// ****************************************************************************
// * This file is part of the HqMAME project. It is distributed under         *
// * GNU General Public License: http://www.gnu.org/licenses/gpl.html         *
// * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved          *
// *                                                                          *
// * Additionally and as a special exception, the author gives permission     *
// * to link the code of this program with the MAME library (or with modified *
// * versions of MAME that use the same license as MAME), and distribute      *
// * linked combinations including the two. You must obey the GNU General     *
// * Public License in all respects for all of the code used other than MAME. *
// * If you modify this file, you may extend this exception to your version   *
// * of the file, but you are not obligated to do so. If you do not wish to   *
// * do so, delete this exception statement from your version.                *
// ****************************************************************************

#include "xbrz_old.h"

#include <cassert>
#include <cmath>
#include <algorithm>

namespace
{
template <uint32_t N> inline
unsigned char getByte(uint32_t val) { return static_cast<unsigned char>((val >> (8 * N)) & 0xff); }

inline unsigned char getRed  (uint32_t val) { return getByte<2>(val); }
inline unsigned char getGreen(uint32_t val) { return getByte<1>(val); }
inline unsigned char getBlue (uint32_t val) { return getByte<0>(val); }

template <class T> inline
T abs(T value)
{
    static_assert(std::is_signed<T>::value, "");
    return value < 0 ? -value : value;
}

const uint32_t redMask   = 0xff0000;
const uint32_t greenMask = 0x00ff00;
const uint32_t blueMask  = 0x0000ff;

template <unsigned int N, unsigned int M> inline
void alphaBlend(uint32_t& dst, uint32_t col) //blend color over destination with opacity N / M
{
    static_assert(N < 256, "possible overflow of (col & redMask) * N");
    static_assert(M < 256, "possible overflow of (col & redMask  ) * N + (dst & redMask  ) * (M - N)");
    static_assert(0 < N && N < M, "");

    static const uint32_t ALPHA_MASK  = 0xFF000000;
    static const uint32_t ALPHA_SHIFT = 24;

    static const uint32_t FULL_OPAQUE = 0xFF;

    const uint32_t colAlpha = col >> ALPHA_SHIFT;
    const uint32_t dstAlpha = dst >> ALPHA_SHIFT;

    // Overflow is ignored intentionally!

    const uint32_t alpha = (FULL_OPAQUE == colAlpha && FULL_OPAQUE == dstAlpha)
        ? ALPHA_MASK
        : ALPHA_MASK & ((colAlpha * N + dstAlpha * (M - N)) / M << ALPHA_SHIFT);

    dst = (redMask   & ((col & redMask  ) * N + (dst & redMask  ) * (M - N)) / M) | //this works because 8 upper bits are free
          (greenMask & ((col & greenMask) * N + (dst & greenMask) * (M - N)) / M) |
          (blueMask  & ((col & blueMask ) * N + (dst & blueMask ) * (M - N)) / M) |
          alpha;
}


//inline
//double fastSqrt(double n)
//{
//    __asm //speeds up xBRZ by about 9% compared to std::sqrt
//    {
//        fld n
//        fsqrt
//    }
//}
//


inline
uint32_t alphaBlend2(uint32_t pix1, uint32_t pix2, double alpha)
{
    return (redMask   & static_cast<uint32_t>((pix1 & redMask  ) * alpha + (pix2 & redMask  ) * (1 - alpha))) |
           (greenMask & static_cast<uint32_t>((pix1 & greenMask) * alpha + (pix2 & greenMask) * (1 - alpha))) |
           (blueMask  & static_cast<uint32_t>((pix1 & blueMask ) * alpha + (pix2 & blueMask ) * (1 - alpha)));
}


uint32_t*       byteAdvance(      uint32_t* ptr, int bytes) {  return reinterpret_cast<      uint32_t*>(reinterpret_cast<      char*>(ptr) + bytes); }
const uint32_t* byteAdvance(const uint32_t* ptr, int bytes) {  return reinterpret_cast<const uint32_t*>(reinterpret_cast<const char*>(ptr) + bytes); }


//fill block  with the given color
inline
void fillBlock(uint32_t* trg, int pitch, uint32_t col, int blockWidth, int blockHeight)
{
    //for (int y = 0; y < blockHeight; ++y, trg = byteAdvance(trg, pitch))
    //    std::fill(trg, trg + blockWidth, col);

    for (int y = 0; y < blockHeight; ++y, trg = byteAdvance(trg, pitch))
        for (int x = 0; x < blockWidth; ++x)
            trg[x] = col;
}

inline
void fillBlock(uint32_t* trg, int pitch, uint32_t col, int n) { fillBlock(trg, pitch, col, n, n); }


#ifdef _MSC_VER
#define FORCE_INLINE __forceinline
#elif defined __GNUC__
#define FORCE_INLINE __attribute__((always_inline)) inline
#else
#define FORCE_INLINE inline
#endif


enum RotationDegree //clock-wise
{
    ROT_0,
    ROT_90,
    ROT_180,
    ROT_270
};

//calculate input matrix coordinates after rotation at compile time
template <RotationDegree rotDeg, size_t I, size_t J, size_t N>
struct MatrixRotation;

template <size_t I, size_t J, size_t N>
struct MatrixRotation<ROT_0, I, J, N>
{
    static const size_t I_old = I;
    static const size_t J_old = J;
};

template <RotationDegree rotDeg, size_t I, size_t J, size_t N> //(i, j) = (row, col) indices, N = size of (square) matrix
struct MatrixRotation
{
    static const size_t I_old = N - 1 - MatrixRotation<static_cast<RotationDegree>(rotDeg - 1), I, J, N>::J_old; //old coordinates before rotation!
    static const size_t J_old =         MatrixRotation<static_cast<RotationDegree>(rotDeg - 1), I, J, N>::I_old; //
};


template <size_t N, RotationDegree rotDeg>
class OutputMatrix
{
public:
    OutputMatrix(uint32_t* out, int outWidth) : //access matrix area, top-left at position "out" for image with given width
        out_(out),
        outWidth_(outWidth) {}

    template <size_t I, size_t J>
    uint32_t& ref() const
    {
        static const size_t I_old = MatrixRotation<rotDeg, I, J, N>::I_old;
        static const size_t J_old = MatrixRotation<rotDeg, I, J, N>::J_old;
        return *(out_ + J_old + I_old * outWidth_);
    }

private:
    uint32_t* out_;
    const int outWidth_;
};


template <class T> inline
T square(T value) { return value * value; }


/*
inline
void rgbtoLuv(uint32_t c, double& L, double& u, double& v)
{
    //http://www.easyrgb.com/index.php?X=MATH&H=02#text2
    double r = getRed  (c) / 255.0;
    double g = getGreen(c) / 255.0;
    double b = getBlue (c) / 255.0;

    if ( r > 0.04045 )
        r = std::pow(( ( r + 0.055 ) / 1.055 ) , 2.4);
    else
        r /= 12.92;
    if ( g > 0.04045 )
        g = std::pow(( ( g + 0.055 ) / 1.055 ) , 2.4);
    else
        g /=  12.92;
    if ( b > 0.04045 )
        b  = std::pow(( ( b + 0.055 ) / 1.055 ) , 2.4);
    else
        b /=  12.92;

    r *= 100;
    g *= 100;
    b *= 100;

    double x = 0.4124564 * r + 0.3575761 * g + 0.1804375 * b;
    double y = 0.2126729 * r + 0.7151522 * g + 0.0721750 * b;
    double z = 0.0193339 * r + 0.1191920 * g + 0.9503041 * b;
    //---------------------
    double var_U =  4 * x  / ( x +  15 * y  +  3 * z  );
    double var_V =  9 * y  / ( x +  15 * y  +  3 * z  );
    double var_Y = y / 100;

    if ( var_Y > 0.008856 ) var_Y = std::pow(var_Y , 1.0/3 );
    else                    var_Y =  7.787 * var_Y  +  16.0 / 116;

    const double ref_X =  95.047;        //Observer= 2 degree, Illuminant= D65
    const double ref_Y = 100.000;
    const double ref_Z = 108.883;

    const double ref_U = ( 4 * ref_X ) / ( ref_X + ( 15 * ref_Y ) + ( 3 * ref_Z ) );
    const double ref_V = ( 9 * ref_Y ) / ( ref_X + ( 15 * ref_Y ) + ( 3 * ref_Z ) );

    L = ( 116 * var_Y ) - 16;
    u = 13 * L * ( var_U - ref_U );
    v = 13 * L * ( var_V - ref_V );
}
*/

inline
void rgbtoLab(uint32_t c, unsigned char& L, signed char& A, signed char& B)
{
    //code: http://www.easyrgb.com/index.php?X=MATH
    //test: http://www.workwithcolor.com/color-converter-01.htm
    //------RGB to XYZ------
    double r = getRed  (c) / 255.0;
    double g = getGreen(c) / 255.0;
    double b = getBlue (c) / 255.0;

    r = r > 0.04045 ? std::pow(( r + 0.055 ) / 1.055, 2.4) : r / 12.92;
    r = g > 0.04045 ? std::pow(( g + 0.055 ) / 1.055, 2.4) : g / 12.92;
    r = b > 0.04045 ? std::pow(( b + 0.055 ) / 1.055, 2.4) : b / 12.92;

    r *= 100;
    g *= 100;
    b *= 100;

    double x = 0.4124564 * r + 0.3575761 * g + 0.1804375 * b;
    double y = 0.2126729 * r + 0.7151522 * g + 0.0721750 * b;
    double z = 0.0193339 * r + 0.1191920 * g + 0.9503041 * b;
    //------XYZ to Lab------
    const double refX = 95.047;  //
    const double refY = 100.000; //Observer= 2 degree, Illuminant= D65
    const double refZ = 108.883; //
    double var_X = x / refX;
    double var_Y = y / refY;
    double var_Z = z / refZ;

    var_X = var_X > 0.008856 ? std::pow(var_X, 1.0 / 3) : 7.787 * var_X + 4.0 / 29;
    var_Y = var_Y > 0.008856 ? std::pow(var_Y, 1.0 / 3) : 7.787 * var_Y + 4.0 / 29;
    var_Z = var_Z > 0.008856 ? std::pow(var_Z, 1.0 / 3) : 7.787 * var_Z + 4.0 / 29;

    L = static_cast<unsigned char>(116 * var_Y  - 16);
    A = static_cast<  signed char>(500 * (var_X - var_Y));
    B = static_cast<  signed char>(200 * (var_Y - var_Z));
};


inline
double distLAB(uint32_t pix1, uint32_t pix2)
{
    unsigned char L1 = 0; //[0, 100]
    signed   char a1 = 0; //[-128, 127]
    signed   char b1 = 0; //[-128, 127]
    rgbtoLab(pix1, L1, a1, b1);

    unsigned char L2 = 0;
    signed   char a2 = 0;
    signed   char b2 = 0;
    rgbtoLab(pix2, L2, a2, b2);

    //-----------------------------
    //http://www.easyrgb.com/index.php?X=DELT

    //Delta E/CIE76
    return std::sqrt(square(1.0 * L1 - L2) +
                     square(1.0 * a1 - a2) +
                     square(1.0 * b1 - b2));
}


/*
inline
void rgbtoHsl(uint32_t c, double& h, double& s, double& l)
{
    //http://www.easyrgb.com/index.php?X=MATH&H=18#text18
    const int r = getRed  (c);
    const int g = getGreen(c);
    const int b = getBlue (c);

    const int varMin = numeric::min(r, g, b);
    const int varMax = numeric::max(r, g, b);
    const int delMax = varMax - varMin;

    l = (varMax + varMin) / 2.0 / 255.0;

    if (delMax == 0) //gray, no chroma...
    {
        h = 0;
        s = 0;
    }
    else
    {
        s = l < 0.5 ?
            delMax / (1.0 * varMax + varMin) :
            delMax / (2.0 * 255 - varMax - varMin);

        double delR = ((varMax - r) / 6.0 + delMax / 2.0) / delMax;
        double delG = ((varMax - g) / 6.0 + delMax / 2.0) / delMax;
        double delB = ((varMax - b) / 6.0 + delMax / 2.0) / delMax;

        if (r == varMax)
            h = delB - delG;
        else if (g == varMax)
            h = 1 / 3.0 + delR - delB;
        else if (b == varMax)
            h = 2 / 3.0 + delG - delR;

        if (h < 0)
            h += 1;
        if (h > 1)
            h -= 1;
    }
}

inline
double distHSL(uint32_t pix1, uint32_t pix2, double lightningWeight)
{
    double h1 = 0;
    double s1 = 0;
    double l1 = 0;
    rgbtoHsl(pix1, h1, s1, l1);
    double h2 = 0;
    double s2 = 0;
    double l2 = 0;
    rgbtoHsl(pix2, h2, s2, l2);

    //HSL is in cylindric coordinatates where L represents height, S radius, H angle,
    //however we interpret the cylinder as a bi-conic solid with top/bottom radius 0, middle radius 1
    assert(0 <= h1 && h1 <= 1);
    assert(0 <= h2 && h2 <= 1);

    double r1 = l1 < 0.5 ?
                l1 * 2 :
                2 - l1 * 2;

    double x1 = r1 * s1 * std::cos(h1 * 2 * numeric::pi);
    double y1 = r1 * s1 * std::sin(h1 * 2 * numeric::pi);
    double z1 = l1;

    double r2 = l2 < 0.5 ?
                l2 * 2 :
                2 - l2 * 2;

    double x2 = r2 * s2 * std::cos(h2 * 2 * numeric::pi);
    double y2 = r2 * s2 * std::sin(h2 * 2 * numeric::pi);
    double z2 = l2;

    return 255 * std::sqrt(square(x1 - x2) + square(y1 - y2) +  square(lightningWeight * (z1 - z2)));
}
*/


inline
double distRGB(uint32_t pix1, uint32_t pix2)
{
    const double r_diff = static_cast<int>(getRed  (pix1)) - getRed  (pix2);
    const double g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2);
    const double b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2);

    //euklidean RGB distance
    return std::sqrt(square(r_diff) + square(g_diff) + square(b_diff));
}


inline
double distNonLinearRGB(uint32_t pix1, uint32_t pix2)
{
    //non-linear rgb: http://www.compuphase.com/cmetric.htm
    const double r_diff = static_cast<int>(getRed  (pix1)) - getRed  (pix2);
    const double g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2);
    const double b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2);

    const double r_avg = (static_cast<double>(getRed(pix1)) + getRed(pix2)) / 2;
    return std::sqrt((2 + r_avg / 255) * square(r_diff) + 4 * square(g_diff) + (2 + (255 - r_avg) / 255) * square(b_diff));
}


inline
double distYCbCr(uint32_t pix1, uint32_t pix2, double lumaWeight)
{
    //http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion
    //YCbCr conversion is a matrix multiplication => take advantage of linearity by subtracting first!
    const int r_diff = static_cast<int>(getRed  (pix1)) - getRed  (pix2); //we may delay division by 255 to after matrix multiplication
    const int g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2); //
    const int b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2); //substraction for int is noticeable faster than for double!

    const double k_b = 0.0722; //ITU-R BT.709 conversion
    const double k_r = 0.2126; //
    const double k_g = 1 - k_b - k_r;

    const double scale_b = 0.5 / (1 - k_b);
    const double scale_r = 0.5 / (1 - k_r);

    const double y   = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr!
    const double c_b = scale_b * (b_diff - y);
    const double c_r = scale_r * (r_diff - y);

    //we skip division by 255 to have similar range like other distance functions
    return std::sqrt(square(lumaWeight * y) + square(c_b) +  square(c_r));
}


inline
double distYUV(uint32_t pix1, uint32_t pix2, double luminanceWeight)
{
    //perf: it's not worthwhile to buffer the YUV-conversion, the direct code is faster by ~ 6%
    //since RGB -> YUV conversion is essentially a matrix multiplication, we can calculate the RGB diff before the conversion (distributive property)
    const double r_diff = static_cast<int>(getRed  (pix1)) - getRed  (pix2);
    const double g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2);
    const double b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2);

    //http://en.wikipedia.org/wiki/YUV#Conversion_to.2Ffrom_RGB
    const double w_b = 0.114;
    const double w_r = 0.299;
    const double w_g = 1 - w_r - w_b;

    const double u_max = 0.436;
    const double v_max = 0.615;

    const double scale_u = u_max / (1 - w_b);
    const double scale_v = v_max / (1 - w_r);

    double y = w_r * r_diff + w_g * g_diff + w_b * b_diff;//value range: 255 * [-1, 1]
    double u = scale_u * (b_diff - y);					  //value range: 255 * 2 * u_max * [-1, 1]
    double v = scale_v * (r_diff - y);					  //value range: 255 * 2 * v_max * [-1, 1]

#ifndef NDEBUG
    const double eps = 0.5;
#endif
    assert(std::abs(y) <= 255 + eps);
    assert(std::abs(u) <= 255 * 2 * u_max + eps);
    assert(std::abs(v) <= 255 * 2 * v_max + eps);

    return std::sqrt(square(luminanceWeight * y) + square(u) +  square(v));
}


inline
double colorDist(uint32_t pix1, uint32_t pix2, double luminanceWeight)
{
    if (pix1 == pix2) //about 8% perf boost
        return 0;

    //return distHSL(pix1, pix2, luminanceWeight);
    //return distRGB(pix1, pix2);
    //return distLAB(pix1, pix2);
    //return distNonLinearRGB(pix1, pix2);
    //return distYUV(pix1, pix2, luminanceWeight);

    return distYCbCr(pix1, pix2, luminanceWeight);
}


enum BlendType
{
    BLEND_NONE = 0,
    BLEND_NORMAL,   //a normal indication to blend
    BLEND_DOMINANT, //a strong indication to blend
    //attention: BlendType must fit into the value range of 2 bit!!!
};

struct BlendResult
{
    BlendType
    /**/blend_f, blend_g,
    /**/blend_j, blend_k;
};


struct Kernel_4x4 //kernel for preprocessing step
{
    uint32_t
    /**/a, b, c, d,
    /**/e, f, g, h,
    /**/i, j, k, l,
    /**/m, n, o, p;
};

/*
input kernel area naming convention:
-----------------
| A | B | C | D |
----|---|---|---|
| E | F | G | H |   //evalute the four corners between F, G, J, K
----|---|---|---|   //input pixel is at position F
| I | J | K | L |
----|---|---|---|
| M | N | O | P |
-----------------
*/
FORCE_INLINE //detect blend direction
BlendResult preProcessCorners(const Kernel_4x4& ker, const xbrz_old::ScalerCfg& cfg) //result: F, G, J, K corners of "GradientType"
{
    BlendResult result = {};

    if ((ker.f == ker.g &&
         ker.j == ker.k) ||
        (ker.f == ker.j &&
         ker.g == ker.k))
        return result;

    auto dist = [&](uint32_t col1, uint32_t col2) { return colorDist(col1, col2, cfg.luminanceWeight_); };

    const int weight = 4;
    double jg = dist(ker.i, ker.f) + dist(ker.f, ker.c) + dist(ker.n, ker.k) + dist(ker.k, ker.h) + weight * dist(ker.j, ker.g);
    double fk = dist(ker.e, ker.j) + dist(ker.j, ker.o) + dist(ker.b, ker.g) + dist(ker.g, ker.l) + weight * dist(ker.f, ker.k);

    if (jg < fk) //test sample: 70% of values max(jg, fk) / min(jg, fk) are between 1.1 and 3.7 with median being 1.8
    {
        const bool dominantGradient = cfg.dominantDirectionThreshold * jg < fk;
        if (ker.f != ker.g && ker.f != ker.j)
            result.blend_f = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;

        if (ker.k != ker.j && ker.k != ker.g)
            result.blend_k = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
    }
    else if (fk < jg)
    {
        const bool dominantGradient = cfg.dominantDirectionThreshold * fk < jg;
        if (ker.j != ker.f && ker.j != ker.k)
            result.blend_j = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;

        if (ker.g != ker.f && ker.g != ker.k)
            result.blend_g = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
    }
    return result;
}

struct Kernel_3x3
{
    uint32_t
    /**/a,  b,  c,
    /**/d,  e,  f,
    /**/g,  h,  i;
};

#define DEF_GETTER(x) template <RotationDegree rotDeg> uint32_t inline get_##x(const Kernel_3x3& ker) { return ker.x; }
//we cannot and NEED NOT write "ker.##x" since ## concatenates preprocessor tokens but "." is not a token
DEF_GETTER(a) DEF_GETTER(b) DEF_GETTER(c)
DEF_GETTER(d) DEF_GETTER(e) DEF_GETTER(f)
DEF_GETTER(g) DEF_GETTER(h) DEF_GETTER(i)
#undef DEF_GETTER

#define DEF_GETTER(x, y) template <> inline uint32_t get_##x<ROT_90>(const Kernel_3x3& ker) { return ker.y; }
DEF_GETTER(a, g) DEF_GETTER(b, d) DEF_GETTER(c, a)
DEF_GETTER(d, h) DEF_GETTER(e, e) DEF_GETTER(f, b)
DEF_GETTER(g, i) DEF_GETTER(h, f) DEF_GETTER(i, c)
#undef DEF_GETTER

#define DEF_GETTER(x, y) template <> inline uint32_t get_##x<ROT_180>(const Kernel_3x3& ker) { return ker.y; }
DEF_GETTER(a, i) DEF_GETTER(b, h) DEF_GETTER(c, g)
DEF_GETTER(d, f) DEF_GETTER(e, e) DEF_GETTER(f, d)
DEF_GETTER(g, c) DEF_GETTER(h, b) DEF_GETTER(i, a)
#undef DEF_GETTER

#define DEF_GETTER(x, y) template <> inline uint32_t get_##x<ROT_270>(const Kernel_3x3& ker) { return ker.y; }
DEF_GETTER(a, c) DEF_GETTER(b, f) DEF_GETTER(c, i)
DEF_GETTER(d, b) DEF_GETTER(e, e) DEF_GETTER(f, h)
DEF_GETTER(g, a) DEF_GETTER(h, d) DEF_GETTER(i,	g)
#undef DEF_GETTER


//compress four blend types into a single byte
inline BlendType getTopL   (unsigned char b) { return static_cast<BlendType>(0x3 & b); }
inline BlendType getTopR   (unsigned char b) { return static_cast<BlendType>(0x3 & (b >> 2)); }
inline BlendType getBottomR(unsigned char b) { return static_cast<BlendType>(0x3 & (b >> 4)); }
inline BlendType getBottomL(unsigned char b) { return static_cast<BlendType>(0x3 & (b >> 6)); }

inline void setTopL   (unsigned char& b, BlendType bt) { b |= bt; } //buffer is assumed to be initialized before preprocessing!
inline void setTopR   (unsigned char& b, BlendType bt) { b |= (bt << 2); }
inline void setBottomR(unsigned char& b, BlendType bt) { b |= (bt << 4); }
inline void setBottomL(unsigned char& b, BlendType bt) { b |= (bt << 6); }

inline bool blendingNeeded(unsigned char b) { return b != 0; }

template <RotationDegree rotDeg> inline
unsigned char rotateBlendInfo(unsigned char b) { return b; }
template <> inline unsigned char rotateBlendInfo<ROT_90 >(unsigned char b) { return ((b << 2) | (b >> 6)) & 0xff; }
template <> inline unsigned char rotateBlendInfo<ROT_180>(unsigned char b) { return ((b << 4) | (b >> 4)) & 0xff; }
template <> inline unsigned char rotateBlendInfo<ROT_270>(unsigned char b) { return ((b << 6) | (b >> 2)) & 0xff; }


#ifndef NDEBUG
int debugPixelX = -1;
int debugPixelY = 84;
bool breakIntoDebugger = false;
#endif


/*
input kernel area naming convention:
-------------
| A | B | C |
----|---|---|
| D | E | F | //input pixel is at position E
----|---|---|
| G | H | I |
-------------
*/
template <class Scaler, RotationDegree rotDeg>
FORCE_INLINE //perf: quite worth it!
void scalePixel(const Kernel_3x3& ker,
                uint32_t* target, int trgWidth,
                unsigned char blendInfo, //result of preprocessing all four corners of pixel "e"
                const xbrz_old::ScalerCfg& cfg)
{
#define a get_a<rotDeg>(ker)
#define b get_b<rotDeg>(ker)
#define c get_c<rotDeg>(ker)
#define d get_d<rotDeg>(ker)
#define e get_e<rotDeg>(ker)
#define f get_f<rotDeg>(ker)
#define g get_g<rotDeg>(ker)
#define h get_h<rotDeg>(ker)
#define i get_i<rotDeg>(ker)

#if 0 //#ifndef NDEBUG
    if (breakIntoDebugger)
        __debugbreak(); //__asm int 3;
#endif

    const unsigned char blend = rotateBlendInfo<rotDeg>(blendInfo);

    if (getBottomR(blend) >= BLEND_NORMAL)
    {
        auto eq   = [&](uint32_t col1, uint32_t col2) { return colorDist(col1, col2, cfg.luminanceWeight_) < cfg.equalColorTolerance_; };
        auto dist = [&](uint32_t col1, uint32_t col2) { return colorDist(col1, col2, cfg.luminanceWeight_); };

        const bool doLineBlend = [&]() -> bool
        {
            if (getBottomR(blend) >= BLEND_DOMINANT)
                return true;

            //make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes
            if (getTopR(blend) != BLEND_NONE && !eq(e, g)) //but support double-blending for 90 degree corners
                return false;
            if (getBottomL(blend) != BLEND_NONE && !eq(e, c))
                return false;

            //no full blending for L-shapes; blend corner only (handles "mario mushroom eyes")
            if (eq(g, h) &&  eq(h , i) && eq(i, f) && eq(f, c) && !eq(e, i))
                return false;

            return true;
        }();

        const uint32_t px = dist(e, f) <= dist(e, h) ? f : h; //choose most similar color

        OutputMatrix<Scaler::scale, rotDeg> out(target, trgWidth);

        if (doLineBlend)
        {
            const double fg = dist(f, g); //test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9
            const double hc = dist(h, c); //

            const bool haveShallowLine = cfg.steepDirectionThreshold * fg <= hc && e != g && d != g;
            const bool haveSteepLine   = cfg.steepDirectionThreshold * hc <= fg && e != c && b != c;

            if (haveShallowLine)
            {
                if (haveSteepLine)
                    Scaler::blendLineSteepAndShallow(px, out);
                else
                    Scaler::blendLineShallow(px, out);
            }
            else
            {
                if (haveSteepLine)
                    Scaler::blendLineSteep(px, out);
                else
                    Scaler::blendLineDiagonal(px,out);
            }
        }
        else
            Scaler::blendCorner(px, out);
    }

#undef a
#undef b
#undef c
#undef d
#undef e
#undef f
#undef g
#undef h
#undef i
}


template <class Scaler> //scaler policy: see "Scaler2x" reference implementation
void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, const xbrz_old::ScalerCfg& cfg, int yFirst, int yLast)
{
    yFirst = std::max(yFirst, 0);
    yLast  = std::min(yLast, srcHeight);
    if (yFirst >= yLast || srcWidth <= 0)
        return;

    const int trgWidth = srcWidth * Scaler::scale;

    //"use" space at the end of the image as temporary buffer for "on the fly preprocessing": we even could use larger area of
    //"sizeof(uint32_t) * srcWidth * (yLast - yFirst)" bytes without risk of accidental overwriting before accessing
    const int bufferSize = srcWidth;
    unsigned char* preProcBuffer = reinterpret_cast<unsigned char*>(trg + yLast * Scaler::scale * trgWidth) - bufferSize;
    std::fill(preProcBuffer, preProcBuffer + bufferSize, 0);
    static_assert(BLEND_NONE == 0, "");

    //initialize preprocessing buffer for first row: detect upper left and right corner blending
    //this cannot be optimized for adjacent processing stripes; we must not allow for a memory race condition!
    if (yFirst > 0)
    {
        const int y = yFirst - 1;

        const uint32_t* s_m1 = src + srcWidth * std::max(y - 1, 0);
        const uint32_t* s_0  = src + srcWidth * y; //center line
        const uint32_t* s_p1 = src + srcWidth * std::min(y + 1, srcHeight - 1);
        const uint32_t* s_p2 = src + srcWidth * std::min(y + 2, srcHeight - 1);

        for (int x = 0; x < srcWidth; ++x)
        {
            const int x_m1 = std::max(x - 1, 0);
            const int x_p1 = std::min(x + 1, srcWidth - 1);
            const int x_p2 = std::min(x + 2, srcWidth - 1);

            Kernel_4x4 ker = {}; //perf: initialization is negligable
            ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible
            ker.b = s_m1[x];
            ker.c = s_m1[x_p1];
            ker.d = s_m1[x_p2];

            ker.e = s_0[x_m1];
            ker.f = s_0[x];
            ker.g = s_0[x_p1];
            ker.h = s_0[x_p2];

            ker.i = s_p1[x_m1];
            ker.j = s_p1[x];
            ker.k = s_p1[x_p1];
            ker.l = s_p1[x_p2];

            ker.m = s_p2[x_m1];
            ker.n = s_p2[x];
            ker.o = s_p2[x_p1];
            ker.p = s_p2[x_p2];

            const BlendResult res = preProcessCorners(ker, cfg);
            /*
            preprocessing blend result:
            ---------
            | F | G |   //evalute corner between F, G, J, K
            ----|---|   //input pixel is at position F
            | J | K |
            ---------
            */
            setTopR(preProcBuffer[x], res.blend_j);

            if (x + 1 < srcWidth)
                setTopL(preProcBuffer[x + 1], res.blend_k);
        }
    }
    //------------------------------------------------------------------------------------

    for (int y = yFirst; y < yLast; ++y)
    {
        uint32_t* out = trg + Scaler::scale * y * trgWidth; //consider MT "striped" access

        const uint32_t* s_m1 = src + srcWidth * std::max(y - 1, 0);
        const uint32_t* s_0  = src + srcWidth * y; //center line
        const uint32_t* s_p1 = src + srcWidth * std::min(y + 1, srcHeight - 1);
        const uint32_t* s_p2 = src + srcWidth * std::min(y + 2, srcHeight - 1);

        unsigned char blend_xy1 = 0; //corner blending for current (x, y + 1) position

        for (int x = 0; x < srcWidth; ++x, out += Scaler::scale)
        {
#ifndef NDEBUG
            breakIntoDebugger = debugPixelX == x && debugPixelY == y;
#endif
            //all those bounds checks have only insignificant impact on performance!
            const int x_m1 = std::max(x - 1, 0); //perf: prefer array indexing to additional pointers!
            const int x_p1 = std::min(x + 1, srcWidth - 1);
            const int x_p2 = std::min(x + 2, srcWidth - 1);

            //evaluate the four corners on bottom-right of current pixel
            unsigned char blend_xy = 0; //for current (x, y) position
            {
                Kernel_4x4 ker = {}; //perf: initialization is negligable
                ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible
                ker.b = s_m1[x];
                ker.c = s_m1[x_p1];
                ker.d = s_m1[x_p2];

                ker.e = s_0[x_m1];
                ker.f = s_0[x];
                ker.g = s_0[x_p1];
                ker.h = s_0[x_p2];

                ker.i = s_p1[x_m1];
                ker.j = s_p1[x];
                ker.k = s_p1[x_p1];
                ker.l = s_p1[x_p2];

                ker.m = s_p2[x_m1];
                ker.n = s_p2[x];
                ker.o = s_p2[x_p1];
                ker.p = s_p2[x_p2];

                const BlendResult res = preProcessCorners(ker, cfg);
                /*
                preprocessing blend result:
                ---------
                | F | G |   //evalute corner between F, G, J, K
                ----|---|   //current input pixel is at position F
                | J | K |
                ---------
                */
                blend_xy = preProcBuffer[x];
                setBottomR(blend_xy, res.blend_f); //all four corners of (x, y) have been determined at this point due to processing sequence!

                setTopR(blend_xy1, res.blend_j); //set 2nd known corner for (x, y + 1)
                preProcBuffer[x] = blend_xy1; //store on current buffer position for use on next row

                blend_xy1 = 0;
                setTopL(blend_xy1, res.blend_k); //set 1st known corner for (x + 1, y + 1) and buffer for use on next column

                if (x + 1 < srcWidth) //set 3rd known corner for (x + 1, y)
                    setBottomL(preProcBuffer[x + 1], res.blend_g);
            }

            //fill block of size scale * scale with the given color
            fillBlock(out, trgWidth * sizeof(uint32_t), s_0[x], Scaler::scale); //place *after* preprocessing step, to not overwrite the results while processing the the last pixel!

            //blend four corners of current pixel
            if (blendingNeeded(blend_xy)) //good 20% perf-improvement
            {
                Kernel_3x3 ker = {}; //perf: initialization is negligable

                ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible
                ker.b = s_m1[x];
                ker.c = s_m1[x_p1];

                ker.d = s_0[x_m1];
                ker.e = s_0[x];
                ker.f = s_0[x_p1];

                ker.g = s_p1[x_m1];
                ker.h = s_p1[x];
                ker.i = s_p1[x_p1];

                scalePixel<Scaler, ROT_0  >(ker, out, trgWidth, blend_xy, cfg);
                scalePixel<Scaler, ROT_90 >(ker, out, trgWidth, blend_xy, cfg);
                scalePixel<Scaler, ROT_180>(ker, out, trgWidth, blend_xy, cfg);
                scalePixel<Scaler, ROT_270>(ker, out, trgWidth, blend_xy, cfg);
            }
        }
    }
}


struct Scaler2x
{
    static const int scale = 2;

    template <class OutputMatrix>
    static void blendLineShallow(uint32_t col, OutputMatrix& out)
    {
        alphaBlend<1, 4>(out.template ref<scale - 1, 0>(), col);
        alphaBlend<3, 4>(out.template ref<scale - 1, 1>(), col);
    }

    template <class OutputMatrix>
    static void blendLineSteep(uint32_t col, OutputMatrix& out)
    {
        alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col);
        alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col);
    }

    template <class OutputMatrix>
    static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
    {
        alphaBlend<1, 4>(out.template ref<1, 0>(), col);
        alphaBlend<1, 4>(out.template ref<0, 1>(), col);
        alphaBlend<5, 6>(out.template ref<1, 1>(), col); //[!] fixes 7/8 used in xBR
    }

    template <class OutputMatrix>
    static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
    {
        alphaBlend<1, 2>(out.template ref<1, 1>(), col);
    }

    template <class OutputMatrix>
    static void blendCorner(uint32_t col, OutputMatrix& out)
    {
        //model a round corner
        alphaBlend<21, 100>(out.template ref<1, 1>(), col); //exact: 1 - pi/4 = 0.2146018366
    }
};


struct Scaler3x
{
    static const int scale = 3;

    template <class OutputMatrix>
    static void blendLineShallow(uint32_t col, OutputMatrix& out)
    {
        alphaBlend<1, 4>(out.template ref<scale - 1, 0>(), col);
        alphaBlend<1, 4>(out.template ref<scale - 2, 2>(), col);

        alphaBlend<3, 4>(out.template ref<scale - 1, 1>(), col);
        out.template ref<scale - 1, 2>() = col;
    }

    template <class OutputMatrix>
    static void blendLineSteep(uint32_t col, OutputMatrix& out)
    {
        alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col);
        alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col);

        alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col);
        out.template ref<2, scale - 1>() = col;
    }

    template <class OutputMatrix>
    static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
    {
        alphaBlend<1, 4>(out.template ref<2, 0>(), col);
        alphaBlend<1, 4>(out.template ref<0, 2>(), col);
        alphaBlend<3, 4>(out.template ref<2, 1>(), col);
        alphaBlend<3, 4>(out.template ref<1, 2>(), col);
        out.template ref<2, 2>() = col;
    }

    template <class OutputMatrix>
    static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
    {
        alphaBlend<1, 8>(out.template ref<1, 2>(), col);
        alphaBlend<1, 8>(out.template ref<2, 1>(), col);
        alphaBlend<7, 8>(out.template ref<2, 2>(), col);
    }

    template <class OutputMatrix>
    static void blendCorner(uint32_t col, OutputMatrix& out)
    {
        //model a round corner
        alphaBlend<45, 100>(out.template ref<2, 2>(), col); //exact: 0.4545939598
        //alphaBlend<14, 1000>(out.template ref<2, 1>(), col); //0.01413008627 -> negligable
        //alphaBlend<14, 1000>(out.template ref<1, 2>(), col); //0.01413008627
    }
};


struct Scaler4x
{
    static const int scale = 4;

    template <class OutputMatrix>
    static void blendLineShallow(uint32_t col, OutputMatrix& out)
    {
        alphaBlend<1, 4>(out.template ref<scale - 1, 0>(), col);
        alphaBlend<1, 4>(out.template ref<scale - 2, 2>(), col);

        alphaBlend<3, 4>(out.template ref<scale - 1, 1>(), col);
        alphaBlend<3, 4>(out.template ref<scale - 2, 3>(), col);

        out.template ref<scale - 1, 2>() = col;
        out.template ref<scale - 1, 3>() = col;
    }

    template <class OutputMatrix>
    static void blendLineSteep(uint32_t col, OutputMatrix& out)
    {
        alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col);
        alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col);

        alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col);
        alphaBlend<3, 4>(out.template ref<3, scale - 2>(), col);

        out.template ref<2, scale - 1>() = col;
        out.template ref<3, scale - 1>() = col;
    }

    template <class OutputMatrix>
    static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
    {
        alphaBlend<3, 4>(out.template ref<3, 1>(), col);
        alphaBlend<3, 4>(out.template ref<1, 3>(), col);
        alphaBlend<1, 4>(out.template ref<3, 0>(), col);
        alphaBlend<1, 4>(out.template ref<0, 3>(), col);
        alphaBlend<1, 3>(out.template ref<2, 2>(), col); //[!] fixes 1/4 used in xBR
        out.template ref<3, 3>() = out.template ref<3, 2>() = out.template ref<2, 3>() = col;
    }

    template <class OutputMatrix>
    static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
    {
        alphaBlend<1, 2>(out.template ref<scale - 1, scale / 2    >(), col);
        alphaBlend<1, 2>(out.template ref<scale - 2, scale / 2 + 1>(), col);
        out.template ref<scale - 1, scale - 1>() = col;
    }

    template <class OutputMatrix>
    static void blendCorner(uint32_t col, OutputMatrix& out)
    {
        //model a round corner
        alphaBlend<68, 100>(out.template ref<3, 3>(), col); //exact: 0.6848532563
        alphaBlend< 9, 100>(out.template ref<3, 2>(), col); //0.08677704501
        alphaBlend< 9, 100>(out.template ref<2, 3>(), col); //0.08677704501
    }
};


struct Scaler5x
{
    static const int scale = 5;

    template <class OutputMatrix>
    static void blendLineShallow(uint32_t col, OutputMatrix& out)
    {
        alphaBlend<1, 4>(out.template ref<scale - 1, 0>(), col);
        alphaBlend<1, 4>(out.template ref<scale - 2, 2>(), col);
        alphaBlend<1, 4>(out.template ref<scale - 3, 4>(), col);

        alphaBlend<3, 4>(out.template ref<scale - 1, 1>(), col);
        alphaBlend<3, 4>(out.template ref<scale - 2, 3>(), col);

        out.template ref<scale - 1, 2>() = col;
        out.template ref<scale - 1, 3>() = col;
        out.template ref<scale - 1, 4>() = col;
        out.template ref<scale - 2, 4>() = col;
    }

    template <class OutputMatrix>
    static void blendLineSteep(uint32_t col, OutputMatrix& out)
    {
        alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col);
        alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col);
        alphaBlend<1, 4>(out.template ref<4, scale - 3>(), col);

        alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col);
        alphaBlend<3, 4>(out.template ref<3, scale - 2>(), col);

        out.template ref<2, scale - 1>() = col;
        out.template ref<3, scale - 1>() = col;
        out.template ref<4, scale - 1>() = col;
        out.template ref<4, scale - 2>() = col;
    }

    template <class OutputMatrix>
    static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
    {
        alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col);
        alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col);
        alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col);

        alphaBlend<1, 4>(out.template ref<scale - 1, 0>(), col);
        alphaBlend<1, 4>(out.template ref<scale - 2, 2>(), col);
        alphaBlend<3, 4>(out.template ref<scale - 1, 1>(), col);

        out.template ref<2, scale - 1>() = col;
        out.template ref<3, scale - 1>() = col;

        out.template ref<scale - 1, 2>() = col;
        out.template ref<scale - 1, 3>() = col;

        out.template ref<4, scale - 1>() = col;

        alphaBlend<2, 3>(out.template ref<3, 3>(), col);
    }

    template <class OutputMatrix>
    static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
    {
        alphaBlend<1, 8>(out.template ref<scale - 1, scale / 2    >(), col);
        alphaBlend<1, 8>(out.template ref<scale - 2, scale / 2 + 1>(), col);
        alphaBlend<1, 8>(out.template ref<scale - 3, scale / 2 + 2>(), col);

        alphaBlend<7, 8>(out.template ref<4, 3>(), col);
        alphaBlend<7, 8>(out.template ref<3, 4>(), col);

        out.template ref<4, 4>() = col;
    }

    template <class OutputMatrix>
    static void blendCorner(uint32_t col, OutputMatrix& out)
    {
        //model a round corner
        alphaBlend<86, 100>(out.template ref<4, 4>(), col); //exact: 0.8631434088
        alphaBlend<23, 100>(out.template ref<4, 3>(), col); //0.2306749731
        alphaBlend<23, 100>(out.template ref<3, 4>(), col); //0.2306749731
        //alphaBlend<8, 1000>(out.template ref<4, 2>(), col); //0.008384061834 -> negligable
        //alphaBlend<8, 1000>(out.template ref<2, 4>(), col); //0.008384061834
    }
};
}


struct Scaler6x
{
    static const int scale = 6;

    template <class OutputMatrix>
    static void blendLineShallow(uint32_t col, OutputMatrix& out)
    {
        alphaBlend<1, 4>(out.template ref<scale - 1, 0>(), col);
        alphaBlend<1, 4>(out.template ref<scale - 2, 2>(), col);
        alphaBlend<1, 4>(out.template ref<scale - 3, 4>(), col);

        alphaBlend<3, 4>(out.template ref<scale - 1, 1>(), col);
        alphaBlend<3, 4>(out.template ref<scale - 2, 3>(), col);
        alphaBlend<3, 4>(out.template ref<scale - 3, 5>(), col);

        out.template ref<scale - 1, 2>() = col;
        out.template ref<scale - 1, 3>() = col;
        out.template ref<scale - 1, 4>() = col;
        out.template ref<scale - 1, 5>() = col;

        out.template ref<scale - 2, 4>() = col;
        out.template ref<scale - 2, 5>() = col;
    }

    template <class OutputMatrix>
    static void blendLineSteep(uint32_t col, OutputMatrix& out)
    {
        alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col);
        alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col);
        alphaBlend<1, 4>(out.template ref<4, scale - 3>(), col);

        alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col);
        alphaBlend<3, 4>(out.template ref<3, scale - 2>(), col);
        alphaBlend<3, 4>(out.template ref<5, scale - 3>(), col);

        out.template ref<2, scale - 1>() = col;
        out.template ref<3, scale - 1>() = col;
        out.template ref<4, scale - 1>() = col;
        out.template ref<5, scale - 1>() = col;

        out.template ref<4, scale - 2>() = col;
        out.template ref<5, scale - 2>() = col;
    }

    template <class OutputMatrix>
    static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
    {
        alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col);
        alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col);
        alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col);
        alphaBlend<3, 4>(out.template ref<3, scale - 2>(), col);

        alphaBlend<1, 4>(out.template ref<scale - 1, 0>(), col);
        alphaBlend<1, 4>(out.template ref<scale - 2, 2>(), col);
        alphaBlend<3, 4>(out.template ref<scale - 1, 1>(), col);
        alphaBlend<3, 4>(out.template ref<scale - 2, 3>(), col);

        out.template ref<2, scale - 1>() = col;
        out.template ref<3, scale - 1>() = col;
        out.template ref<4, scale - 1>() = col;
        out.template ref<5, scale - 1>() = col;

        out.template ref<4, scale - 2>() = col;
        out.template ref<5, scale - 2>() = col;

        out.template ref<scale - 1, 2>() = col;
        out.template ref<scale - 1, 3>() = col;
    }

    template <class OutputMatrix>
    static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
    {
        alphaBlend<1, 2>(out.template ref<scale - 1, scale / 2    >(), col);
        alphaBlend<1, 2>(out.template ref<scale - 2, scale / 2 + 1>(), col);
        alphaBlend<1, 2>(out.template ref<scale - 3, scale / 2 + 2>(), col);

        out.template ref<scale - 2, scale - 1>() = col;
        out.template ref<scale - 1, scale - 1>() = col;
        out.template ref<scale - 1, scale - 2>() = col;
    }

    template <class OutputMatrix>
    static void blendCorner(uint32_t col, OutputMatrix& out)
    {
        //model a round corner
        alphaBlend<97, 100>(out.template ref<5, 5>(), col); //exact: 0.9711013910
        alphaBlend<42, 100>(out.template ref<4, 5>(), col); //0.4236372243
        alphaBlend<42, 100>(out.template ref<5, 4>(), col); //0.4236372243
        alphaBlend< 6, 100>(out.template ref<5, 3>(), col); //0.05652034508
        alphaBlend< 6, 100>(out.template ref<3, 5>(), col); //0.05652034508
    }
};


void xbrz_old::scale(size_t factor, const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, const xbrz_old::ScalerCfg& cfg, int yFirst, int yLast)
{
    switch (factor)
    {
        case 2:
            return scaleImage<Scaler2x>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
        case 3:
            return scaleImage<Scaler3x>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
        case 4:
            return scaleImage<Scaler4x>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
        case 5:
            return scaleImage<Scaler5x>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
        case 6:
            return scaleImage<Scaler6x>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
    }
    assert(false);
}


bool xbrz_old::equalColor(uint32_t col1, uint32_t col2, double luminanceWeight, double equalColorTolerance)
{
    return colorDist(col1, col2, luminanceWeight) < equalColorTolerance;
}


void xbrz_old::nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight, int srcPitch,
                                    uint32_t* trg, int trgWidth, int trgHeight, int trgPitch,
                                    SliceType st, int yFirst, int yLast)
{
    if (srcPitch < srcWidth * static_cast<int>(sizeof(uint32_t))  ||
        trgPitch < trgWidth * static_cast<int>(sizeof(uint32_t)))
    {
        assert(false);
        return;
    }

    switch (st)
    {
        case NN_SCALE_SLICE_SOURCE:
            //nearest-neighbor (going over source image - fast for upscaling, since source is read only once
            yFirst = std::max(yFirst, 0);
            yLast  = std::min(yLast, srcHeight);
            if (yFirst >= yLast || trgWidth <= 0 || trgHeight <= 0) return;

            for (int y = yFirst; y < yLast; ++y)
            {
                //mathematically: ySrc = floor(srcHeight * yTrg / trgHeight)
                // => search for integers in: [ySrc, ySrc + 1) * trgHeight / srcHeight

                //keep within for loop to support MT input slices!
                const int yTrg_first = ( y      * trgHeight + srcHeight - 1) / srcHeight; //=ceil(y * trgHeight / srcHeight)
                const int yTrg_last  = ((y + 1) * trgHeight + srcHeight - 1) / srcHeight; //=ceil(((y + 1) * trgHeight) / srcHeight)
                const int blockHeight = yTrg_last - yTrg_first;

                if (blockHeight > 0)
                {
                    const uint32_t* srcLine = byteAdvance(src, y * srcPitch);
                    uint32_t* trgLine  = byteAdvance(trg, yTrg_first * trgPitch);
                    int xTrg_first = 0;

                    for (int x = 0; x < srcWidth; ++x)
                    {
                        int xTrg_last = ((x + 1) * trgWidth + srcWidth - 1) / srcWidth;
                        const int blockWidth = xTrg_last - xTrg_first;
                        if (blockWidth > 0)
                        {
                            xTrg_first = xTrg_last;
                            fillBlock(trgLine, trgPitch, srcLine[x], blockWidth, blockHeight);
                            trgLine += blockWidth;
                        }
                    }
                }
            }
            break;

        case NN_SCALE_SLICE_TARGET:
            //nearest-neighbor (going over target image - slow for upscaling, since source is read multiple times missing out on cache! Fast for similar image sizes!)
            yFirst = std::max(yFirst, 0);
            yLast  = std::min(yLast, trgHeight);
            if (yFirst >= yLast || srcHeight <= 0 || srcWidth <= 0) return;

            for (int y = yFirst; y < yLast; ++y)
            {
                uint32_t* trgLine = byteAdvance(trg, y * trgPitch);
                const int ySrc = srcHeight * y / trgHeight;
                const uint32_t* srcLine = byteAdvance(src, ySrc * srcPitch);
                for (int x = 0; x < trgWidth; ++x)
                {
                    const int xSrc = srcWidth * x / trgWidth;
                    trgLine[x] = srcLine[xSrc];
                }
            }
            break;
    }
}