// //--------------------------------------------------------------------------- // // Copyright(C) 2000-2016 Christoph Oelckers // All rights reserved. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with this program. If not, see http://www.gnu.org/licenses/ // //-------------------------------------------------------------------------- // #include "texturemanager.h" #include "hw_dynlightdata.h" #include "hw_material.h" #include "hw_cvars.h" #include "hw_clock.h" //#include "hw_lighting.h" //#include "hwrenderer/scene/hw_drawinfo.h" //#include "hwrenderer/scene/hw_drawstructs.h" //#include "hwrenderer/scene/hw_portal.h" #include "hw_lightbuffer.h" #include "hw_renderstate.h" #include "hw_skydome.h" #include "hw_drawstructs.h" #include "render.h" #include "cmdlib.h" #include "v_video.h" #include "flatvertices.h" #include "glbackend/glbackend.h" //========================================================================== // // General purpose wall rendering function // everything goes through here // //========================================================================== void HWWall::RenderWall(HWDrawInfo *di, FRenderState &state, int textured) { assert(vertcount > 0); state.SetLightIndex(dynlightindex); state.Draw(DT_TriangleFan, vertindex, vertcount); vertexcount += vertcount; } //========================================================================== // // // //========================================================================== void HWWall::RenderFogBoundary(HWDrawInfo *di, FRenderState &state) { #if 0 if (gl_fogmode && !di->isFullbrightScene()) { int rel = rellight + getExtraLight(); state.EnableDrawBufferAttachments(false); di->SetFog(state, lightlevel, rel, false, &Colormap, false); state.SetEffect(EFF_FOGBOUNDARY); state.AlphaFunc(Alpha_GEqual, 0.f); state.SetDepthBias(-1, -128); RenderWall(di, state, HWWall::RWF_BLANK); state.ClearDepthBias(); state.SetEffect(EFF_NONE); state.EnableDrawBufferAttachments(true); } #endif } //========================================================================== // // // //========================================================================== void HWWall::RenderMirrorSurface(HWDrawInfo *di, FRenderState &state) { #if 0 if (!TexMan.mirrorTexture.isValid()) return; state.SetDepthFunc(DF_LEqual); // we use texture coordinates and texture matrix to pass the normal stuff to the shader so that the default vertex buffer format can be used as is. state.EnableTextureMatrix(true); // Use sphere mapping for this state.SetEffect(EFF_SPHEREMAP); di->SetColor(state, lightlevel, 0, di->isFullbrightScene(), Colormap, 0.1f); di->SetFog(state, lightlevel, 0, di->isFullbrightScene(), &Colormap, true); state.SetRenderStyle(STYLE_Add); state.AlphaFunc(Alpha_Greater, 0); auto tex = TexMan.GetGameTexture(TexMan.mirrorTexture, false); state.SetMaterial(tex, UF_None, 0, CLAMP_NONE, 0, -1); // do not upscale the mirror texture. flags &= ~HWWall::HWF_GLOW; RenderWall(di, state, HWWall::RWF_BLANK); state.EnableTextureMatrix(false); state.SetEffect(EFF_NONE); state.AlphaFunc(Alpha_GEqual, gl_mask_sprite_threshold); state.SetDepthFunc(DF_Less); // This is drawn in the translucent pass which is done after the decal pass // As a result the decals have to be drawn here, right after the wall they are on, // because the depth buffer won't get set by translucent items. if (seg->sidedef->AttachedDecals) { DrawDecalsForMirror(di, state, di->Decals[1]); } state.SetRenderStyle(STYLE_Translucent); #endif } //========================================================================== // // // //========================================================================== void HWWall::RenderTexturedWall(HWDrawInfo *di, FRenderState &state, int rflags) { #if 0 int tmode = state.GetTextureMode(); state.SetMaterial(texture, UF_Texture, 0, flags & 3, 0, -1); int32_t size = xs_CRoundToInt(texture->GetDisplayHeight()); int32_t size2; for (size2 = 1; size2 < size; size2 += size2) {} if (size == size2) state.SetNpotEmulation(0.f, 0.f); else { float xOffset = 1.f / texture->GetDisplayWidth(); state.SetNpotEmulation((1.f * size2) / size, xOffset); } float absalpha = fabsf(alpha); if (type != RENDERWALL_M2SNF) di->SetFog(state, lightlevel, rel, di->isFullbrightScene(), &Colormap, RenderStyle == STYLE_Add); di->SetColor(state, lightlevel, rel, di->isFullbrightScene(), Colormap, absalpha); RenderWall(di, state, rflags); state.SetNpotEmulation(0.f, 0.f); state.SetObjectColor(0xffffffff); state.SetObjectColor2(0); state.SetAddColor(0); state.SetTextureMode(tmode); state.EnableGlow(false); state.EnableGradient(false); state.ApplyTextureManipulation(nullptr); #endif } //========================================================================== // // // //========================================================================== void HWWall::RenderTranslucentWall(HWDrawInfo *di, FRenderState &state) { #if 0 state.SetRenderStyle(RenderStyle); if (!texture->GetTranslucency()) state.AlphaFunc(Alpha_GEqual, gl_mask_threshold); else state.AlphaFunc(Alpha_GEqual, 0.f); RenderTexturedWall(di, state, HWWall::RWF_TEXTURED); state.SetRenderStyle(STYLE_Translucent); #endif } //========================================================================== // // // //========================================================================== void HWWall::DrawWall(HWDrawInfo *di, FRenderState &state, bool translucent) { /* if (screen->BuffersArePersistent()) { if (di->Level->HasDynamicLights && !di->isFullbrightScene() && texture != nullptr) { SetupLights(di, lightdata); } MakeVertices(di, !!(flags & HWWall::HWF_TRANSLUCENT)); } */ state.SetNormal(glseg.Normal()); if (!translucent) { RenderTexturedWall(di, state, HWWall::RWF_TEXTURED); } else { switch (type) { case RENDERWALL_MIRRORSURFACE: RenderMirrorSurface(di, state); break; case RENDERWALL_FOGBOUNDARY: RenderFogBoundary(di, state); break; default: RenderTranslucentWall(di, state); break; } } } //========================================================================== // // Collect lights for shader // //========================================================================== #if 0 void HWWall::SetupLights(HWDrawInfo *di, FDynLightData &lightdata) { lightdata.Clear(); if (RenderStyle == STYLE_Add && !di->Level->lightadditivesurfaces) return; // no lights on additively blended surfaces. // check for wall types which cannot have dynamic lights on them (portal types never get here so they don't need to be checked.) switch (type) { case RENDERWALL_FOGBOUNDARY: case RENDERWALL_MIRRORSURFACE: case RENDERWALL_COLOR: return; } float vtx[]={glseg.x1,zbottom[0],glseg.y1, glseg.x1,ztop[0],glseg.y1, glseg.x2,ztop[1],glseg.y2, glseg.x2,zbottom[1],glseg.y2}; Plane p; auto normal = glseg.Normal(); p.Set(normal, -normal.X * glseg.x1 - normal.Z * glseg.y1); FLightNode *node; if (seg->sidedef == NULL) { node = NULL; } else if (!(seg->sidedef->Flags & WALLF_POLYOBJ)) { node = seg->sidedef->lighthead; } else if (sub) { // Polobject segs cannot be checked per sidedef so use the subsector instead. node = sub->section->lighthead; } else node = NULL; // Iterate through all dynamic lights which touch this wall and render them while (node) { if (node->lightsource->IsActive()) { iter_dlight++; DVector3 posrel = node->lightsource->PosRelative(seg->frontsector->PortalGroup); float x = posrel.X; float y = posrel.Y; float z = posrel.Z; float dist = fabsf(p.DistToPoint(x, z, y)); float radius = node->lightsource->GetRadius(); float scale = 1.0f / ((2.f * radius) - dist); FVector3 fn, pos; if (radius > 0.f && dist < radius) { FVector3 nearPt, up, right; pos = { x, z, y }; fn = p.Normal(); fn.GetRightUp(right, up); FVector3 tmpVec = fn * dist; nearPt = pos + tmpVec; FVector3 t1; int outcnt[4]={0,0,0,0}; texcoord tcs[4]; // do a quick check whether the light touches this polygon for(int i=0;i<4;i++) { t1 = FVector3(&vtx[i*3]); FVector3 nearToVert = t1 - nearPt; tcs[i].u = ((nearToVert | right) * scale) + 0.5f; tcs[i].v = ((nearToVert | up) * scale) + 0.5f; if (tcs[i].u<0) outcnt[0]++; if (tcs[i].u>1) outcnt[1]++; if (tcs[i].v<0) outcnt[2]++; if (tcs[i].v>1) outcnt[3]++; } if (outcnt[0]!=4 && outcnt[1]!=4 && outcnt[2]!=4 && outcnt[3]!=4) { draw_dlight += GetLight(lightdata, seg->frontsector->PortalGroup, p, node->lightsource, true); } } } node = node->nextLight; } dynlightindex = screen->mLights->UploadLights(lightdata); } #endif //========================================================================== // // // //========================================================================== void HWWall::PutWall(HWDrawInfo *di, bool translucent) { if (translucent || (texture && texture->GetTranslucency() && type == RENDERWALL_M2S)) { flags |= HWF_TRANSLUCENT; //ViewDistance = (di->Viewpoint.Pos - (seg->linedef->v1->fPos() + seg->linedef->Delta() / 2)).XY().LengthSquared(); } /* if (!screen->BuffersArePersistent()) { if (di->Level->HasDynamicLights && !di->isFullbrightScene() && texture != nullptr) { SetupLights(di, lightdata); } MakeVertices(di, translucent); } bool hasDecals = type != RENDERWALL_M2S && seg->sidedef->AttachedDecals; if (hasDecals) { // If we want to use the light infos for the decal we cannot delay the creation until the render pass. if (screen->BuffersArePersistent()) { if (di->Level->HasDynamicLights && !di->isFullbrightScene() && texture != nullptr) { SetupLights(di, lightdata); } } ProcessDecals(di); } */ #if 0 di->AddWall(this); #else // route it through the GLInterface for now for easier testing int palid = TRANSLATION(Translation_Remap + curbasepal, globalpal); GLInterface.SetFade(globalfloorpal); GLInterface.SetTexture(texture, TRANSLATION(Translation_Remap + curbasepal, palette), 0); GLInterface.SetShade(shade, numshades); int h = texture->GetTexelHeight(); int h2 = 1 << sizeToBits(h); if (h2 < h) h2 *= 2; if (h != h2) { float xOffset = 1.f / texture->GetTexelWidth(); GLInterface.SetNpotEmulation(float(h2) / h, xOffset); } else { GLInterface.SetNpotEmulation(0.f, 0.f); } GLInterface.SetTextureMode(TM_OPAQUE); GLInterface.SetVisibility(visibility); // The shade rgb from the tint is ignored here. float pc[4]; pc[0] = (float)globalr * (1.f / 255.f); pc[1] = (float)globalg * (1.f / 255.f); pc[2] = (float)globalb * (1.f / 255.f); pc[3] = alpha; GLInterface.SetColor(pc[0], pc[1], pc[2], pc[3]); auto data = screen->mVertexData->AllocVertices(4); auto vt = data.first; vt[0].SetTexCoord(tcs[LOLFT].u, tcs[LOLFT].v); vt[0].SetVertex(glseg.x1, zbottom[0], glseg.y1); vt[1].SetTexCoord(tcs[UPLFT].u, tcs[UPLFT].v); vt[1].SetVertex(glseg.x1, ztop[0], glseg.y1); vt[2].SetTexCoord(tcs[UPRGT].u, tcs[UPRGT].v); vt[2].SetVertex(glseg.x2, ztop[1], glseg.y2); vt[3].SetTexCoord(tcs[LORGT].u, tcs[LORGT].v); vt[3].SetVertex(glseg.x2, zbottom[1], glseg.y2); GLInterface.Draw(DT_TriangleFan, data.second, 4); GLInterface.SetNpotEmulation(0.f, 0.f); GLInterface.SetTextureMode(TM_NORMAL); #endif // make sure that following parts of the same linedef do not get this one's vertex and lighting info. vertcount = 0; dynlightindex = -1; flags &= ~HWF_TRANSLUCENT; } //========================================================================== // // will be done later. // //========================================================================== void HWWall::PutPortal(HWDrawInfo *di, int ptype, int plane) { #if 0 HWPortal * portal = nullptr; MakeVertices(di, false); switch (ptype) { // portals don't go into the draw list. // Instead they are added to the portal manager case PORTALTYPE_HORIZON: horizon = portalState.UniqueHorizons.Get(horizon); portal = di->FindPortal(horizon); if (!portal) { portal = new HWHorizonPortal(&portalState, horizon, di->Viewpoint); di->Portals.Push(portal); } portal->AddLine(this); break; case PORTALTYPE_SKYBOX: portal = di->FindPortal(secportal); if (!portal) { // either a regular skybox or an Eternity-style horizon if (secportal->mType != PORTS_SKYVIEWPOINT) portal = new HWEEHorizonPortal(&portalState, secportal); else { portal = new HWSkyboxPortal(&portalState, secportal); di->Portals.Push(portal); } } portal->AddLine(this); break; case PORTALTYPE_SECTORSTACK: portal = di->FindPortal(this->portal); if (!portal) { portal = new HWSectorStackPortal(&portalState, this->portal); di->Portals.Push(portal); } portal->AddLine(this); break; case PORTALTYPE_PLANEMIRROR: if (portalState.PlaneMirrorMode * planemirror->fC() <= 0) { planemirror = portalState.UniquePlaneMirrors.Get(planemirror); portal = di->FindPortal(planemirror); if (!portal) { portal = new HWPlaneMirrorPortal(&portalState, planemirror); di->Portals.Push(portal); } portal->AddLine(this); } break; case PORTALTYPE_MIRROR: portal = di->FindPortal(seg->linedef); if (!portal) { portal = new HWMirrorPortal(&portalState, seg->linedef); di->Portals.Push(portal); } portal->AddLine(this); if (gl_mirror_envmap) { // draw a reflective layer over the mirror di->AddMirrorSurface(this); } break; case PORTALTYPE_LINETOLINE: if (!lineportal) return; portal = di->FindPortal(lineportal); if (!portal) { line_t *otherside = lineportal->lines[0]->mDestination; if (otherside != nullptr && otherside->portalindex < di->Level->linePortals.Size()) { di->ProcessActorsInPortal(otherside->getPortal()->mGroup, di->in_area); } portal = new HWLineToLinePortal(&portalState, lineportal); di->Portals.Push(portal); } portal->AddLine(this); break; case PORTALTYPE_SKY: sky = portalState.UniqueSkies.Get(sky); portal = di->FindPortal(sky); if (!portal) { portal = new HWSkyPortal(screen->mSkyData, &portalState, sky); di->Portals.Push(portal); } portal->AddLine(this); break; } vertcount = 0; if (plane != -1 && portal) { portal->planesused |= (1<GetPlaneTexZ(sector_t::ceiling); zbottom[1] = zbottom[0] = fs->GetPlaneTexZ(sector_t::floor); auto vpz = di->Viewpoint.Pos.Z; if (vpz < fs->GetPlaneTexZ(sector_t::ceiling)) { if (vpz > fs->GetPlaneTexZ(sector_t::floor)) zbottom[1] = zbottom[0] = vpz; if (fs->GetTexture(sector_t::ceiling) == skyflatnum) { SkyPlane(di, fs, sector_t::ceiling, false); } else { hi.plane.GetFromSector(fs, sector_t::ceiling); hi.lightlevel = hw_ClampLight(fs->GetCeilingLight()); hi.colormap = fs->Colormap; hi.specialcolor = fs->SpecialColors[sector_t::ceiling]; if (di->isFullbrightScene()) hi.colormap.Clear(); horizon = &hi; PutPortal(di, PORTALTYPE_HORIZON, -1); } ztop[1] = ztop[0] = zbottom[0]; } if (vpz > fs->GetPlaneTexZ(sector_t::floor)) { zbottom[1] = zbottom[0] = fs->GetPlaneTexZ(sector_t::floor); if (fs->GetTexture(sector_t::floor) == skyflatnum) { SkyPlane(di, fs, sector_t::floor, false); } else { hi.plane.GetFromSector(fs, sector_t::floor); hi.lightlevel = hw_ClampLight(fs->GetFloorLight()); hi.colormap = fs->Colormap; hi.specialcolor = fs->SpecialColors[sector_t::floor]; horizon = &hi; PutPortal(di, PORTALTYPE_HORIZON, -1); } } #endif return true; } static float sectorVisibility(sectortype *sec) { // Beware of wraparound madness... int v = sec->visibility; return v ? ((uint8_t)(v + 16)) / 16.f : 1.f; } //========================================================================== // // Build math sucks. This would be easier if NPOT was handled properly. // Panning is calculated in NPOT dimensions only, the next largest one // to the texture height applies, so the panning needs to be scaled accordingly. // //========================================================================== static float GetYPanning(float curypanning, FGameTexture* tex/*, bool aligned*/) { // get next largest POT size. int th = tex->GetTexelHeight(); int pow2size = 1 << sizeToBits(th); if (pow2size < th) pow2size *= 2; /* crap for lack of NPOT emulation. Should not be needed anymore if (aligned) { float yoffs = (pow2size - th) * (255.0f / pow2size); if (curypanning > 256 - yoffs) curypanning -= yoffs; } */ // scale the panning factor and scale to texture coordinates. return pow2size * curypanning / (256.0f * th); } //========================================================================== // // // //========================================================================== bool HWWall::SetWallCoordinates(walltype * seg, float topleft, float topright, float bottomleft, float bottomright) { // // // set up coordinates for the left side of the polygon // // check left side for intersections if (topleft >= bottomleft) { // normal case ztop[0] = topleft; zbottom[0] = bottomleft; } else { // ceiling below floor - clip to the visible part of the wall float dch = topright - topleft; float dfh = bottomright - bottomleft; float inter_x = (bottomleft - topleft) / (dch - dfh); float inter_y = topleft + inter_x * dch; glseg.x1 = glseg.x1 + inter_x * (glseg.x2 - glseg.x1); glseg.y1 = glseg.y1 + inter_x * (glseg.y2 - glseg.y1); glseg.fracleft = inter_x; zbottom[0] = ztop[0] = inter_y; } // // // set up coordinates for the right side of the polygon // // check left side for intersections if (topright >= bottomright) { // normal case ztop[1] = topright; zbottom[1] = bottomright; } else { // ceiling below floor - clip to the visible part of the wall float dch = topright - topleft; float dfh = bottomright - bottomleft; float inter_x = (bottomleft - topleft) / (dch - dfh); float inter_y = topleft + inter_x * dch; glseg.x2 = glseg.x1 + inter_x * (glseg.x2 - glseg.x1); glseg.y2 = glseg.y1 + inter_x * (glseg.y2 - glseg.y1); glseg.fracright = inter_x; zbottom[1] = ztop[1] = inter_y; } return true; } //========================================================================== // // Do some tweaks with the texture coordinates to reduce visual glitches // //========================================================================== void HWWall::CheckTexturePosition() { float sub; if (texture->isHardwareCanvas()) return; // clamp texture coordinates to a reasonable range. // Extremely large values can cause visual problems if (tcs[UPLFT].v > tcs[LOLFT].v || tcs[UPRGT].v > tcs[LORGT].v) { if (tcs[UPLFT].v < tcs[UPRGT].v) { sub = float(xs_FloorToInt(tcs[UPLFT].v)); } else { sub = float(xs_FloorToInt(tcs[UPRGT].v)); } tcs[UPLFT].v -= sub; tcs[UPRGT].v -= sub; tcs[LOLFT].v -= sub; tcs[LORGT].v -= sub; if ((tcs[UPLFT].v == 0.f && tcs[UPRGT].v == 0.f && tcs[LOLFT].v <= 1.f && tcs[LORGT].v <= 1.f) || (tcs[UPLFT].v >= 0.f && tcs[UPRGT].v >= 0.f && tcs[LOLFT].v == 1.f && tcs[LORGT].v == 1.f)) { flags |= HWF_CLAMPY; } } else { if (tcs[LOLFT].v < tcs[LORGT].v) { sub = float(xs_FloorToInt(tcs[LOLFT].v)); } else { sub = float(xs_FloorToInt(tcs[LORGT].v)); } tcs[UPLFT].v -= sub; tcs[UPRGT].v -= sub; tcs[LOLFT].v -= sub; tcs[LORGT].v -= sub; if ((tcs[LOLFT].v == 0.f && tcs[LORGT].v == 0.f && tcs[UPLFT].v <= 1.f && tcs[UPRGT].v <= 1.f) || (tcs[LOLFT].v >= 0.f && tcs[LORGT].v >= 0.f && tcs[UPLFT].v == 1.f && tcs[UPRGT].v == 1.f)) { flags |= HWF_CLAMPY; } } } //========================================================================== // // Common part of wall drawers // //========================================================================== void HWWall::DoTexture(HWDrawInfo* di, walltype* wal, walltype* refwall, float refheight, float topleft, float topright, float bottomleft, float bottomright) { auto glsave = glseg; float ypanning = wal->ypan_ ? GetYPanning(wal->ypan_, texture) : 0; SetWallCoordinates(wal, topleft, topright, bottomleft, bottomright); bool xflipped = (wal->cstat & CSTAT_WALL_XFLIP); float leftdist = xflipped ? 1.f - glseg.fracleft : glseg.fracleft; float rightdist = xflipped ? 1.f - glseg.fracright : glseg.fracright; float tw = texture->GetTexelWidth(); float th = texture->GetTexelHeight(); tcs[LOLFT].u = tcs[UPLFT].u = ((leftdist * 8.f * wal->xrepeat) + wal->xpan_) / tw; tcs[LORGT].u = tcs[UPRGT].u = ((rightdist * 8.f * wal->xrepeat) + wal->xpan_) / tw; auto setv = [=](float hl, float hr, float frac) -> float { float h = hl + (hr - hl) * frac; h = (-(float)(refheight + (h * 256)) / ((th * 2048.0f) / (float)(wal->yrepeat))) + ypanning; if (wal->cstat & CSTAT_WALL_YFLIP) h = 1.f - h; return h; }; tcs[UPLFT].v = setv(topleft, topright, glseg.fracleft); tcs[LOLFT].v = setv(bottomleft, bottomright, glseg.fracleft); tcs[UPRGT].v = setv(topleft, topright, glseg.fracright); tcs[LORGT].v = setv(bottomleft, bottomright, glseg.fracright); CheckTexturePosition(); bool trans = type == RENDERWALL_M2S && (wal->cstat & CSTAT_WALL_TRANSLUCENT); if (trans) { SetRenderStyleFromBlend(!!(wal->cstat & CSTAT_WALL_TRANSLUCENT), 0, !!(wal->cstat & CSTAT_WALL_TRANS_FLIP)); alpha = GetAlphaFromBlend((wal->cstat & CSTAT_WALL_TRANS_FLIP) ? DAMETH_TRANS2 : DAMETH_TRANS1, 0); } PutWall(di, trans); glseg = glsave; } //========================================================================== // // Handle one sided walls // //========================================================================== void HWWall::DoOneSidedTexture(HWDrawInfo* di, walltype* wal, sectortype* frontsector, sectortype* backsector, float topleft, float topright, float bottomleft, float bottomright) { // get the alignment reference position. int refheight; if ((wal->cstat & CSTAT_WALL_1WAY) && backsector) { if ((!(wal->cstat & CSTAT_WALL_BOTTOM_SWAP) && (wal->cstat & CSTAT_WALL_1WAY)) || ((wal->cstat & CSTAT_WALL_BOTTOM_SWAP) && (wall[wal->nextwall].cstat & CSTAT_WALL_ALIGN_BOTTOM))) refheight = frontsector->ceilingz; else refheight = backsector->floorz; } else { refheight = (wal->cstat & CSTAT_WALL_ALIGN_BOTTOM) ? frontsector->floorz : frontsector->ceilingz; } type = RENDERWALL_M1S; DoTexture(di, wal, wal, refheight, topleft, topright, bottomleft, bottomright); } //========================================================================== // // // //========================================================================== void HWWall::DoUpperTexture(HWDrawInfo* di, walltype* wal, sectortype* frontsector, sectortype* backsector, float topleft, float topright, float bottomleft, float bottomright) { // get the alignment reference position. int refheight = (wal->cstat & CSTAT_WALL_ALIGN_BOTTOM) ? frontsector->ceilingz : backsector->ceilingz; type = RENDERWALL_BOTTOM; DoTexture(di, wal, wal, refheight, topleft, topright, bottomleft, bottomright); } //========================================================================== // // // //========================================================================== void HWWall::DoLowerTexture(HWDrawInfo* di, walltype* wal, sectortype* frontsector, sectortype* backsector, float topleft, float topright, float bottomleft, float bottomright) { // get the alignment reference position. int refheight; auto refwall = (wal->cstat & CSTAT_WALL_BOTTOM_SWAP) ? &wall[wal->nextwall] : wal; refheight = (wal->cstat & CSTAT_WALL_ALIGN_BOTTOM) ? frontsector->ceilingz : backsector->floorz; shade = refwall->shade; palette = refwall->pal; type = RENDERWALL_BOTTOM; DoTexture(di, wal, refwall, refheight, topleft, topright, bottomleft, bottomright); } //========================================================================== // // // //========================================================================== void HWWall::DoMidTexture(HWDrawInfo* di, walltype* wal, sectortype* front, sectortype* back, float fch1, float fch2, float ffh1, float ffh2, float bch1, float bch2, float bfh1, float bfh2) { float topleft,bottomleft,topright,bottomright; int refheight; const int swapit = (wal->cstat & CSTAT_WALL_ALIGN_BOTTOM); if (wal->cstat & CSTAT_WALL_1WAY) { // 1-sided wall refheight = swapit ? front->ceilingz : back->ceilingz; } else { // masked wall if (swapit) refheight = min(front->floorz, back->floorz); else refheight = max(front->ceilingz, back->ceilingz); } topleft = std::min(bch1,fch1); topright = std::min(bch2,fch2); bottomleft = std::max(bfh1,ffh1); bottomright = std::max(bfh2,ffh2); if (topleft<=bottomleft && topright<=bottomright) return; type = seg->cstat & CSTAT_WALL_1WAY ? RENDERWALL_M1S : RENDERWALL_M2S; // todo: transparency. DoTexture(di, wal, wal, refheight, topleft, topright, bottomleft, bottomright); RenderStyle = STYLE_Normal; alpha = 1.f; } //========================================================================== // // // //========================================================================== void HWWall::Process(HWDrawInfo *di, walltype *wal, sectortype* frontsector, sectortype* backsector) { auto backwall = wal->nextwall >= 0 && wal->nextwall < numwalls? &wall[wal->nextwall] : nullptr; auto p2wall = &wall[wal->point2]; float fch1; float ffh1; float fch2; float ffh2; FVector2 v1(WallStartX(wal), WallStartY(wal)); FVector2 v2(WallEndX(wal), WallEndY(wal)); PlanesAtPoint(frontsector, wal->x, wal->y, &fch1, &ffh1); PlanesAtPoint(frontsector, p2wall->x, p2wall->y, &fch2, &ffh2); #ifdef _DEBUG if (wal - wall == 3810) { int a = 0; } #endif // note: we always have a valid sidedef and linedef reference when getting here. this->seg = wal; this->frontsector = frontsector; this->backsector = backsector; vertindex = 0; vertcount = 0; //vertexes[0] = v1; //vertexes[1] = v2; glseg.x1 = v1.X; glseg.y1 = v1.Y; glseg.x2 = v2.X; glseg.y2 = v2.Y; glseg.fracleft = 0; glseg.fracright = 1; flags = 0; dynlightindex = -1; shade = wal->shade; palette = wal->pal; floorpal = frontsector->floorpal; visibility = sectorVisibility(frontsector); alpha = 1.0f; RenderStyle = STYLE_Normal; texture = NULL; /* if (wal->linedef->special == Line_Horizon) { SkyNormal(di, frontsector, v1, v2); DoHorizon(di, wal, frontsector, v1, v2); return; } */ bool isportal = false;// wal->linedef->isVisualPortal() && wal->sidedef == wal->linedef->sidedef[0]; if (!backsector || !backwall) { // sector's sky SkyNormal(di, frontsector, v1, v2); /* if (isportal) { lineportal = wal->linedef->getPortal()->mGroup; ztop[0] = zceil[0]; ztop[1] = zceil[1]; zbottom[0] = zfloor[0]; zbottom[1] = zfloor[1]; PutPortal(di, PORTALTYPE_LINETOLINE, -1); } else */ { // normal texture int tilenum = (wal->cstat & CSTAT_WALL_1WAY) ? wal->overpicnum : wal->picnum; tileUpdatePicnum(&tilenum, int(wal-wall) + 16384, wal->cstat); texture = tileGetTexture(tilenum); if (texture && texture->isValid()) { DoOneSidedTexture(di, wal, frontsector, backsector, fch1, fch2, ffh1, ffh2); } } } else // two sided { float bfh1; float bfh2; float bch1; float bch2; PlanesAtPoint(backsector, wal->x, wal->y, &bch1, &bfh1); PlanesAtPoint(backsector, p2wall->x, p2wall->y, &bch2, &bfh2); float zalign = 0.f; SkyTop(di, wal, frontsector, backsector, v1, v2); SkyBottom(di, wal, frontsector, backsector, v1, v2); // upper texture if (!(frontsector->ceilingstat & backsector->ceilingstat & CSTAT_SECTOR_SKY)) { float bch1a = bch1; float bch2a = bch2; if (ffh1 > bch1 && ffh2 > bch2) { // the back sector's floor obstructs part of this wall bch2a = ffh2; bch1a = ffh1; } if (bch1a < fch1 || bch2a < fch2) { int tilenum = wal->picnum; tileUpdatePicnum(&tilenum, int(wal - wall) + 16384, wal->cstat); texture = tileGetTexture(tilenum); if (texture && texture->isValid()) { DoUpperTexture(di, wal, frontsector, backsector, fch1, fch2, bch1a, bch2a); } } } /* if (isportal) { lineportal = wal->linedef->getPortal()->mGroup; ztop[0] = bch1; ztop[1] = bch2; zbottom[0] = bfh1; zbottom[1] = bfh2; PutPortal(di, PORTALTYPE_LINETOLINE, -1); } else*/ if (wal->cstat & (CSTAT_WALL_MASKED | CSTAT_WALL_1WAY)) { int tilenum = wal->overpicnum; tileUpdatePicnum(&tilenum, int(wal - wall) + 16384, wal->cstat); texture = tileGetTexture(tilenum); if (texture && texture->isValid()) { DoMidTexture(di, wal, frontsector, backsector, fch1, fch2, ffh1, ffh2, bch1, bch2, bfh1, bfh2); } } // lower texture if (!(frontsector->floorstat & backsector->floorstat & CSTAT_SECTOR_SKY)) { if (fch1 < bfh1 && fch2 < bfh2) { // the back sector's ceiling obstructs part of this wall. bfh1 = fch1; bfh2 = fch2; } if (bfh1 > ffh1 || bfh2 > ffh2) { auto w = (wal->cstat & CSTAT_WALL_BOTTOM_SWAP) ? backwall : wal; int tilenum = w->picnum; tileUpdatePicnum(&tilenum, int(wal - wall) + 16384, w->cstat); texture = tileGetTexture(tilenum); if (texture && texture->isValid()) { DoLowerTexture(di, wal, frontsector, backsector, bfh1, bfh2, ffh1, ffh2); } } } } globalr = globalg = globalb = 255; }