/* * ReplayGainAnalysis - analyzes input samples and give the recommended dB change * Copyright (C) 2001-2009 David Robinson and Glen Sawyer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * concept and filter values by David Robinson (David@Robinson.org) * -- blame him if you think the idea is flawed * coding by Glen Sawyer (mp3gain@hotmail.com) 735 W 255 N, Orem, UT 84057-4505 USA * -- blame him if you think this runs too slowly, or the coding is otherwise flawed * * For an explanation of the concepts and the basic algorithms involved, go to: * http://www.replaygain.org/ */ #ifndef GAIN_ANALYSIS_H #define GAIN_ANALYSIS_H #include #include #define GAIN_NOT_ENOUGH_SAMPLES (-24601) #define GAIN_ANALYSIS_ERROR 0 #define GAIN_ANALYSIS_OK 1 #define INIT_GAIN_ANALYSIS_ERROR 0 #define INIT_GAIN_ANALYSIS_OK 1 #define STEPS_per_dB 100. // Table entries per dB #define MAX_dB 120. // Table entries for 0...MAX_dB (normal max. values are 70...80 dB) #define MAX_SAMP_FREQ 96000. // maximum allowed sample frequency [Hz] #define RMS_WINDOW_TIME 0.050 // Time slice size [s] #define YULE_ORDER 10 #define BUTTER_ORDER 2 #define MAX_ORDER (BUTTER_ORDER > YULE_ORDER ? BUTTER_ORDER : YULE_ORDER) #define MAX_SAMPLES_PER_WINDOW (size_t) (MAX_SAMP_FREQ * RMS_WINDOW_TIME + 1) // max. Samples per Time slice typedef float Float_t; // Type used for filtering struct GainAnalyzer { int InitGainAnalysis(int samplefreq); int AnalyzeSamples(const Float_t *left_samples, const Float_t *right_samples, size_t num_samples, int num_channels); int ResetSampleFrequency(int samplefreq); Float_t GetTitleGain(void); Float_t GetAlbumGain(void); private: Float_t linprebuf[MAX_ORDER * 2]; Float_t *linpre; // left input samples, with pre-buffer Float_t lstepbuf[MAX_SAMPLES_PER_WINDOW + MAX_ORDER]; Float_t *lstep; // left "first step" (i.e. post first filter) samples Float_t loutbuf[MAX_SAMPLES_PER_WINDOW + MAX_ORDER]; Float_t *lout; // left "out" (i.e. post second filter) samples Float_t rinprebuf[MAX_ORDER * 2]; Float_t *rinpre; // right input samples ... Float_t rstepbuf[MAX_SAMPLES_PER_WINDOW + MAX_ORDER]; Float_t *rstep; Float_t routbuf[MAX_SAMPLES_PER_WINDOW + MAX_ORDER]; Float_t *rout; long sampleWindow; // number of samples required to reach number of milliseconds required for RMS window long totsamp; double lsum; double rsum; int freqindex; unsigned int A[(size_t) (STEPS_per_dB * MAX_dB)]; unsigned int B[(size_t) (STEPS_per_dB * MAX_dB)]; void filterYule(const Float_t* input, Float_t* output, size_t nSamples, const Float_t* kernel); void filterButter(const Float_t* input, Float_t* output, size_t nSamples, const Float_t* kernel); Float_t analyzeResult(const unsigned int* Array, size_t len); }; #endif /* GAIN_ANALYSIS_H */