0_hi; uint64_t temp_lo = temp & mask; uint64_t temp_hi = temp >> 32; return x1y1 + temp_hi + ((temp_lo + x0y1) >> 32); #endif } static inline int64_t libdivide_mullhi_s64(int64_t x, int64_t y) { #if defined(LIBDIVIDE_VC) && \ defined(LIBDIVIDE_X86_64) return __mulh(x, y); #elif defined(HAS_INT128_T) __int128_t xl = x, yl = y; __int128_t rl = xl * yl; return (int64_t)(rl >> 64); #else // full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64) uint32_t mask = 0xFFFFFFFF; uint32_t x0 = (uint32_t)(x & mask); uint32_t y0 = (uint32_t)(y & mask); int32_t x1 = (int32_t)(x >> 32); int32_t y1 = (int32_t)(y >> 32); uint32_t x0y0_hi = libdivide_mullhi_u32(x0, y0); int64_t t = x1 * (int64_t)y0 + x0y0_hi; int64_t w1 = x0 * (int64_t)y1 + (t & mask); return x1 * (int64_t)y1 + (t >> 32) + (w1 >> 32); #endif } static inline int32_t libdivide_count_leading_zeros32(uint32_t val) { #if defined(__GNUC__) || \ __has_builtin(__builtin_clz) // Fast way to count leading zeros return __builtin_clz(val); #elif defined(LIBDIVIDE_VC) unsigned long result; if (_BitScanReverse(&result, val)) { return 31 - result; } return 0; #else int32_t result = 0; uint32_t hi = 1U << 31; for (; ~val & hi; hi >>= 1) { result++; } return result; #endif } static inline int32_t libdivide_count_leading_zeros64(uint64_t val) { #if defined(__GNUC__) || \ __has_builtin(__builtin_clzll) // Fast way to count leading zeros return __builtin_clzll(val); #elif defined(LIBDIVIDE_VC) && defined(_WIN64) unsigned long result; if (_BitScanReverse64(&result, val)) { return 63 - result; } return 0; #else uint32_t hi = val >> 32; uint32_t lo = val & 0xFFFFFFFF; if (hi != 0) return libdivide_count_leading_zeros32(hi); return 32 + libdivide_count_leading_zeros32(lo); #endif } // libdivide_64_div_32_to_32: divides a 64-bit uint {u1, u0} by a 32-bit // uint {v}. The result must fit in 32 bits. // Returns the quotient directly and the remainder in *r static inline uint32_t libdivide_64_div_32_to_32(uint32_t u1, uint32_t u0, uint32_t v, uint32_t *r) { #if (defined(LIBDIVIDE_i386) || defined(LIBDIVIDE_X86_64)) && \ defined(LIBDIVIDE_GCC_STYLE_ASM) uint32_t result; __asm__("divl %[v]" : "=a"(result), "=d"(*r) : [v] "r"(v), "a"(u0), "d"(u1) ); return result; #else uint64_t n = ((uint64_t)u1 << 32) | u0; uint32_t result = (uint32_t)(n / v); *r = (uint32_t)(n - result * (uint64_t)v); return result; #endif } // libdivide_128_div_64_to_64: divides a 128-bit uint {u1, u0} by a 64-bit // uint {v}. The result must fit in 64 bits. // Returns the quotient directly and the remainder in *r static uint64_t libdivide_128_div_64_to_64(uint64_t u1, uint64_t u0, uint64_t v, uint64_t *r) { #if defined(LIBDIVIDE_X86_64) && \ defined(LIBDIVIDE_GCC_STYLE_ASM) uint64_t result; __asm__("divq %[v]" : "=a"(result), "=d"(*r) : [v] "r"(v), "a"(u0), "d"(u1) ); return result; #elif defined(HAS_INT128_T) && \ defined(HAS_INT128_DIV) __uint128_t n = ((__uint128_t)u1 << 64) | u0; uint64_t result = (uint64_t)(n / v); *r = (uint64_t)(n - result * (__uint128_t)v); return result; #else // Code taken from Hacker's Delight: // http://www.hackersdelight.org/HDcode/divlu.c. // License permits inclusion here per: // http://www.hackersdelight.org/permissions.htm const uint64_t b = (1ULL << 32); // Number base (32 bits) uint64_t un1, un0; // Norm. dividend LSD's uint64_t vn1, vn0; // Norm. divisor digits uint64_t q1, q0; // Quotient digits uint64_t un64, un21, un10; // Dividend digit pairs uint64_t rhat; // A remainder int32_t s; // Shift amount for norm // If overflow, set rem. to an impossible value, // and return the largest possible quotient if (EDUKE32_PREDICT_FALSE(u1 >= v)) { *r = (uint64_t) -1; return (uint64_t) -1; } // count leading zeros s = libdivide_count_leading_zeros64(v); if (s > 0) { // Normalize divisor v = v << s; un64 = (u1 << s) | (u0 >> (64 - s)); un10 = u0 << s; // Shift dividend left } else { // Avoid undefined behavior of (u0 >> 64). // The behavior is undefined if the right operand is // negative, or greater than or equal to the length // in bits of the promoted left operand. un64 = u1; un10 = u0; } // Break divisor up into two 32-bit digits vn1 = v >> 32; vn0 = v & 0xFFFFFFFF; // Break right half of dividend into two digits un1 = un10 >> 32; un0 = un10 & 0xFFFFFFFF; // Compute the first quotient digit, q1 q1 = un64 / vn1; rhat = un64 - q1 * vn1; while (q1 >= b || q1 * vn0 > b * rhat + un1) { q1 = q1 - 1; rhat = rhat + vn1; if (rhat >= b) break; } // Multiply and subtract un21 = un64 * b + un1 - q1 * v; // Compute the second quotient digit q0 = un21 / vn1; rhat = un21 - q0 * vn1; while (q0 >= b || q0 * vn0 > b * rhat + un0) { q0 = q0 - 1; rhat = rhat + vn1; if (rhat >= b) break; } *r = (un21 * b + un0 - q0 * v) >> s; return q1 * b + q0; #endif } // Bitshift a u128 in place, left (signed_shift > 0) or right (signed_shift < 0) static inline void libdivide_u128_shift(uint64_t *u1, uint64_t *u0, int32_t signed_shift) { if (signed_shift > 0) { uint32_t shift = signed_shift; *u1 <<= shift; *u1 |= *u0 >> (64 - shift); *u0 <<= shift; } else if (signed_shift < 0) { uint32_t shift = -signed_shift; *u0 >>= shift; *u0 |= *u1 << (64 - shift); *u1 >>= shift; } } // Computes a 128 / 128 -> 64 bit division, with a 128 bit remainder. static uint64_t libdivide_128_div_128_to_64(uint64_t u_hi, uint64_t u_lo, uint64_t v_hi, uint64_t v_lo, uint64_t *r_hi, uint64_t *r_lo) { #if defined(HAS_INT128_T) && \ defined(HAS_INT128_DIV) __uint128_t ufull = u_hi; __uint128_t vfull = v_hi; ufull = (ufull << 64) | u_lo; vfull = (vfull << 64) | v_lo; uint64_t res = (uint64_t)(ufull / vfull); __uint128_t remainder = ufull - (vfull * res); *r_lo = (uint64_t)remainder; *r_hi = (uint64_t)(remainder >> 64); return res; #else // Adapted from "Unsigned Doubleword Division" in Hacker's Delight // We want to compute u / v typedef struct { uint64_t hi; uint64_t lo; } u128_t; u128_t u = {u_hi, u_lo}; u128_t v = {v_hi, v_lo}; if (v.hi == 0) { // divisor v is a 64 bit value, so we just need one 128/64 division // Note that we are simpler than Hacker's Delight here, because we know // the quotient fits in 64 bits whereas Hacker's Delight demands a full // 128 bit quotient *r_hi = 0; return libdivide_128_div_64_to_64(u.hi, u.lo, v.lo, r_lo); } // Here v >= 2**64 // We know that v.hi != 0, so count leading zeros is OK // We have 0 <= n <= 63 uint32_t n = libdivide_count_leading_zeros64(v.hi); // Normalize the divisor so its MSB is 1 u128_t v1t = v; libdivide_u128_shift(&v1t.hi, &v1t.lo, n); uint64_t v1 = v1t.hi; // i.e. v1 = v1t >> 64 // To ensure no overflow u128_t u1 = u; libdivide_u128_shift(&u1.hi, &u1.lo, -1); // Get quotient from divide unsigned insn. uint64_t rem_ignored; uint64_t q1 = libdivide_128_div_64_to_64(u1.hi, u1.lo, v1, &rem_ignored); // Undo normalization and division of u by 2. u128_t q0 = {0, q1}; libdivide_u128_shift(&q0.hi, &q0.lo, n); libdivide_u128_shift(&q0.hi, &q0.lo, -63); // Make q0 correct or too small by 1 // Equivalent to `if (q0 != 0) q0 = q0 - 1;` if (q0.hi != 0 || q0.lo != 0) { q0.hi -= (q0.lo == 0); // borrow q0.lo -= 1; } // Now q0 is correct. // Compute q0 * v as q0v // = (q0.hi << 64 + q0.lo) * (v.hi << 64 + v.lo) // = (q0.hi * v.hi << 128) + (q0.hi * v.lo << 64) + // (q0.lo * v.hi << 64) + q0.lo * v.lo) // Each term is 128 bit // High half of full product (upper 128 bits!) are dropped u128_t q0v = {0, 0}; q0v.hi = q0.hi*v.lo + q0.lo*v.hi + libdivide_mullhi_u64(q0.lo, v.lo); q0v.lo = q0.lo*v.lo; // Compute u - q0v as u_q0v // This is the remainder u128_t u_q0v = u; u_q0v.hi -= q0v.hi + (u.lo < q0v.lo); // second term is borrow u_q0v.lo -= q0v.lo; // Check if u_q0v >= v // This checks if our remainder is larger than the divisor if ((u_q0v.hi > v.hi) || (u_q0v.hi == v.hi && u_q0v.lo >= v.lo)) { // Increment q0 q0.lo += 1; q0.hi += (q0.lo == 0); // carry // Subtract v from remainder u_q0v.hi -= v.hi + (u_q0v.lo < v.lo); u_q0v.lo -= v.lo; } *r_hi = u_q0v.hi; *r_lo = u_q0v.lo; LIBDIVIDE_ASSERT(q0.hi == 0); return q0.lo; #endif } ////////// UINT32 static inline struct libdivide_u32_t libdivide_internal_u32_gen(uint32_t d, int branchfree) { if (d == 0) { LIBDIVIDE_ERROR("divider must be != 0"); } struct libdivide_u32_t result; uint32_t floor_log_2_d = 31 - libdivide_count_leading_zeros32(d); // Power of 2 if ((d & (d - 1)) == 0) { // We need to subtract 1 from the shift value in case of an unsigned // branchfree divider because there is a hardcoded right shift by 1 // in its division algorithm. Because of this we also need to add back // 1 in its recovery algorithm. result.magic = 0; result.more = (uint8_t)(floor_log_2_d - (branchfree != 0)); } else { uint8_t more; uint32_t rem, proposed_m; proposed_m = libdivide_64_div_32_to_32(1U << floor_log_2_d, 0, d, &rem); LIBDIVIDE_ASSERT(rem > 0 && rem < d); const uint32_t e = d - rem; // This power works if e < 2**floor_log_2_d. if (!branchfree && (e < (1U << floor_log_2_d))) { // This power works more = floor_log_2_d; } else { // We have to use the general 33-bit algorithm. We need to compute // (2**power) / d. However, we already have (2**(power-1))/d and // its remainder. By doubling both, and then correcting the // remainder, we can compute the larger division. // don't care about overflow here - in fact, we expect it proposed_m += proposed_m; const uint32_t twice_rem = rem + rem; if (twice_rem >= d || twice_rem < rem) proposed_m += 1; more = floor_log_2_d | LIBDIVIDE_ADD_MARKER; } result.magic = 1 + proposed_m; result.more = more; // result.more's shift should in general be ceil_log_2_d. But if we // used the smaller power, we subtract one from the shift because we're // using the smaller power. If we're using the larger power, we // subtract one from the shift because it's taken care of by the add // indicator. So floor_log_2_d happens to be correct in both cases. } return result; } struct libdivide_u32_t libdivide_u32_gen(uint32_t d) { return libdivide_internal_u32_gen(d, 0); } struct libdivide_u32_branchfree_t libdivide_u32_branchfree_gen(uint32_t d) { if (d == 1) { LIBDIVIDE_ERROR("branchfree divider must be != 1"); } struct libdivide_u32_t tmp = libdivide_internal_u32_gen(d, 1); struct libdivide_u32_branchfree_t ret = {tmp.magic, (uint8_t)(tmp.more & LIBDIVIDE_32_SHIFT_MASK)}; return ret; } uint32_t libdivide_u32_do(uint32_t numer, const struct libdivide_u32_t *denom) { uint8_t more = denom->more; if (!denom->magic) { return numer >> more; } else { uint32_t q = libdivide_mullhi_u32(denom->magic, numer); if (more & LIBDIVIDE_ADD_MARKER) { uint32_t t = ((numer - q) >> 1) + q; return t >> (more & LIBDIVIDE_32_SHIFT_MASK); } else { // All upper bits are 0, // don't need to mask them off. return q >> more; } } } uint32_t libdivide_u32_branchfree_do(uint32_t numer, const struct libdivide_u32_branchfree_t *denom) { uint32_t q = libdivide_mullhi_u32(denom->magic, numer); uint32_t t = ((numer - q) >> 1) + q; return t >> denom->more; } uint32_t libdivide_u32_recover(const struct libdivide_u32_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; if (!denom->magic) { return 1U << shift; } else if (!(more & LIBDIVIDE_ADD_MARKER)) { // We compute q = n/d = n*m / 2^(32 + shift) // Therefore we have d = 2^(32 + shift) / m // We need to ceil it. // We know d is not a power of 2, so m is not a power of 2, // so we can just add 1 to the floor uint32_t hi_dividend = 1U << shift; uint32_t rem_ignored; return 1 + libdivide_64_div_32_to_32(hi_dividend, 0, denom->magic, &rem_ignored); } else { // Here we wish to compute d = 2^(32+shift+1)/(m+2^32). // Notice (m + 2^32) is a 33 bit number. Use 64 bit division for now // Also note that shift may be as high as 31, so shift + 1 will // overflow. So we have to compute it as 2^(32+shift)/(m+2^32), and // then double the quotient and remainder. uint64_t half_n = 1ULL << (32 + shift); uint64_t d = (1ULL << 32) | denom->magic; // Note that the quotient is guaranteed <= 32 bits, but the remainder // may need 33! uint32_t half_q = (uint32_t)(half_n / d); uint64_t rem = half_n % d; // We computed 2^(32+shift)/(m+2^32) // Need to double it, and then add 1 to the quotient if doubling th // remainder would increase the quotient. // Note that rem<<1 cannot overflow, since rem < d and d is 33 bits uint32_t full_q = half_q + half_q + ((rem<<1) >= d); // We rounded down in gen (hence +1) return full_q + 1; } } uint32_t libdivide_u32_branchfree_recover(const struct libdivide_u32_branchfree_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; if (!denom->magic) { return 1U << (shift + 1); } else { // Here we wish to compute d = 2^(32+shift+1)/(m+2^32). // Notice (m + 2^32) is a 33 bit number. Use 64 bit division for now // Also note that shift may be as high as 31, so shift + 1 will // overflow. So we have to compute it as 2^(32+shift)/(m+2^32), and // then double the quotient and remainder. uint64_t half_n = 1ULL << (32 + shift); uint64_t d = (1ULL << 32) | denom->magic; // Note that the quotient is guaranteed <= 32 bits, but the remainder // may need 33! uint32_t half_q = (uint32_t)(half_n / d); uint64_t rem = half_n % d; // We computed 2^(32+shift)/(m+2^32) // Need to double it, and then add 1 to the quotient if doubling th // remainder would increase the quotient. // Note that rem<<1 cannot overflow, since rem < d and d is 33 bits uint32_t full_q = half_q + half_q + ((rem<<1) >= d); // We rounded down in gen (hence +1) return full_q + 1; } } /////////// UINT64 static inline struct libdivide_u64_t libdivide_internal_u64_gen(uint64_t d, int branchfree) { if (d == 0) { LIBDIVIDE_ERROR("divider must be != 0"); } struct libdivide_u64_t result; uint32_t floor_log_2_d = 63 - libdivide_count_leading_zeros64(d); // Power of 2 if ((d & (d - 1)) == 0) { // We need to subtract 1 from the shift value in case of an unsigned // branchfree divider because there is a hardcoded right shift by 1 // in its division algorithm. Because of this we also need to add back // 1 in its recovery algorithm. result.magic = 0; result.more = (uint8_t)(floor_log_2_d - (branchfree != 0)); } else { uint64_t proposed_m, rem; uint8_t more; // (1 << (64 + floor_log_2_d)) / d proposed_m = libdivide_128_div_64_to_64(1ULL << floor_log_2_d, 0, d, &rem); LIBDIVIDE_ASSERT(rem > 0 && rem < d); const uint64_t e = d - rem; // This power works if e < 2**floor_log_2_d. if (!branchfree && e < (1ULL << floor_log_2_d)) { // This power works more = floor_log_2_d; } else { // We have to use the general 65-bit algorithm. We need to compute // (2**power) / d. However, we already have (2**(power-1))/d and // its remainder. By doubling both, and then correcting the // remainder, we can compute the larger division. // don't care about overflow here - in fact, we expect it proposed_m += proposed_m; const uint64_t twice_rem = rem + rem; if (twice_rem >= d || twice_rem < rem) proposed_m += 1; more = floor_log_2_d | LIBDIVIDE_ADD_MARKER; } result.magic = 1 + proposed_m; result.more = more; // result.more's shift should in general be ceil_log_2_d. But if we // used the smaller power, we subtract one from the shift because we're // using the smaller power. If we're using the larger power, we // subtract one from the shift because it's taken care of by the add // indicator. So floor_log_2_d happens to be correct in both cases, // which is why we do it outside of the if statement. } return result; } struct libdivide_u64_t libdivide_u64_gen(uint64_t d) { return libdivide_internal_u64_gen(d, 0); } struct libdivide_u64_branchfree_t libdivide_u64_branchfree_gen(uint64_t d) { if (d == 1) { LIBDIVIDE_ERROR("branchfree divider must be != 1"); } struct libdivide_u64_t tmp = libdivide_internal_u64_gen(d, 1); struct libdivide_u64_branchfree_t ret = {tmp.magic, (uint8_t)(tmp.more & LIBDIVIDE_64_SHIFT_MASK)}; return ret; } uint64_t libdivide_u64_do(uint64_t numer, const struct libdivide_u64_t *denom) { uint8_t more = denom->more; if (!denom->magic) { return numer >> more; } else { uint64_t q = libdivide_mullhi_u64(denom->magic, numer); if (more & LIBDIVIDE_ADD_MARKER) { uint64_t t = ((numer - q) >> 1) + q; return t >> (more & LIBDIVIDE_64_SHIFT_MASK); } else { // All upper bits are 0, // don't need to mask them off. return q >> more; } } } uint64_t libdivide_u64_branchfree_do(uint64_t numer, const struct libdivide_u64_branchfree_t *denom) { uint64_t q = libdivide_mullhi_u64(denom->magic, numer); uint64_t t = ((numer - q) >> 1) + q; return t >> denom->more; } uint64_t libdivide_u64_recover(const struct libdivide_u64_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; if (!denom->magic) { return 1ULL << shift; } else if (!(more & LIBDIVIDE_ADD_MARKER)) { // We compute q = n/d = n*m / 2^(64 + shift) // Therefore we have d = 2^(64 + shift) / m // We need to ceil it. // We know d is not a power of 2, so m is not a power of 2, // so we can just add 1 to the floor uint64_t hi_dividend = 1ULL << shift; uint64_t rem_ignored; return 1 + libdivide_128_div_64_to_64(hi_dividend, 0, denom->magic, &rem_ignored); } else { // Here we wish to compute d = 2^(64+shift+1)/(m+2^64). // Notice (m + 2^64) is a 65 bit number. This gets hairy. See // libdivide_u32_recover for more on what we do here. // TODO: do something better than 128 bit math // Full n is a (potentially) 129 bit value // half_n is a 128 bit value // Compute the hi half of half_n. Low half is 0. uint64_t half_n_hi = 1ULL << shift, half_n_lo = 0; // d is a 65 bit value. The high bit is always set to 1. const uint64_t d_hi = 1, d_lo = denom->magic; // Note that the quotient is guaranteed <= 64 bits, // but the remainder may need 65! uint64_t r_hi, r_lo; uint64_t half_q = libdivide_128_div_128_to_64(half_n_hi, half_n_lo, d_hi, d_lo, &r_hi, &r_lo); // We computed 2^(64+shift)/(m+2^64) // Double the remainder ('dr') and check if that is larger than d // Note that d is a 65 bit value, so r1 is small and so r1 + r1 // cannot overflow uint64_t dr_lo = r_lo + r_lo; uint64_t dr_hi = r_hi + r_hi + (dr_lo < r_lo); // last term is carry int dr_exceeds_d = (dr_hi > d_hi) || (dr_hi == d_hi && dr_lo >= d_lo); uint64_t full_q = half_q + half_q + (dr_exceeds_d ? 1 : 0); return full_q + 1; } } uint64_t libdivide_u64_branchfree_recover(const struct libdivide_u64_branchfree_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; if (!denom->magic) { return 1ULL << (shift + 1); } else { // Here we wish to compute d = 2^(64+shift+1)/(m+2^64). // Notice (m + 2^64) is a 65 bit number. This gets hairy. See // libdivide_u32_recover for more on what we do here. // TODO: do something better than 128 bit math // Full n is a (potentially) 129 bit value // half_n is a 128 bit value // Compute the hi half of half_n. Low half is 0. uint64_t half_n_hi = 1ULL << shift, half_n_lo = 0; // d is a 65 bit value. The high bit is always set to 1. const uint64_t d_hi = 1, d_lo = denom->magic; // Note that the quotient is guaranteed <= 64 bits, // but the remainder may need 65! uint64_t r_hi, r_lo; uint64_t half_q = libdivide_128_div_128_to_64(half_n_hi, half_n_lo, d_hi, d_lo, &r_hi, &r_lo); // We computed 2^(64+shift)/(m+2^64) // Double the remainder ('dr') and check if that is larger than d // Note that d is a 65 bit value, so r1 is small and so r1 + r1 // cannot overflow uint64_t dr_lo = r_lo + r_lo; uint64_t dr_hi = r_hi + r_hi + (dr_lo < r_lo); // last term is carry int dr_exceeds_d = (dr_hi > d_hi) || (dr_hi == d_hi && dr_lo >= d_lo); uint64_t full_q = half_q + half_q + (dr_exceeds_d ? 1 : 0); return full_q + 1; } } /////////// SINT32 static inline struct libdivide_s32_t libdivide_internal_s32_gen(int32_t d, int branchfree) { if (d == 0) { LIBDIVIDE_ERROR("divider must be != 0"); } struct libdivide_s32_t result; // If d is a power of 2, or negative a power of 2, we have to use a shift. // This is especially important because the magic algorithm fails for -1. // To check if d is a power of 2 or its inverse, it suffices to check // whether its absolute value has exactly one bit set. This works even for // INT_MIN, because abs(INT_MIN) == INT_MIN, and INT_MIN has one bit set // and is a power of 2. uint32_t ud = (uint32_t)d; uint32_t absD = (d < 0) ? -ud : ud; uint32_t floor_log_2_d = 31 - libdivide_count_leading_zeros32(absD); // check if exactly one bit is set, // don't care if absD is 0 since that's divide by zero if ((absD & (absD - 1)) == 0) { // Branchfree and normal paths are exactly the same result.magic = 0; result.more = floor_log_2_d | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0); } else { LIBDIVIDE_ASSERT(floor_log_2_d >= 1); uint8_t more; // the dividend here is 2**(floor_log_2_d + 31), so the low 32 bit word // is 0 and the high word is floor_log_2_d - 1 uint32_t rem, proposed_m; proposed_m = libdivide_64_div_32_to_32(1U << (floor_log_2_d - 1), 0, absD, &rem); const uint32_t e = absD - rem; // We are going to start with a power of floor_log_2_d - 1. // This works if works if e < 2**floor_log_2_d. if (!branchfree && e < (1U << floor_log_2_d)) { // This power works more = floor_log_2_d - 1; } else { // We need to go one higher. This should not make proposed_m // overflow, but it will make it negative when interpreted as an // int32_t. proposed_m += proposed_m; const uint32_t twice_rem = rem + rem; if (twice_rem >= absD || twice_rem < rem) proposed_m += 1; more = floor_log_2_d | LIBDIVIDE_ADD_MARKER; } proposed_m += 1; int32_t magic = (int32_t)proposed_m; // Mark if we are negative. Note we only negate the magic number in the // branchfull case. if (d < 0) { more |= LIBDIVIDE_NEGATIVE_DIVISOR; if (!branchfree) { magic = -magic; } } result.more = more; result.magic = magic; } return result; } struct libdivide_s32_t libdivide_s32_gen(int32_t d) { return libdivide_internal_s32_gen(d, 0); } struct libdivide_s32_branchfree_t libdivide_s32_branchfree_gen(int32_t d) { struct libdivide_s32_t tmp = libdivide_internal_s32_gen(d, 1); struct libdivide_s32_branchfree_t result = {tmp.magic, tmp.more}; return result; } int32_t libdivide_s32_do(int32_t numer, const struct libdivide_s32_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; if (!denom->magic) { uint32_t sign = (int8_t)more >> 7; uint32_t mask = (1U << shift) - 1; uint32_t uq = numer + ((numer >> 31) & mask); int32_t q = (int32_t)uq; q >>= shift; q = (q ^ sign) - sign; return q; } else { uint32_t uq = (uint32_t)libdivide_mullhi_s32(denom->magic, numer); if (more & LIBDIVIDE_ADD_MARKER) { // must be arithmetic shift and then sign extend int32_t sign = (int8_t)more >> 7; // q += (more < 0 ? -numer : numer) // cast required to avoid UB uq += ((uint32_t)numer ^ sign) - sign; } int32_t q = (int32_t)uq; q >>= shift; q += (q < 0); return q; } } int32_t libdivide_s32_branchfree_do(int32_t numer, const struct libdivide_s32_branchfree_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; // must be arithmetic shift and then sign extend int32_t sign = (int8_t)more >> 7; int32_t magic = denom->magic; int32_t q = libdivide_mullhi_s32(magic, numer); q += numer; // If q is non-negative, we have nothing to do // If q is negative, we want to add either (2**shift)-1 if d is a power of // 2, or (2**shift) if it is not a power of 2 uint32_t is_power_of_2 = (magic == 0); uint32_t q_sign = (uint32_t)(q >> 31); q += q_sign & ((1U << shift) - is_power_of_2); // Now arithmetic right shift q >>= shift; // Negate if needed q = (q ^ sign) - sign; return q; } int32_t libdivide_s32_recover(const struct libdivide_s32_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; if (!denom->magic) { uint32_t absD = 1U << shift; if (more & LIBDIVIDE_NEGATIVE_DIVISOR) { absD = -absD; } return (int32_t)absD; } else { // Unsigned math is much easier // We negate the magic number only in the branchfull case, and we don't // know which case we're in. However we have enough information to // determine the correct sign of the magic number. The divisor was // negative if LIBDIVIDE_NEGATIVE_DIVISOR is set. If ADD_MARKER is set, // the magic number's sign is opposite that of the divisor. // We want to compute the positive magic number. int negative_divisor = (more & LIBDIVIDE_NEGATIVE_DIVISOR); int magic_was_negated = (more & LIBDIVIDE_ADD_MARKER) ? denom->magic > 0 : denom->magic < 0; // Handle the power of 2 case (including branchfree) if (denom->magic == 0) { int32_t result = 1U << shift; return negative_divisor ? -result : result; } uint32_t d = (uint32_t)(magic_was_negated ? -denom->magic : denom->magic); uint64_t n = 1ULL << (32 + shift); // this shift cannot exceed 30 uint32_t q = (uint32_t)(n / d); int32_t result = (int32_t)q; result += 1; return negative_divisor ? -result : result; } } int32_t libdivide_s32_branchfree_recover(const struct libdivide_s32_branchfree_t *denom) { return libdivide_s32_recover((const struct libdivide_s32_t *)denom); } ///////////// SINT64 static inline struct libdivide_s64_t libdivide_internal_s64_gen(int64_t d, int branchfree) { if (d == 0) { LIBDIVIDE_ERROR("divider must be != 0"); } struct libdivide_s64_t result; // If d is a power of 2, or negative a power of 2, we have to use a shift. // This is especially important because the magic algorithm fails for -1. // To check if d is a power of 2 or its inverse, it suffices to check // whether its absolute value has exactly one bit set. This works even for // INT_MIN, because abs(INT_MIN) == INT_MIN, and INT_MIN has one bit set // and is a power of 2. uint64_t ud = (uint64_t)d; uint64_t absD = (d < 0) ? -ud : ud; uint32_t floor_log_2_d = 63 - libdivide_count_leading_zeros64(absD); // check if exactly one bit is set, // don't care if absD is 0 since that's divide by zero if ((absD & (absD - 1)) == 0) { // Branchfree and non-branchfree cases are the same result.magic = 0; result.more = floor_log_2_d | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0); } else { // the dividend here is 2**(floor_log_2_d + 63), so the low 64 bit word // is 0 and the high word is floor_log_2_d - 1 uint8_t more; uint64_t rem, proposed_m; proposed_m = libdivide_128_div_64_to_64(1ULL << (floor_log_2_d - 1), 0, absD, &rem); const uint64_t e = absD - rem; // We are going to start with a power of floor_log_2_d - 1. // This works if works if e < 2**floor_log_2_d. if (!branchfree && e < (1ULL << floor_log_2_d)) { // This power works more = floor_log_2_d - 1; } else { // We need to go one higher. This should not make proposed_m // overflow, but it will make it negative when interpreted as an // int32_t. proposed_m += proposed_m; const uint64_t twice_rem = rem + rem; if (twice_rem >= absD || twice_rem < rem) proposed_m += 1; // note that we only set the LIBDIVIDE_NEGATIVE_DIVISOR bit if we // also set ADD_MARKER this is an annoying optimization that // enables algorithm #4 to avoid the mask. However we always set it // in the branchfree case more = floor_log_2_d | LIBDIVIDE_ADD_MARKER; } proposed_m += 1; int64_t magic = (int64_t)proposed_m; // Mark if we are negative if (d < 0) { more |= LIBDIVIDE_NEGATIVE_DIVISOR; if (!branchfree) { magic = -magic; } } result.more = more; result.magic = magic; } return result; } struct libdivide_s64_t libdivide_s64_gen(int64_t d) { return libdivide_internal_s64_gen(d, 0); } struct libdivide_s64_branchfree_t libdivide_s64_branchfree_gen(int64_t d) { struct libdivide_s64_t tmp = libdivide_internal_s64_gen(d, 1); struct libdivide_s64_branchfree_t ret = {tmp.magic, tmp.more}; return ret; } int64_t libdivide_s64_do(int64_t numer, const struct libdivide_s64_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; if (!denom->magic) { // shift path uint64_t mask = (1ULL << shift) - 1; uint64_t uq = numer + ((numer >> 63) & mask); int64_t q = (int64_t)uq; q >>= shift; // must be arithmetic shift and then sign-extend int64_t sign = (int8_t)more >> 7; q = (q ^ sign) - sign; return q; } else { uint64_t uq = (uint64_t)libdivide_mullhi_s64(denom->magic, numer); if (more & LIBDIVIDE_ADD_MARKER) { // must be arithmetic shift and then sign extend int64_t sign = (int8_t)more >> 7; // q += (more < 0 ? -numer : numer) // cast required to avoid UB uq += ((uint64_t)numer ^ sign) - sign; } int64_t q = (int64_t)uq; q >>= shift; q += (q < 0); return q; } } int64_t libdivide_s64_branchfree_do(int64_t numer, const struct libdivide_s64_branchfree_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; // must be arithmetic shift and then sign extend int64_t sign = (int8_t)more >> 7; int64_t magic = denom->magic; int64_t q = libdivide_mullhi_s64(magic, numer); q += numer; // If q is non-negative, we have nothing to do. // If q is negative, we want to add either (2**shift)-1 if d is a power of // 2, or (2**shift) if it is not a power of 2. uint64_t is_power_of_2 = (magic == 0); uint64_t q_sign = (uint64_t)(q >> 63); q += q_sign & ((1ULL << shift) - is_power_of_2); // Arithmetic right shift q >>= shift; // Negate if needed q = (q ^ sign) - sign; return q; } int64_t libdivide_s64_recover(const struct libdivide_s64_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; if (denom->magic == 0) { // shift path uint64_t absD = 1ULL << shift; if (more & LIBDIVIDE_NEGATIVE_DIVISOR) { absD = -absD; } return (int64_t)absD; } else { // Unsigned math is much easier int negative_divisor = (more & LIBDIVIDE_NEGATIVE_DIVISOR); int magic_was_negated = (more & LIBDIVIDE_ADD_MARKER) ? denom->magic > 0 : denom->magic < 0; uint64_t d = (uint64_t)(magic_was_negated ? -denom->magic : denom->magic); uint64_t n_hi = 1ULL << shift, n_lo = 0; uint64_t rem_ignored; uint64_t q = libdivide_128_div_64_to_64(n_hi, n_lo, d, &rem_ignored); int64_t result = (int64_t)(q + 1); if (negative_divisor) { result = -result; } return result; } } int64_t libdivide_s64_branchfree_recover(const struct libdivide_s64_branchfree_t *denom) { return libdivide_s64_recover((const struct libdivide_s64_t *)denom); } #if defined(LIBDIVIDE_AVX512) static inline __m512i libdivide_u32_do_vector(__m512i numers, const struct libdivide_u32_t *denom); static inline __m512i libdivide_s32_do_vector(__m512i numers, const struct libdivide_s32_t *denom); static inline __m512i libdivide_u64_do_vector(__m512i numers, const struct libdivide_u64_t *denom); static inline __m512i libdivide_s64_do_vector(__m512i numers, const struct libdivide_s64_t *denom); static inline __m512i libdivide_u32_branchfree_do_vector(__m512i numers, const struct libdivide_u32_branchfree_t *denom); static inline __m512i libdivide_s32_branchfree_do_vector(__m512i numers, const struct libdivide_s32_branchfree_t *denom); static inline __m512i libdivide_u64_branchfree_do_vector(__m512i numers, const struct libdivide_u64_branchfree_t *denom); static inline __m512i libdivide_s64_branchfree_do_vector(__m512i numers, const struct libdivide_s64_branchfree_t *denom); //////// Internal Utility Functions static inline __m512i libdivide_s64_signbits(__m512i v) {; return _mm512_srai_epi64(v, 63); } static inline __m512i libdivide_s64_shift_right_vector(__m512i v, int amt) { return _mm512_srai_epi64(v, amt); } // Here, b is assumed to contain one 32-bit value repeated. static inline __m512i libdivide_mullhi_u32_vector(__m512i a, __m512i b) { __m512i hi_product_0Z2Z = _mm512_srli_epi64(_mm512_mul_epu32(a, b), 32); __m512i a1X3X = _mm512_srli_epi64(a, 32); __m512i mask = _mm512_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0); __m512i hi_product_Z1Z3 = _mm512_and_si512(_mm512_mul_epu32(a1X3X, b), mask); return _mm512_or_si512(hi_product_0Z2Z, hi_product_Z1Z3); } // b is one 32-bit value repeated. static inline __m512i libdivide_mullhi_s32_vector(__m512i a, __m512i b) { __m512i hi_product_0Z2Z = _mm512_srli_epi64(_mm512_mul_epi32(a, b), 32); __m512i a1X3X = _mm512_srli_epi64(a, 32); __m512i mask = _mm512_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0); __m512i hi_product_Z1Z3 = _mm512_and_si512(_mm512_mul_epi32(a1X3X, b), mask); return _mm512_or_si512(hi_product_0Z2Z, hi_product_Z1Z3); } // Here, y is assumed to contain one 64-bit value repeated. // https://stackoverflow.com/a/28827013 static inline __m512i libdivide_mullhi_u64_vector(__m512i x, __m512i y) { __m512i lomask = _mm512_set1_epi64(0xffffffff); __m512i xh = _mm512_shuffle_epi32(x, (_MM_PERM_ENUM) 0xB1); __m512i yh = _mm512_shuffle_epi32(y, (_MM_PERM_ENUM) 0xB1); __m512i w0 = _mm512_mul_epu32(x, y); __m512i w1 = _mm512_mul_epu32(x, yh); __m512i w2 = _mm512_mul_epu32(xh, y); __m512i w3 = _mm512_mul_epu32(xh, yh); __m512i w0h = _mm512_srli_epi64(w0, 32); __m512i s1 = _mm512_add_epi64(w1, w0h); __m512i s1l = _mm512_and_si512(s1, lomask); __m512i s1h = _mm512_srli_epi64(s1, 32); __m512i s2 = _mm512_add_epi64(w2, s1l); __m512i s2h = _mm512_srli_epi64(s2, 32); __m512i hi = _mm512_add_epi64(w3, s1h); hi = _mm512_add_epi64(hi, s2h); return hi; } // y is one 64-bit value repeated. static inline __m512i libdivide_mullhi_s64_vector(__m512i x, __m512i y) { __m512i p = libdivide_mullhi_u64_vector(x, y); __m512i t1 = _mm512_and_si512(libdivide_s64_signbits(x), y); __m512i t2 = _mm512_and_si512(libdivide_s64_signbits(y), x); p = _mm512_sub_epi64(p, t1); p = _mm512_sub_epi64(p, t2); return p; } ////////// UINT32 __m512i libdivide_u32_do_vector(__m512i numers, const struct libdivide_u32_t *denom) { uint8_t more = denom->more; if (!denom->magic) { return _mm512_srli_epi32(numers, more); } else { __m512i q = libdivide_mullhi_u32_vector(numers, _mm512_set1_epi32(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { // uint32_t t = ((numer - q) >> 1) + q; // return t >> denom->shift; uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK; __m512i t = _mm512_add_epi32(_mm512_srli_epi32(_mm512_sub_epi32(numers, q), 1), q); return _mm512_srli_epi32(t, shift); } else { return _mm512_srli_epi32(q, more); } } } __m512i libdivide_u32_branchfree_do_vector(__m512i numers, const struct libdivide_u32_branchfree_t *denom) { __m512i q = libdivide_mullhi_u32_vector(numers, _mm512_set1_epi32(denom->magic)); __m512i t = _mm512_add_epi32(_mm512_srli_epi32(_mm512_sub_epi32(numers, q), 1), q); return _mm512_srli_epi32(t, denom->more); } ////////// UINT64 __m512i libdivide_u64_do_vector(__m512i numers, const struct libdivide_u64_t *denom) { uint8_t more = denom->more; if (!denom->magic) { return _mm512_srli_epi64(numers, more); } else { __m512i q = libdivide_mullhi_u64_vector(numers, _mm512_set1_epi64(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { // uint32_t t = ((numer - q) >> 1) + q; // return t >> denom->shift; uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK; __m512i t = _mm512_add_epi64(_mm512_srli_epi64(_mm512_sub_epi64(numers, q), 1), q); return _mm512_srli_epi64(t, shift); } else { return _mm512_srli_epi64(q, more); } } } __m512i libdivide_u64_branchfree_do_vector(__m512i numers, const struct libdivide_u64_branchfree_t *denom) { __m512i q = libdivide_mullhi_u64_vector(numers, _mm512_set1_epi64(denom->magic)); __m512i t = _mm512_add_epi64(_mm512_srli_epi64(_mm512_sub_epi64(numers, q), 1), q); return _mm512_srli_epi64(t, denom->more); } ////////// SINT32 __m512i libdivide_s32_do_vector(__m512i numers, const struct libdivide_s32_t *denom) { uint8_t more = denom->more; if (!denom->magic) { uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK; uint32_t mask = (1U << shift) - 1; __m512i roundToZeroTweak = _mm512_set1_epi32(mask); // q = numer + ((numer >> 31) & roundToZeroTweak); __m512i q = _mm512_add_epi32(numers, _mm512_and_si512(_mm512_srai_epi32(numers, 31), roundToZeroTweak)); q = _mm512_srai_epi32(q, shift); __m512i sign = _mm512_set1_epi32((int8_t)more >> 7); // q = (q ^ sign) - sign; q = _mm512_sub_epi32(_mm512_xor_si512(q, sign), sign); return q; } else { __m512i q = libdivide_mullhi_s32_vector(numers, _mm512_set1_epi32(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { // must be arithmetic shift __m512i sign = _mm512_set1_epi32((int8_t)more >> 7); // q += ((numer ^ sign) - sign); q = _mm512_add_epi32(q, _mm512_sub_epi32(_mm512_xor_si512(numers, sign), sign)); } // q >>= shift q = _mm512_srai_epi32(q, more & LIBDIVIDE_32_SHIFT_MASK); q = _mm512_add_epi32(q, _mm512_srli_epi32(q, 31)); // q += (q < 0) return q; } } __m512i libdivide_s32_branchfree_do_vector(__m512i numers, const struct libdivide_s32_branchfree_t *denom) { int32_t magic = denom->magic; uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; // must be arithmetic shift __m512i sign = _mm512_set1_epi32((int8_t)more >> 7); __m512i q = libdivide_mullhi_s32_vector(numers, _mm512_set1_epi32(magic)); q = _mm512_add_epi32(q, numers); // q += numers // If q is non-negative, we have nothing to do // If q is negative, we want to add either (2**shift)-1 if d is // a power of 2, or (2**shift) if it is not a power of 2 uint32_t is_power_of_2 = (magic == 0); __m512i q_sign = _mm512_srai_epi32(q, 31); // q_sign = q >> 31 __m512i mask = _mm512_set1_epi32((1U << shift) - is_power_of_2); q = _mm512_add_epi32(q, _mm512_and_si512(q_sign, mask)); // q = q + (q_sign & mask) q = _mm512_srai_epi32(q, shift); // q >>= shift q = _mm512_sub_epi32(_mm512_xor_si512(q, sign), sign); // q = (q ^ sign) - sign return q; } ////////// SINT64 __m512i libdivide_s64_do_vector(__m512i numers, const struct libdivide_s64_t *denom) { uint8_t more = denom->more; int64_t magic = denom->magic; if (magic == 0) { // shift path uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK; uint64_t mask = (1ULL << shift) - 1; __m512i roundToZeroTweak = _mm512_set1_epi64(mask); // q = numer + ((numer >> 63) & roundToZeroTweak); __m512i q = _mm512_add_epi64(numers, _mm512_and_si512(libdivide_s64_signbits(numers), roundToZeroTweak)); q = libdivide_s64_shift_right_vector(q, shift); __m512i sign = _mm512_set1_epi32((int8_t)more >> 7); // q = (q ^ sign) - sign; q = _mm512_sub_epi64(_mm512_xor_si512(q, sign), sign); return q; } else { __m512i q = libdivide_mullhi_s64_vector(numers, _mm512_set1_epi64(magic)); if (more & LIBDIVIDE_ADD_MARKER) { // must be arithmetic shift __m512i sign = _mm512_set1_epi32((int8_t)more >> 7); // q += ((numer ^ sign) - sign); q = _mm512_add_epi64(q, _mm512_sub_epi64(_mm512_xor_si512(numers, sign), sign)); } // q >>= denom->mult_path.shift q = libdivide_s64_shift_right_vector(q, more & LIBDIVIDE_64_SHIFT_MASK); q = _mm512_add_epi64(q, _mm512_srli_epi64(q, 63)); // q += (q < 0) return q; } } __m512i libdivide_s64_branchfree_do_vector(__m512i numers, const struct libdivide_s64_branchfree_t *denom) { int64_t magic = denom->magic; uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; // must be arithmetic shift __m512i sign = _mm512_set1_epi32((int8_t)more >> 7); // libdivide_mullhi_s64(numers, magic); __m512i q = libdivide_mullhi_s64_vector(numers, _mm512_set1_epi64(magic)); q = _mm512_add_epi64(q, numers); // q += numers // If q is non-negative, we have nothing to do. // If q is negative, we want to add either (2**shift)-1 if d is // a power of 2, or (2**shift) if it is not a power of 2. uint32_t is_power_of_2 = (magic == 0); __m512i q_sign = libdivide_s64_signbits(q); // q_sign = q >> 63 __m512i mask = _mm512_set1_epi64((1ULL << shift) - is_power_of_2); q = _mm512_add_epi64(q, _mm512_and_si512(q_sign, mask)); // q = q + (q_sign & mask) q = libdivide_s64_shift_right_vector(q, shift); // q >>= shift q = _mm512_sub_epi64(_mm512_xor_si512(q, sign), sign); // q = (q ^ sign) - sign return q; } #elif defined(LIBDIVIDE_AVX2) static inline __m256i libdivide_u32_do_vector(__m256i numers, const struct libdivide_u32_t *denom); static inline __m256i libdivide_s32_do_vector(__m256i numers, const struct libdivide_s32_t *denom); static inline __m256i libdivide_u64_do_vector(__m256i numers, const struct libdivide_u64_t *denom); static inline __m256i libdivide_s64_do_vector(__m256i numers, const struct libdivide_s64_t *denom); static inline __m256i libdivide_u32_branchfree_do_vector(__m256i numers, const struct libdivide_u32_branchfree_t *denom); static inline __m256i libdivide_s32_branchfree_do_vector(__m256i numers, const struct libdivide_s32_branchfree_t *denom); static inline __m256i libdivide_u64_branchfree_do_vector(__m256i numers, const struct libdivide_u64_branchfree_t *denom); static inline __m256i libdivide_s64_branchfree_do_vector(__m256i numers, const struct libdivide_s64_branchfree_t *denom); //////// Internal Utility Functions // Implementation of _mm256_srai_epi64(v, 63) (from AVX512). static inline __m256i libdivide_s64_signbits(__m256i v) { __m256i hiBitsDuped = _mm256_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 1, 1)); __m256i signBits = _mm256_srai_epi32(hiBitsDuped, 31); return signBits; } // Implementation of _mm256_srai_epi64 (from AVX512). static inline __m256i libdivide_s64_shift_right_vector(__m256i v, int amt) { const int b = 64 - amt; __m256i m = _mm256_set1_epi64x(1ULL << (b - 1)); __m256i x = _mm256_srli_epi64(v, amt); __m256i result = _mm256_sub_epi64(_mm256_xor_si256(x, m), m); return result; } // Here, b is assumed to contain one 32-bit value repeated. static inline __m256i libdivide_mullhi_u32_vector(__m256i a, __m256i b) { __m256i hi_product_0Z2Z = _mm256_srli_epi64(_mm256_mul_epu32(a, b), 32); __m256i a1X3X = _mm256_srli_epi64(a, 32); __m256i mask = _mm256_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0); __m256i hi_product_Z1Z3 = _mm256_and_si256(_mm256_mul_epu32(a1X3X, b), mask); return _mm256_or_si256(hi_product_0Z2Z, hi_product_Z1Z3); } // b is one 32-bit value repeated. static inline __m256i libdivide_mullhi_s32_vector(__m256i a, __m256i b) { __m256i hi_product_0Z2Z = _mm256_srli_epi64(_mm256_mul_epi32(a, b), 32); __m256i a1X3X = _mm256_srli_epi64(a, 32); __m256i mask = _mm256_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0); __m256i hi_product_Z1Z3 = _mm256_and_si256(_mm256_mul_epi32(a1X3X, b), mask); return _mm256_or_si256(hi_product_0Z2Z, hi_product_Z1Z3); } // Here, y is assumed to contain one 64-bit value repeated. // https://stackoverflow.com/a/28827013 static inline __m256i libdivide_mullhi_u64_vector(__m256i x, __m256i y) { __m256i lomask = _mm256_set1_epi64x(0xffffffff); __m256i xh = _mm256_shuffle_epi32(x, 0xB1); // x0l, x0h, x1l, x1h __m256i yh = _mm256_shuffle_epi32(y, 0xB1); // y0l, y0h, y1l, y1h __m256i w0 = _mm256_mul_epu32(x, y); // x0l*y0l, x1l*y1l __m256i w1 = _mm256_mul_epu32(x, yh); // x0l*y0h, x1l*y1h __m256i w2 = _mm256_mul_epu32(xh, y); // x0h*y0l, x1h*y0l __m256i w3 = _mm256_mul_epu32(xh, yh); // x0h*y0h, x1h*y1h __m256i w0h = _mm256_srli_epi64(w0, 32); __m256i s1 = _mm256_add_epi64(w1, w0h); __m256i s1l = _mm256_and_si256(s1, lomask); __m256i s1h = _mm256_srli_epi64(s1, 32); __m256i s2 = _mm256_add_epi64(w2, s1l); __m256i s2h = _mm256_srli_epi64(s2, 32); __m256i hi = _mm256_add_epi64(w3, s1h); hi = _mm256_add_epi64(hi, s2h); return hi; } // y is one 64-bit value repeated. static inline __m256i libdivide_mullhi_s64_vector(__m256i x, __m256i y) { __m256i p = libdivide_mullhi_u64_vector(x, y); __m256i t1 = _mm256_and_si256(libdivide_s64_signbits(x), y); __m256i t2 = _mm256_and_si256(libdivide_s64_signbits(y), x); p = _mm256_sub_epi64(p, t1); p = _mm256_sub_epi64(p, t2); return p; } ////////// UINT32 __m256i libdivide_u32_do_vector(__m256i numers, const struct libdivide_u32_t *denom) { uint8_t more = denom->more; if (!denom->magic) { return _mm256_srli_epi32(numers, more); } else { __m256i q = libdivide_mullhi_u32_vector(numers, _mm256_set1_epi32(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { // uint32_t t = ((numer - q) >> 1) + q; // return t >> denom->shift; uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK; __m256i t = _mm256_add_epi32(_mm256_srli_epi32(_mm256_sub_epi32(numers, q), 1), q); return _mm256_srli_epi32(t, shift); } else { return _mm256_srli_epi32(q, more); } } } __m256i libdivide_u32_branchfree_do_vector(__m256i numers, const struct libdivide_u32_branchfree_t *denom) { __m256i q = libdivide_mullhi_u32_vector(numers, _mm256_set1_epi32(denom->magic)); __m256i t = _mm256_add_epi32(_mm256_srli_epi32(_mm256_sub_epi32(numers, q), 1), q); return _mm256_srli_epi32(t, denom->more); } ////////// UINT64 __m256i libdivide_u64_do_vector(__m256i numers, const struct libdivide_u64_t *denom) { uint8_t more = denom->more; if (!denom->magic) { return _mm256_srli_epi64(numers, more); } else { __m256i q = libdivide_mullhi_u64_vector(numers, _mm256_set1_epi64x(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { // uint32_t t = ((numer - q) >> 1) + q; // return t >> denom->shift; uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK; __m256i t = _mm256_add_epi64(_mm256_srli_epi64(_mm256_sub_epi64(numers, q), 1), q); return _mm256_srli_epi64(t, shift); } else { return _mm256_srli_epi64(q, more); } } } __m256i libdivide_u64_branchfree_do_vector(__m256i numers, const struct libdivide_u64_branchfree_t *denom) { __m256i q = libdivide_mullhi_u64_vector(numers, _mm256_set1_epi64x(denom->magic)); __m256i t = _mm256_add_epi64(_mm256_srli_epi64(_mm256_sub_epi64(numers, q), 1), q); return _mm256_srli_epi64(t, denom->more); } ////////// SINT32 __m256i libdivide_s32_do_vector(__m256i numers, const struct libdivide_s32_t *denom) { uint8_t more = denom->more; if (!denom->magic) { uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK; uint32_t mask = (1U << shift) - 1; __m256i roundToZeroTweak = _mm256_set1_epi32(mask); // q = numer + ((numer >> 31) & roundToZeroTweak); __m256i q = _mm256_add_epi32(numers, _mm256_and_si256(_mm256_srai_epi32(numers, 31), roundToZeroTweak)); q = _mm256_srai_epi32(q, shift); __m256i sign = _mm256_set1_epi32((int8_t)more >> 7); // q = (q ^ sign) - sign; q = _mm256_sub_epi32(_mm256_xor_si256(q, sign), sign); return q; } else { __m256i q = libdivide_mullhi_s32_vector(numers, _mm256_set1_epi32(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { // must be arithmetic shift __m256i sign = _mm256_set1_epi32((int8_t)more >> 7); // q += ((numer ^ sign) - sign); q = _mm256_add_epi32(q, _mm256_sub_epi32(_mm256_xor_si256(numers, sign), sign)); } // q >>= shift q = _mm256_srai_epi32(q, more & LIBDIVIDE_32_SHIFT_MASK); q = _mm256_add_epi32(q, _mm256_srli_epi32(q, 31)); // q += (q < 0) return q; } } __m256i libdivide_s32_branchfree_do_vector(__m256i numers, const struct libdivide_s32_branchfree_t *denom) { int32_t magic = denom->magic; uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; // must be arithmetic shift __m256i sign = _mm256_set1_epi32((int8_t)more >> 7); __m256i q = libdivide_mullhi_s32_vector(numers, _mm256_set1_epi32(magic)); q = _mm256_add_epi32(q, numers); // q += numers // If q is non-negative, we have nothing to do // If q is negative, we want to add either (2**shift)-1 if d is // a power of 2, or (2**shift) if it is not a power of 2 uint32_t is_power_of_2 = (magic == 0); __m256i q_sign = _mm256_srai_epi32(q, 31); // q_sign = q >> 31 __m256i mask = _mm256_set1_epi32((1U << shift) - is_power_of_2); q = _mm256_add_epi32(q, _mm256_and_si256(q_sign, mask)); // q = q + (q_sign & mask) q = _mm256_srai_epi32(q, shift); // q >>= shift q = _mm256_sub_epi32(_mm256_xor_si256(q, sign), sign); // q = (q ^ sign) - sign return q; } ////////// SINT64 __m256i libdivide_s64_do_vector(__m256i numers, const struct libdivide_s64_t *denom) { uint8_t more = denom->more; int64_t magic = denom->magic; if (magic == 0) { // shift path uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK; uint64_t mask = (1ULL << shift) - 1; __m256i roundToZeroTweak = _mm256_set1_epi64x(mask); // q = numer + ((numer >> 63) & roundToZeroTweak); __m256i q = _mm256_add_epi64(numers, _mm256_and_si256(libdivide_s64_signbits(numers), roundToZeroTweak)); q = libdivide_s64_shift_right_vector(q, shift); __m256i sign = _mm256_set1_epi32((int8_t)more >> 7); // q = (q ^ sign) - sign; q = _mm256_sub_epi64(_mm256_xor_si256(q, sign), sign); return q; } else { __m256i q = libdivide_mullhi_s64_vector(numers, _mm256_set1_epi64x(magic)); if (more & LIBDIVIDE_ADD_MARKER) { // must be arithmetic shift __m256i sign = _mm256_set1_epi32((int8_t)more >> 7); // q += ((numer ^ sign) - sign); q = _mm256_add_epi64(q, _mm256_sub_epi64(_mm256_xor_si256(numers, sign), sign)); } // q >>= denom->mult_path.shift q = libdivide_s64_shift_right_vector(q, more & LIBDIVIDE_64_SHIFT_MASK); q = _mm256_add_epi64(q, _mm256_srli_epi64(q, 63)); // q += (q < 0) return q; } } __m256i libdivide_s64_branchfree_do_vector(__m256i numers, const struct libdivide_s64_branchfree_t *denom) { int64_t magic = denom->magic; uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; // must be arithmetic shift __m256i sign = _mm256_set1_epi32((int8_t)more >> 7); // libdivide_mullhi_s64(numers, magic); __m256i q = libdivide_mullhi_s64_vector(numers, _mm256_set1_epi64x(magic)); q = _mm256_add_epi64(q, numers); // q += numers // If q is non-negative, we have nothing to do. // If q is negative, we want to add either (2**shift)-1 if d is // a power of 2, or (2**shift) if it is not a power of 2. uint32_t is_power_of_2 = (magic == 0); __m256i q_sign = libdivide_s64_signbits(q); // q_sign = q >> 63 __m256i mask = _mm256_set1_epi64x((1ULL << shift) - is_power_of_2); q = _mm256_add_epi64(q, _mm256_and_si256(q_sign, mask)); // q = q + (q_sign & mask) q = libdivide_s64_shift_right_vector(q, shift); // q >>= shift q = _mm256_sub_epi64(_mm256_xor_si256(q, sign), sign); // q = (q ^ sign) - sign return q; } #elif defined(LIBDIVIDE_SSE2) static inline __m128i libdivide_u32_do_vector(__m128i numers, const struct libdivide_u32_t *denom); static inline __m128i libdivide_s32_do_vector(__m128i numers, const struct libdivide_s32_t *denom); static inline __m128i libdivide_u64_do_vector(__m128i numers, const struct libdivide_u64_t *denom); static inline __m128i libdivide_s64_do_vector(__m128i numers, const struct libdivide_s64_t *denom); static inline __m128i libdivide_u32_branchfree_do_vector(__m128i numers, const struct libdivide_u32_branchfree_t *denom); static inline __m128i libdivide_s32_branchfree_do_vector(__m128i numers, const struct libdivide_s32_branchfree_t *denom); static inline __m128i libdivide_u64_branchfree_do_vector(__m128i numers, const struct libdivide_u64_branchfree_t *denom); static inline __m128i libdivide_s64_branchfree_do_vector(__m128i numers, const struct libdivide_s64_branchfree_t *denom); //////// Internal Utility Functions // Implementation of _mm_srai_epi64(v, 63) (from AVX512). static inline __m128i libdivide_s64_signbits(__m128i v) { __m128i hiBitsDuped = _mm_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 1, 1)); __m128i signBits = _mm_srai_epi32(hiBitsDuped, 31); return signBits; } // Implementation of _mm_srai_epi64 (from AVX512). static inline __m128i libdivide_s64_shift_right_vector(__m128i v, int amt) { const int b = 64 - amt; __m128i m = _mm_set1_epi64x(1ULL << (b - 1)); __m128i x = _mm_srli_epi64(v, amt); __m128i result = _mm_sub_epi64(_mm_xor_si128(x, m), m); return result; } // Here, b is assumed to contain one 32-bit value repeated. static inline __m128i libdivide_mullhi_u32_vector(__m128i a, __m128i b) { __m128i hi_product_0Z2Z = _mm_srli_epi64(_mm_mul_epu32(a, b), 32); __m128i a1X3X = _mm_srli_epi64(a, 32); __m128i mask = _mm_set_epi32(-1, 0, -1, 0); __m128i hi_product_Z1Z3 = _mm_and_si128(_mm_mul_epu32(a1X3X, b), mask); return _mm_or_si128(hi_product_0Z2Z, hi_product_Z1Z3); } // SSE2 does not have a signed multiplication instruction, but we can convert // unsigned to signed pretty efficiently. Again, b is just a 32 bit value // repeated four times. static inline __m128i libdivide_mullhi_s32_vector(__m128i a, __m128i b) { __m128i p = libdivide_mullhi_u32_vector(a, b); // t1 = (a >> 31) & y, arithmetic shift __m128i t1 = _mm_and_si128(_mm_srai_epi32(a, 31), b); __m128i t2 = _mm_and_si128(_mm_srai_epi32(b, 31), a); p = _mm_sub_epi32(p, t1); p = _mm_sub_epi32(p, t2); return p; } // Here, y is assumed to contain one 64-bit value repeated. // https://stackoverflow.com/a/28827013 static inline __m128i libdivide_mullhi_u64_vector(__m128i x, __m128i y) { __m128i lomask = _mm_set1_epi64x(0xffffffff); __m128i xh = _mm_shuffle_epi32(x, 0xB1); // x0l, x0h, x1l, x1h __m128i yh = _mm_shuffle_epi32(y, 0xB1); // y0l, y0h, y1l, y1h __m128i w0 = _mm_mul_epu32(x, y); // x0l*y0l, x1l*y1l __m128i w1 = _mm_mul_epu32(x, yh); // x0l*y0h, x1l*y1h __m128i w2 = _mm_mul_epu32(xh, y); // x0h*y0l, x1h*y0l __m128i w3 = _mm_mul_epu32(xh, yh); // x0h*y0h, x1h*y1h __m128i w0h = _mm_srli_epi64(w0, 32); __m128i s1 = _mm_add_epi64(w1, w0h); __m128i s1l = _mm_and_si128(s1, lomask); __m128i s1h = _mm_srli_epi64(s1, 32); __m128i s2 = _mm_add_epi64(w2, s1l); __m128i s2h = _mm_srli_epi64(s2, 32); __m128i hi = _mm_add_epi64(w3, s1h); hi = _mm_add_epi64(hi, s2h); return hi; } // y is one 64-bit value repeated. static inline __m128i libdivide_mullhi_s64_vector(__m128i x, __m128i y) { __m128i p = libdivide_mullhi_u64_vector(x, y); __m128i t1 = _mm_and_si128(libdivide_s64_signbits(x), y); __m128i t2 = _mm_and_si128(libdivide_s64_signbits(y), x); p = _mm_sub_epi64(p, t1); p = _mm_sub_epi64(p, t2); return p; } ////////// UINT32 __m128i libdivide_u32_do_vector(__m128i numers, const struct libdivide_u32_t *denom) { uint8_t more = denom->more; if (!denom->magic) { return _mm_srli_epi32(numers, more); } else { __m128i q = libdivide_mullhi_u32_vector(numers, _mm_set1_epi32(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { // uint32_t t = ((numer - q) >> 1) + q; // return t >> denom->shift; uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK; __m128i t = _mm_add_epi32(_mm_srli_epi32(_mm_sub_epi32(numers, q), 1), q); return _mm_srli_epi32(t, shift); } else { return _mm_srli_epi32(q, more); } } } __m128i libdivide_u32_branchfree_do_vector(__m128i numers, const struct libdivide_u32_branchfree_t *denom) { __m128i q = libdivide_mullhi_u32_vector(numers, _mm_set1_epi32(denom->magic)); __m128i t = _mm_add_epi32(_mm_srli_epi32(_mm_sub_epi32(numers, q), 1), q); return _mm_srli_epi32(t, denom->more); } ////////// UINT64 __m128i libdivide_u64_do_vector(__m128i numers, const struct libdivide_u64_t *denom) { uint8_t more = denom->more; if (!denom->magic) { return _mm_srli_epi64(numers, more); } else { __m128i q = libdivide_mullhi_u64_vector(numers, _mm_set1_epi64x(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { // uint32_t t = ((numer - q) >> 1) + q; // return t >> denom->shift; uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK; __m128i t = _mm_add_epi64(_mm_srli_epi64(_mm_sub_epi64(numers, q), 1), q); return _mm_srli_epi64(t, shift); } else { return _mm_srli_epi64(q, more); } } } __m128i libdivide_u64_branchfree_do_vector(__m128i numers, const struct libdivide_u64_branchfree_t *denom) { __m128i q = libdivide_mullhi_u64_vector(numers, _mm_set1_epi64x(denom->magic)); __m128i t = _mm_add_epi64(_mm_srli_epi64(_mm_sub_epi64(numers, q), 1), q); return _mm_srli_epi64(t, denom->more); } ////////// SINT32 __m128i libdivide_s32_do_vector(__m128i numers, const struct libdivide_s32_t *denom) { uint8_t more = denom->more; if (!denom->magic) { uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK; uint32_t mask = (1U << shift) - 1; __m128i roundToZeroTweak = _mm_set1_epi32(mask); // q = numer + ((numer >> 31) & roundToZeroTweak); __m128i q = _mm_add_epi32(numers, _mm_and_si128(_mm_srai_epi32(numers, 31), roundToZeroTweak)); q = _mm_srai_epi32(q, shift); __m128i sign = _mm_set1_epi32((int8_t)more >> 7); // q = (q ^ sign) - sign; q = _mm_sub_epi32(_mm_xor_si128(q, sign), sign); return q; } else { __m128i q = libdivide_mullhi_s32_vector(numers, _mm_set1_epi32(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { // must be arithmetic shift __m128i sign = _mm_set1_epi32((int8_t)more >> 7); // q += ((numer ^ sign) - sign); q = _mm_add_epi32(q, _mm_sub_epi32(_mm_xor_si128(numers, sign), sign)); } // q >>= shift q = _mm_srai_epi32(q, more & LIBDIVIDE_32_SHIFT_MASK); q = _mm_add_epi32(q, _mm_srli_epi32(q, 31)); // q += (q < 0) return q; } } __m128i libdivide_s32_branchfree_do_vector(__m128i numers, const struct libdivide_s32_branchfree_t *denom) { int32_t magic = denom->magic; uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; // must be arithmetic shift __m128i sign = _mm_set1_epi32((int8_t)more >> 7); __m128i q = libdivide_mullhi_s32_vector(numers, _mm_set1_epi32(magic)); q = _mm_add_epi32(q, numers); // q += numers // If q is non-negative, we have nothing to do // If q is negative, we want to add either (2**shift)-1 if d is // a power of 2, or (2**shift) if it is not a power of 2 uint32_t is_power_of_2 = (magic == 0); __m128i q_sign = _mm_srai_epi32(q, 31); // q_sign = q >> 31 __m128i mask = _mm_set1_epi32((1U << shift) - is_power_of_2); q = _mm_add_epi32(q, _mm_and_si128(q_sign, mask)); // q = q + (q_sign & mask) q = _mm_srai_epi32(q, shift); // q >>= shift q = _mm_sub_epi32(_mm_xor_si128(q, sign), sign); // q = (q ^ sign) - sign return q; } ////////// SINT64 __m128i libdivide_s64_do_vector(__m128i numers, const struct libdivide_s64_t *denom) { uint8_t more = denom->more; int64_t magic = denom->magic; if (magic == 0) { // shift path uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK; uint64_t mask = (1ULL << shift) - 1; __m128i roundToZeroTweak = _mm_set1_epi64x(mask); // q = numer + ((numer >> 63) & roundToZeroTweak); __m128i q = _mm_add_epi64(numers, _mm_and_si128(libdivide_s64_signbits(numers), roundToZeroTweak)); q = libdivide_s64_shift_right_vector(q, shift); __m128i sign = _mm_set1_epi32((int8_t)more >> 7); // q = (q ^ sign) - sign; q = _mm_sub_epi64(_mm_xor_si128(q, sign), sign); return q; } else { __m128i q = libdivide_mullhi_s64_vector(numers, _mm_set1_epi64x(magic)); if (more & LIBDIVIDE_ADD_MARKER) { // must be arithmetic shift __m128i sign = _mm_set1_epi32((int8_t)more >> 7); // q += ((numer ^ sign) - sign); q = _mm_add_epi64(q, _mm_sub_epi64(_mm_xor_si128(numers, sign), sign)); } // q >>= denom->mult_path.shift q = libdivide_s64_shift_right_vector(q, more & LIBDIVIDE_64_SHIFT_MASK); q = _mm_add_epi64(q, _mm_srli_epi64(q, 63)); // q += (q < 0) return q; } } __m128i libdivide_s64_branchfree_do_vector(__m128i numers, const struct libdivide_s64_branchfree_t *denom) { int64_t magic = denom->magic; uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; // must be arithmetic shift __m128i sign = _mm_set1_epi32((int8_t)more >> 7); // libdivide_mullhi_s64(numers, magic); __m128i q = libdivide_mullhi_s64_vector(numers, _mm_set1_epi64x(magic)); q = _mm_add_epi64(q, numers); // q += numers // If q is non-negative, we have nothing to do. // If q is negative, we want to add either (2**shift)-1 if d is // a power of 2, or (2**shift) if it is not a power of 2. uint32_t is_power_of_2 = (magic == 0); __m128i q_sign = libdivide_s64_signbits(q); // q_sign = q >> 63 __m128i mask = _mm_set1_epi64x((1ULL << shift) - is_power_of_2); q = _mm_add_epi64(q, _mm_and_si128(q_sign, mask)); // q = q + (q_sign & mask) q = libdivide_s64_shift_right_vector(q, shift); // q >>= shift q = _mm_sub_epi64(_mm_xor_si128(q, sign), sign); // q = (q ^ sign) - sign return q; } #endif /////////// C++ stuff #ifdef __cplusplus // The C++ divider class is templated on both an integer type // (like uint64_t) and an algorithm type. // * BRANCHFULL is the default algorithm type. // * BRANCHFREE is the branchfree algorithm type. enum { BRANCHFULL, BRANCHFREE }; #if defined(LIBDIVIDE_AVX512) #define LIBDIVIDE_VECTOR_TYPE __m512i #elif defined(LIBDIVIDE_AVX2) #define LIBDIVIDE_VECTOR_TYPE __m256i #elif defined(LIBDIVIDE_SSE2) #define LIBDIVIDE_VECTOR_TYPE __m128i #endif #if !defined(LIBDIVIDE_VECTOR_TYPE) #define LIBDIVIDE_DIVIDE_VECTOR(ALGO) #else #define LIBDIVIDE_DIVIDE_VECTOR(ALGO) \ LIBDIVIDE_VECTOR_TYPE divide(LIBDIVIDE_VECTOR_TYPE n) const { \ return libdivide_##ALGO##_do_vector(n, &denom); \ } #endif // The DISPATCHER_GEN() macro generates C++ methods (for the given integer // and algorithm types) that redirect to libdivide's C API. #define DISPATCHER_GEN(T, ALGO) \ libdivide_##ALGO##_t denom; \ dispatcher() { } \ dispatcher(T d) \ : denom(libdivide_##ALGO##_gen(d)) \ { } \ T divide(T n) const { \ return libdivide_##ALGO##_do(n, &denom); \ } \ LIBDIVIDE_DIVIDE_VECTOR(ALGO) \ T recover() const { \ return libdivide_##ALGO##_recover(&denom); \ } // The dispatcher selects a specific division algorithm for a given // type and ALGO using partial template specialization. template<typename T, int ALGO> struct dispatcher { }; template<> struct dispatcher<int32_t, BRANCHFULL> { DISPATCHER_GEN(int32_t, s32) }; template<> struct dispatcher<int32_t, BRANCHFREE> { DISPATCHER_GEN(int32_t, s32_branchfree) }; template<> struct dispatcher<uint32_t, BRANCHFULL> { DISPATCHER_GEN(uint32_t, u32) }; template<> struct dispatcher<uint32_t, BRANCHFREE> { DISPATCHER_GEN(uint32_t, u32_branchfree) }; template<> struct dispatcher<int64_t, BRANCHFULL> { DISPATCHER_GEN(int64_t, s64) }; template<> struct dispatcher<int64_t, BRANCHFREE> { DISPATCHER_GEN(int64_t, s64_branchfree) }; template<> struct dispatcher<uint64_t, BRANCHFULL> { DISPATCHER_GEN(uint64_t, u64) }; template<> struct dispatcher<uint64_t, BRANCHFREE> { DISPATCHER_GEN(uint64_t, u64_branchfree) }; // This is the main divider class for use by the user (C++ API). // The actual division algorithm is selected using the dispatcher struct // based on the integer and algorithm template parameters. template<typename T, int ALGO = BRANCHFULL> class divider { public: // We leave the default constructor empty so that creating // an array of dividers and then initializing them // later doesn't slow us down. divider() { } // Constructor that takes the divisor as a parameter divider(T d) : div(d) { } // Divides n by the divisor T divide(T n) const { return div.divide(n); } // Recovers the divisor, returns the value that was // used to initialize this divider object. T recover() const { return div.recover(); } bool operator==(const divider<T, ALGO>& other) const { return div.denom.magic == other.denom.magic && div.denom.more == other.denom.more; } bool operator!=(const divider<T, ALGO>& other) const { return !(*this == other); } #if defined(LIBDIVIDE_VECTOR_TYPE) // Treats the vector as packed integer values with the same type as // the divider (e.g. s32, u32, s64, u64) and divides each of // them by the divider, returning the packed quotients. LIBDIVIDE_VECTOR_TYPE divide(LIBDIVIDE_VECTOR_TYPE n) const { return div.divide(n); } #endif private: // Storage for the actual divisor dispatcher<T, ALGO> div; }; // Overload of operator / for scalar division template<typename T, int ALGO> T operator/(T n, const divider<T, ALGO>& div) { return div.divide(n); } // Overload of operator /= for scalar division template<typename T, int ALGO> T& operator/=(T& n, const divider<T, ALGO>& div) { n = div.divide(n); return n; } #if defined(LIBDIVIDE_VECTOR_TYPE) // Overload of operator / for vector division template<typename T, int ALGO> LIBDIVIDE_VECTOR_TYPE operator/(LIBDIVIDE_VECTOR_TYPE n, const divider<T, ALGO>& div) { return div.divide(n); } // Overload of operator /= for vector division template<typename T, int ALGO> LIBDIVIDE_VECTOR_TYPE& operator/=(LIBDIVIDE_VECTOR_TYPE& n, const divider<T, ALGO>& div) { n = div.divide(n); return n; } #endif #if __cplusplus >= 201103L || \ (defined(_MSC_VER) && _MSC_VER >= 1800) // libdivdie::branchfree_divider<T> template <typename T> using branchfree_divider = divider<T, BRANCHFREE>; #endif } // namespace libdivide #endif // __cplusplus #endif // LIBDIVIDE_H