// Matrix class based on code from VSML: /** ---------------------------------------------------------- * \class VSMathLib * * Lighthouse3D * * VSMathLib - Very Simple Matrix Library * * Full documentation at * http://www.lighthouse3d.com/very-simple-libs * * This class aims at easing geometric transforms, camera * placement and projection definition for programmers * working with OpenGL core versions. * * ---------------------------------------------------------------*/ #ifndef __VSMatrix__ #define __VSMatrix__ #include <stdlib.h> #include "vectors.h" #ifdef USE_DOUBLE typedef double FLOATTYPE; #else typedef float FLOATTYPE; #endif class VSMatrix { public: VSMatrix() { } VSMatrix(int) { loadIdentity(); } void translate(FLOATTYPE x, FLOATTYPE y, FLOATTYPE z); void scale(FLOATTYPE x, FLOATTYPE y, FLOATTYPE z); void rotate(FLOATTYPE angle, FLOATTYPE x, FLOATTYPE y, FLOATTYPE z); void loadIdentity(); #ifdef USE_DOUBLE void multMatrix(const float *aMatrix); #endif void multVector(FLOATTYPE *aVector); void multMatrix(const FLOATTYPE *aMatrix); void multMatrix(const VSMatrix &aMatrix) { multMatrix(aMatrix.mMatrix); } void loadMatrix(const FLOATTYPE *aMatrix); #ifdef USE_DOUBLE void loadMatrix(const float *aMatrix); #endif void lookAt(FLOATTYPE xPos, FLOATTYPE yPos, FLOATTYPE zPos, FLOATTYPE xLook, FLOATTYPE yLook, FLOATTYPE zLook, FLOATTYPE xUp, FLOATTYPE yUp, FLOATTYPE zUp); void perspective(FLOATTYPE fov, FLOATTYPE ratio, FLOATTYPE nearp, FLOATTYPE farp); void ortho(FLOATTYPE left, FLOATTYPE right, FLOATTYPE bottom, FLOATTYPE top, FLOATTYPE nearp=-1.0f, FLOATTYPE farp=1.0f); void frustum(FLOATTYPE left, FLOATTYPE right, FLOATTYPE bottom, FLOATTYPE top, FLOATTYPE nearp, FLOATTYPE farp); void copy(FLOATTYPE * pDest) { memcpy(pDest, mMatrix, 16 * sizeof(FLOATTYPE)); } #ifdef USE_DOUBLE void copy(float * pDest) { for (int i = 0; i < 16; i++) { pDest[i] = (float)mMatrix[i]; } } #endif const FLOATTYPE *get() const { return mMatrix; } void multMatrixPoint(const FLOATTYPE *point, FLOATTYPE *res); #ifdef USE_DOUBLE void computeNormalMatrix(const float *aMatrix); #endif void computeNormalMatrix(const FLOATTYPE *aMatrix); void computeNormalMatrix(const VSMatrix &aMatrix) { computeNormalMatrix(aMatrix.mMatrix); } bool inverseMatrix(VSMatrix &result); void transpose(); protected: static void crossProduct(const FLOATTYPE *a, const FLOATTYPE *b, FLOATTYPE *res); static FLOATTYPE dotProduct(const FLOATTYPE *a, const FLOATTYPE * b); static void normalize(FLOATTYPE *a); static void subtract(const FLOATTYPE *a, const FLOATTYPE *b, FLOATTYPE *res); static void add(const FLOATTYPE *a, const FLOATTYPE *b, FLOATTYPE *res); static FLOATTYPE length(const FLOATTYPE *a); static void multMatrix(FLOATTYPE *resMatrix, const FLOATTYPE *aMatrix); static void setIdentityMatrix(FLOATTYPE *mat, int size = 4); /// The storage for matrices FLOATTYPE mMatrix[16]; }; class Matrix3x4 // used like a 4x4 matrix with the last row always being (0,0,0,1) { float m[3][4]; public: void MakeIdentity() { memset(m, 0, sizeof(m)); m[0][0] = m[1][1] = m[2][2] = 1.f; } void Translate(float x, float y, float z) { m[0][3] = m[0][0]*x + m[0][1]*y + m[0][2]*z + m[0][3]; m[1][3] = m[1][0]*x + m[1][1]*y + m[1][2]*z + m[1][3]; m[2][3] = m[2][0]*x + m[2][1]*y + m[2][2]*z + m[2][3]; } void Scale(float x, float y, float z) { m[0][0] *=x; m[1][0] *=x; m[2][0] *=x; m[0][1] *=y; m[1][1] *=y; m[2][1] *=y; m[0][2] *=z; m[1][2] *=z; m[2][2] *=z; } void Rotate(float ax, float ay, float az, float angle) { Matrix3x4 m1; FVector3 axis(ax, ay, az); axis.MakeUnit(); double c = cos(angle * pi::pi()/180.), s = sin(angle * pi::pi()/180.), t = 1 - c; double sx = s*axis.X, sy = s*axis.Y, sz = s*axis.Z; double tx, ty, txx, tyy, u, v; tx = t*axis.X; m1.m[0][0] = float( (txx=tx*axis.X) + c ); m1.m[0][1] = float( (u=tx*axis.Y) - sz); m1.m[0][2] = float( (v=tx*axis.Z) + sy); ty = t*axis.Y; m1.m[1][0] = float( u + sz); m1.m[1][1] = float( (tyy=ty*axis.Y) + c ); m1.m[1][2] = float( (u=ty*axis.Z) - sx); m1.m[2][0] = float( v - sy); m1.m[2][1] = float( u + sx); m1.m[2][2] = float( (t-txx-tyy) + c ); m1.m[0][3] = 0.f; m1.m[1][3] = 0.f; m1.m[2][3] = 0.f; *this = (*this) * m1; } Matrix3x4 operator *(const Matrix3x4 &other) { Matrix3x4 result; result.m[0][0] = m[0][0]*other.m[0][0] + m[0][1]*other.m[1][0] + m[0][2]*other.m[2][0]; result.m[0][1] = m[0][0]*other.m[0][1] + m[0][1]*other.m[1][1] + m[0][2]*other.m[2][1]; result.m[0][2] = m[0][0]*other.m[0][2] + m[0][1]*other.m[1][2] + m[0][2]*other.m[2][2]; result.m[0][3] = m[0][0]*other.m[0][3] + m[0][1]*other.m[1][3] + m[0][2]*other.m[2][3] + m[0][3]; result.m[1][0] = m[1][0]*other.m[0][0] + m[1][1]*other.m[1][0] + m[1][2]*other.m[2][0]; result.m[1][1] = m[1][0]*other.m[0][1] + m[1][1]*other.m[1][1] + m[1][2]*other.m[2][1]; result.m[1][2] = m[1][0]*other.m[0][2] + m[1][1]*other.m[1][2] + m[1][2]*other.m[2][2]; result.m[1][3] = m[1][0]*other.m[0][3] + m[1][1]*other.m[1][3] + m[1][2]*other.m[2][3] + m[1][3]; result.m[2][0] = m[2][0]*other.m[0][0] + m[2][1]*other.m[1][0] + m[2][2]*other.m[2][0]; result.m[2][1] = m[2][0]*other.m[0][1] + m[2][1]*other.m[1][1] + m[2][2]*other.m[2][1]; result.m[2][2] = m[2][0]*other.m[0][2] + m[2][1]*other.m[1][2] + m[2][2]*other.m[2][2]; result.m[2][3] = m[2][0]*other.m[0][3] + m[2][1]*other.m[1][3] + m[2][2]*other.m[2][3] + m[2][3]; return result; } FVector3 operator *(const FVector3 &vec) { FVector3 result; result.X = vec.X*m[0][0] + vec.Y*m[0][1] + vec.Z*m[0][2] + m[0][3]; result.Y = vec.X*m[1][0] + vec.Y*m[1][1] + vec.Z*m[1][2] + m[1][3]; result.Z = vec.X*m[2][0] + vec.Y*m[2][1] + vec.Z*m[2][2] + m[2][3]; return result; } }; #endif