/************************************************************************************************** "POLYMOST" code originally written by Ken Silverman Ken Silverman's official web site: http://www.advsys.net/ken "POLYMOST2" changes Copyright (c) 2018, Alex Dawson **************************************************************************************************/ #ifdef USE_OPENGL #include "compat.h" #include "build.h" #include "glad/glad.h" #include "mdsprite.h" #include "pragmas.h" #include "baselayer.h" #include "osd.h" #include "engine_priv.h" #include "hightile.h" #include "polymost.h" #include "polymer.h" #include "cache1d.h" #include "kplib.h" #include "texcache.h" #include "common.h" #include "palette.h" #ifndef _WIN32 extern int32_t filelength(int h); // kplib.c #endif extern char textfont[2048], smalltextfont[2048]; int32_t rendmode=0; int32_t usemodels=1; int32_t usehightile=1; typedef struct { float x, cy[2], fy[2]; int32_t tag; int16_t n, p, ctag, ftag; } vsptyp; #define VSPMAX 2048 //<- careful! static vsptyp vsp[VSPMAX]; static int32_t gtag; static float dxb1[MAXWALLSB], dxb2[MAXWALLSB]; #define SCISDIST 1.0f //1.0: Close plane clipping distance float shadescale = 1.0f; int32_t shadescale_unbounded = 0; int32_t r_enablepolymost2 = 0; int32_t r_usenewshading = 4; int32_t r_usetileshades = 2; int32_t r_npotwallmode = 0; static float gviewxrange; static float ghoriz; float gxyaspect; float gyxscale, ghalfx, grhalfxdown10, grhalfxdown10x; float gcosang, gsinang, gcosang2, gsinang2; float gchang, gshang, gctang, gstang, gvisibility; float gtang = 0.f; static vec3d_t xtex, ytex, otex; float fcosglobalang, fsinglobalang; float fxdim, fydim, fydimen, fviewingrange; static int32_t preview_mouseaim=1; // when 1, displays a CROSSHAIR tsprite at the _real_ aimed position static int32_t drawpoly_srepeat = 0, drawpoly_trepeat = 0; #define MAX_DRAWPOLY_VERTS 8 #define BUFFER_OFFSET(bytes) (GLintptr) ((GLubyte*) NULL + (bytes)) // these cvars are never used directly in rendering -- only when glinit() is called/renderer reset // We do this because we don't want to accidentally overshoot our existing buffer's bounds uint32_t r_persistentStreamBuffer = 1; uint32_t persistentStreamBuffer = r_persistentStreamBuffer; int32_t r_drawpolyVertsBufferLength = 30000; int32_t drawpolyVertsBufferLength = r_drawpolyVertsBufferLength; static GLuint drawpolyVertsID = 0; static GLint drawpolyVertsOffset = 0; static int32_t drawpolyVertsSubBufferIndex = 0; static GLsync drawpolyVertsSync[3] = {0}; static float defaultDrawpolyVertsArray[MAX_DRAWPOLY_VERTS*5]; static float* drawpolyVerts = defaultDrawpolyVertsArray; struct glfiltermodes glfiltermodes[NUMGLFILTERMODES] = { {"GL_NEAREST",GL_NEAREST,GL_NEAREST}, {"GL_LINEAR",GL_LINEAR,GL_LINEAR}, {"GL_NEAREST_MIPMAP_NEAREST",GL_NEAREST_MIPMAP_NEAREST,GL_NEAREST}, {"GL_LINEAR_MIPMAP_NEAREST",GL_LINEAR_MIPMAP_NEAREST,GL_LINEAR}, {"GL_NEAREST_MIPMAP_LINEAR",GL_NEAREST_MIPMAP_LINEAR,GL_NEAREST}, {"GL_LINEAR_MIPMAP_LINEAR",GL_LINEAR_MIPMAP_LINEAR,GL_LINEAR} }; int32_t glanisotropy = 0; // 0 = maximum supported by card int32_t gltexfiltermode = TEXFILTER_OFF; #ifdef EDUKE32_GLES int32_t glusetexcompr = 2; int32_t glusetexcache = 0, glusememcache = 0; #else int32_t glusetexcompr = 1; int32_t glusetexcache = 2, glusememcache = 1; int32_t r_polygonmode = 0; // 0:GL_FILL,1:GL_LINE,2:GL_POINT //FUK static int32_t lastglpolygonmode = 0; //FUK #endif #ifdef USE_GLEXT int32_t glmultisample = 0, glnvmultisamplehint = 0; int32_t r_detailmapping = 1; int32_t r_glowmapping = 1; #endif int32_t gltexmaxsize = 0; // 0 means autodetection on first run int32_t gltexmiplevel = 0; // discards this many mipmap levels int32_t glprojectionhacks = 1; static GLuint polymosttext = 0; int32_t glrendmode = REND_POLYMOST; // This variable, and 'shadeforfullbrightpass' control the drawing of // fullbright tiles. Also see 'fullbrightloadingpass'. int32_t r_fullbrights = 1; int32_t r_vertexarrays = 1; #ifdef USE_GLEXT //POGOTODO: we no longer support rendering without VBOs -- update any outdated pre-GL2 code that renders without VBOs int32_t r_vbos = 1; int32_t r_vbocount = 64; #endif int32_t r_animsmoothing = 1; int32_t r_downsize = 0; int32_t r_downsizevar = -1; // used for fogcalc static float fogresult, fogresult2; coltypef fogcol, fogtable[MAXPALOOKUPS]; static GLuint blankTextureID = 0; static GLuint quadVertsID = 0; static GLuint shaderProgramID = 0; static GLint texSamplerLoc = -1; static GLint fullBrightSamplerLoc = -1; static GLint projMatrixLoc = -1; static GLint mvMatrixLoc = -1; static GLint texOffsetLoc = -1; static GLint texScaleLoc = -1; static GLint tintLoc = -1; static GLint alphaLoc = -1; static GLint fogRangeLoc = -1; static GLint fogColorLoc = -1; static inline float float_trans(uint32_t maskprops, uint8_t blend) { switch (maskprops) { case DAMETH_TRANS1: case DAMETH_TRANS2: return glblend[blend].def[maskprops-2].alpha; default: return 1.0f; } } char ptempbuf[MAXWALLSB<<1]; // polymost ART sky control int32_t r_parallaxskyclamping = 1; int32_t r_parallaxskypanning = 1; #define MIN_CACHETIME_PRINT 10 // this was faster in MSVC but slower with GCC... currently unknown on ARM where both // the FPU and possibly the optimization path in the compiler need improvement #if 0 static inline int32_t __float_as_int(float f) { return *(int32_t *) &f; } static inline float __int_as_float(int32_t d) { return *(float *) &d; } static inline float Bfabsf(float f) { return __int_as_float(__float_as_int(f)&0x7fffffff); } #else #define Bfabsf fabsf #endif int32_t mdtims, omdtims; uint8_t alphahackarray[MAXTILES]; int32_t drawingskybox = 0; int32_t hicprecaching = 0; hitdata_t polymost_hitdata; #if 0 static inline int32_t gltexmayhavealpha(int32_t dapicnum, int32_t dapalnum) { const int32_t j = (dapicnum&(GLTEXCACHEADSIZ-1)); pthtyp *pth; for (pth=texcache.list[j]; pth; pth=pth->next) if (pth->picnum == dapicnum && pth->palnum == dapalnum) return ((pth->flags&PTH_HASALPHA) != 0); return 1; } #endif void gltexinvalidate(int32_t dapicnum, int32_t dapalnum, int32_t dameth) { const int32_t pic = (dapicnum&(GLTEXCACHEADSIZ-1)); for (pthtyp *pth=texcache.list[pic]; pth; pth=pth->next) if (pth->picnum == dapicnum && pth->palnum == dapalnum && (pth->flags & PTH_CLAMPED) == TO_PTH_CLAMPED(dameth)) { pth->flags |= PTH_INVALIDATED; if (pth->flags & PTH_HASFULLBRIGHT) pth->ofb->flags |= PTH_INVALIDATED; } } //Make all textures "dirty" so they reload, but not re-allocate //This should be much faster than polymost_glreset() //Use this for palette effects ... but not ones that change every frame! void gltexinvalidatetype(int32_t type) { for (bssize_t j=0; j<=GLTEXCACHEADSIZ-1; j++) { for (pthtyp *pth=texcache.list[j]; pth; pth=pth->next) { if (type == INVALIDATE_ALL || (type == INVALIDATE_ART && pth->hicr == NULL)) { pth->flags |= PTH_INVALIDATED; if (pth->flags & PTH_HASFULLBRIGHT) pth->ofb->flags |= PTH_INVALIDATED; } } } clearskins(type); #ifdef DEBUGGINGAIDS OSD_Printf("gltexinvalidateall()\n"); #endif } static void bind_2d_texture(GLuint texture, int filter) { if (filter == -1) filter = gltexfiltermode; glBindTexture(GL_TEXTURE_2D, texture); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, glfiltermodes[filter].mag); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, glfiltermodes[filter].min); #ifdef USE_GLEXT if (glinfo.maxanisotropy > 1.f) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, glanisotropy); #endif } void gltexapplyprops(void) { if (getrendermode() == REND_CLASSIC) return; if (glinfo.maxanisotropy > 1.f) { if (glanisotropy <= 0 || glanisotropy > glinfo.maxanisotropy) glanisotropy = (int32_t)glinfo.maxanisotropy; } gltexfiltermode = clamp(gltexfiltermode, 0, NUMGLFILTERMODES-1); for (bssize_t i=0; i<=GLTEXCACHEADSIZ-1; i++) { for (pthtyp *pth=texcache.list[i]; pth; pth=pth->next) { int32_t const filter = pth->flags & PTH_FORCEFILTER ? TEXFILTER_ON : -1; bind_2d_texture(pth->glpic, filter); if (r_fullbrights && pth->flags & PTH_HASFULLBRIGHT) bind_2d_texture(pth->ofb->glpic, filter); } } for (bssize_t i=0; imdnum < 2) continue; for (bssize_t j = 0; j < m->numskins * HICTINT_MEMORY_COMBINATIONS; j++) { if (!m->texid[j]) continue; bind_2d_texture(m->texid[j], -1); } for (mdskinmap_t *sk = m->skinmap; sk; sk = sk->next) for (bssize_t j = 0; j < HICTINT_MEMORY_COMBINATIONS; j++) { if (!sk->texid[j]) continue; bind_2d_texture(sk->texid[j], sk->flags & HICR_FORCEFILTER ? TEXFILTER_ON : -1); } } } //-------------------------------------------------------------------------------------------------- float glox1, gloy1, glox2, gloy2; //Use this for both initialization and uninitialization of OpenGL. static int32_t gltexcacnum = -1; //in-place multiply m0=m0*m1 static float* multiplyMatrix4f(float m0[4*4], float m1[4*4]) { float mR[4*4]; #define multMatrix4RowCol(r, c) mR[r*4+c] = m0[r*4]*m1[c] + m0[r*4+1]*m1[c+4] + m0[r*4+2]*m1[c+8] + m0[r*4+3]*m1[c+12] multMatrix4RowCol(0, 0); multMatrix4RowCol(0, 1); multMatrix4RowCol(0, 2); multMatrix4RowCol(0, 3); multMatrix4RowCol(1, 0); multMatrix4RowCol(1, 1); multMatrix4RowCol(1, 2); multMatrix4RowCol(1, 3); multMatrix4RowCol(2, 0); multMatrix4RowCol(2, 1); multMatrix4RowCol(2, 2); multMatrix4RowCol(2, 3); multMatrix4RowCol(3, 0); multMatrix4RowCol(3, 1); multMatrix4RowCol(3, 2); multMatrix4RowCol(3, 3); Bmemcpy(m0, mR, sizeof(float)*4*4); return m0; #undef multMatrix4RowCol } static void calcmat(vec3f_t a0, const vec2f_t *offset, float f, float mat[16], int16_t angle) { float g; float k0, k1, k2, k3, k4, k5, k6, k7; k0 = a0.y; k1 = a0.x; a0.x += offset->x; a0.z += offset->y; f = gcosang2*gshang; g = gsinang2*gshang; k4 = (float)sintable[(angle+1024)&2047] * (1.f/16384.f); k5 = (float)sintable[(angle+512)&2047] * (1.f/16384.f); k2 = k0*(1-k4)+k1*k5; k3 = k1*(1-k4)-k0*k5; k6 = f*gstang - gsinang*gctang; k7 = g*gstang + gcosang*gctang; mat[0] = k4*k6 + k5*k7; mat[4] = gchang*gstang; mat[ 8] = k4*k7 - k5*k6; mat[12] = k2*k6 + k3*k7; k6 = f*gctang + gsinang*gstang; k7 = g*gctang - gcosang*gstang; mat[1] = k4*k6 + k5*k7; mat[5] = gchang*gctang; mat[ 9] = k4*k7 - k5*k6; mat[13] = k2*k6 + k3*k7; k6 = gcosang2*gchang; k7 = gsinang2*gchang; mat[2] = k4*k6 + k5*k7; mat[6] =-gshang; mat[10] = k4*k7 - k5*k6; mat[14] = k2*k6 + k3*k7; mat[12] = (mat[12] + a0.y*mat[0]) + (a0.z*mat[4] + a0.x*mat[ 8]); mat[13] = (mat[13] + a0.y*mat[1]) + (a0.z*mat[5] + a0.x*mat[ 9]); mat[14] = (mat[14] + a0.y*mat[2]) + (a0.z*mat[6] + a0.x*mat[10]); } static GLuint polymost2_compileShader(GLenum shaderType, const char* const source) { GLuint shaderID = glCreateShader(shaderType); if (shaderID == 0) { return 0; } const char* const sources[1] = {source}; glShaderSource(shaderID, 1, sources, NULL); glCompileShader(shaderID); GLint compileStatus; glGetShaderiv(shaderID, GL_COMPILE_STATUS, &compileStatus); OSD_Printf("Compile Status: %u\n", compileStatus); if (!compileStatus) { GLint logLength; glGetShaderiv(shaderID, GL_INFO_LOG_LENGTH, &logLength); if (logLength > 0) { char *infoLog = (char*) malloc(logLength); glGetShaderInfoLog(shaderID, logLength, &logLength, infoLog); OSD_Printf("Log:\n%s\n", infoLog); free(infoLog); } } return shaderID; } void polymost_glreset() { for (bssize_t i=0; i<=MAXPALOOKUPS-1; i++) { fogtable[i].r = palookupfog[i].r * (1.f/255.f); fogtable[i].g = palookupfog[i].g * (1.f/255.f); fogtable[i].b = palookupfog[i].b * (1.f/255.f); fogtable[i].a = 0; } //Reset if this is -1 (meaning 1st texture call ever), or > 0 (textures in memory) if (gltexcacnum < 0) { gltexcacnum = 0; //Hack for polymost_dorotatesprite calls before 1st polymost_drawrooms() gcosang = gcosang2 = 16384.f/262144.f; gsinang = gsinang2 = 0.f; } else { for (bssize_t i = 0; i <= GLTEXCACHEADSIZ-1; i++) { for (pthtyp *pth = texcache.list[i]; pth;) { pthtyp *const next = pth->next; if (pth->flags & PTH_HASFULLBRIGHT) { glDeleteTextures(1, &pth->ofb->glpic); Bfree(pth->ofb); } glDeleteTextures(1, &pth->glpic); Bfree(pth); pth = next; } texcache.list[i] = NULL; } clearskins(INVALIDATE_ALL); } if (polymosttext) glDeleteTextures(1,&polymosttext); polymosttext=0; #ifdef USE_GLEXT md_freevbos(); #endif Bmemset(texcache.list,0,sizeof(texcache.list)); glox1 = -1; texcache_freeptrs(); texcache_syncmemcache(); #ifdef DEBUGGINGAIDS OSD_Printf("polymost_glreset()\n"); #endif } #if defined EDUKE32_GLES static void Polymost_DetermineTextureFormatSupport(void); #endif // reset vertex pointers to polymost default void polymost_resetVertexPointers() { glBindBuffer(GL_ARRAY_BUFFER, drawpolyVertsID); glBindBuffer(GL_TEXTURE_COORD_ARRAY, drawpolyVertsID); glVertexPointer(3, GL_FLOAT, 5*sizeof(float), 0); glTexCoordPointer(2, GL_FLOAT, 5*sizeof(float), (GLvoid*) (3*sizeof(float))); #ifdef USE_GLEXT if (r_detailmapping) { glClientActiveTexture(GL_TEXTURE1); glTexCoordPointer(2, GL_FLOAT, 5*sizeof(float), (GLvoid*) (3*sizeof(float))); } if (r_glowmapping) { glClientActiveTexture(GL_TEXTURE2); glTexCoordPointer(2, GL_FLOAT, 5*sizeof(float), (GLvoid*) (3*sizeof(float))); } glClientActiveTexture(GL_TEXTURE0); #endif } // one-time initialization of OpenGL for polymost void polymost_glinit() { glHint(GL_FOG_HINT, GL_NICEST); glFogi(GL_FOG_MODE, (r_usenewshading < 2) ? GL_EXP2 : GL_LINEAR); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glPixelStorei(GL_PACK_ALIGNMENT, 1); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); //glHint(GL_LINE_SMOOTH_HINT, GL_NICEST); //glEnable(GL_LINE_SMOOTH); #ifdef USE_GLEXT if (glmultisample > 0 && glinfo.multisample) { if (glinfo.nvmultisamplehint) glHint(GL_MULTISAMPLE_FILTER_HINT_NV, glnvmultisamplehint ? GL_NICEST:GL_FASTEST); glEnable(GL_MULTISAMPLE); } if (!glinfo.multitex || !glinfo.envcombine) { if (r_detailmapping) { OSD_Printf("Your OpenGL implementation doesn't support detail mapping. Disabling...\n"); r_detailmapping = 0; } if (r_glowmapping) { OSD_Printf("Your OpenGL implementation doesn't support glow mapping. Disabling...\n"); r_glowmapping = 0; } } if (persistentStreamBuffer && ((!glinfo.bufferstorage) || (!glinfo.sync))) { OSD_Printf("Your OpenGL implementation doesn't support the required extensions for persistent stream buffers. Disabling...\n"); r_persistentStreamBuffer = 0; } #endif persistentStreamBuffer = r_persistentStreamBuffer; drawpolyVertsBufferLength = r_drawpolyVertsBufferLength; drawpolyVertsOffset = 0; drawpolyVertsSubBufferIndex = 0; GLuint ids[2]; glGenBuffers(2, ids); drawpolyVertsID = ids[0]; glBindBuffer(GL_ARRAY_BUFFER, drawpolyVertsID); if (persistentStreamBuffer) { // reset the sync objects, as old ones we had from any last GL context are gone now Bmemset(drawpolyVertsSync, 0, sizeof(drawpolyVertsSync)); GLbitfield flags = GL_MAP_WRITE_BIT | GL_MAP_PERSISTENT_BIT | GL_MAP_COHERENT_BIT; // we want to triple-buffer to avoid having to wait for the buffer to become available again, // so triple the buffer size we expect to use glBufferStorage(GL_ARRAY_BUFFER, 3*drawpolyVertsBufferLength*sizeof(float)*5, NULL, flags); drawpolyVerts = (float*) glMapBufferRange(GL_ARRAY_BUFFER, 0, 3*drawpolyVertsBufferLength*sizeof(float)*5, flags); } else { drawpolyVerts = defaultDrawpolyVertsArray; glBufferData(GL_ARRAY_BUFFER, drawpolyVertsBufferLength*sizeof(float)*5, NULL, GL_STREAM_DRAW); } glBindBuffer(GL_ARRAY_BUFFER, 0); const char blankTex[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; glGenTextures(1, &blankTextureID); glBindTexture(GL_TEXTURE_2D, blankTextureID); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, 2, 2, 0, GL_RGBA, GL_UNSIGNED_BYTE, blankTex); quadVertsID = ids[1]; glBindBuffer(GL_ARRAY_BUFFER, quadVertsID); const float quadVerts[] = { -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, //top-left -0.5f, 0.0f, 0.0f, 0.0f, 0.0f, //bottom-left 0.5f, 1.0f, 0.0f, 1.0f, 1.0f, //top-right 0.5f, 0.0f, 0.0f, 1.0f, 0.0f //bottom-right }; glBufferData(GL_ARRAY_BUFFER, sizeof(quadVerts), quadVerts, GL_STATIC_DRAW); //specify format/arrangement for vertex positions: glVertexAttribPointer(0, 3, GL_FLOAT, false, sizeof(float) * 5, 0); //specify format/arrangement for vertex texture coords: glVertexAttribPointer(1, 2, GL_FLOAT, false, sizeof(float) * 5, (const void*) (sizeof(float) * 3)); glBindBuffer(GL_ARRAY_BUFFER, 0); const char* const BASIC_VERTEX_SHADER_CODE = "#version 110\n\ \n\ // input\n\ attribute vec3 i_vertPos;\n\ attribute vec2 i_texCoord;\n\ uniform mat4 u_mvMatrix;\n\ uniform mat4 u_projMatrix;\n\ uniform vec2 u_texOffset;\n\ uniform vec2 u_texScale;\n\ \n\ // output\n\ varying vec2 v_texCoord;\n\ varying float v_distance;\n\ \n\ void main()\n\ {\n\ vec4 eyeCoordPosition = u_mvMatrix * vec4(i_vertPos, 1.0);\n\ gl_Position = u_projMatrix * eyeCoordPosition;\n\ \n\ eyeCoordPosition.xyz /= eyeCoordPosition.w;\n\ \n\ v_texCoord = i_texCoord * u_texScale + u_texOffset;\n\ v_distance = eyeCoordPosition.z;\n\ }\n"; const char* const BASIC_FRAGMENT_SHADER_CODE = "#version 110\n\ \n\ varying vec2 v_texCoord;\n\ uniform sampler2D s_texture;\n\ uniform sampler2D s_fullBright;\n\ \n\ uniform vec4 u_tint;\n\ uniform float u_alpha;\n\ \n\ varying float v_distance;\n\ uniform vec2 u_fogRange;\n\ uniform vec4 u_fogColor;\n\ \n\ const float c_zero = 0.0;\n\ const float c_one = 1.0;\n\ \n\ void main()\n\ {\n\ vec4 color = texture2D(s_texture, v_texCoord);\n\ vec4 fullBrightColor = texture2D(s_fullBright, v_texCoord);\n\ \n\ float fogFactor = clamp((u_fogRange.y-v_distance)/(u_fogRange.y-u_fogRange.x), c_zero, c_one);\n\ \n\ color.rgb = mix(u_fogColor.rgb, color.rgb, fogFactor);\n\ color.rgb *= u_tint.rgb * u_tint.a * color.a;\n\ color.rgb = mix(color.rgb, fullBrightColor.rgb, fullBrightColor.a);\n\ \n\ color.a *= u_alpha;\n\ \n\ gl_FragColor = color;\n\ }\n"; shaderProgramID = glCreateProgram(); GLuint basicVertexShaderID = polymost2_compileShader(GL_VERTEX_SHADER, BASIC_VERTEX_SHADER_CODE); GLuint basicFragmentShaderID = polymost2_compileShader(GL_FRAGMENT_SHADER, BASIC_FRAGMENT_SHADER_CODE); glBindAttribLocation(shaderProgramID, 0, "i_vertPos"); glBindAttribLocation(shaderProgramID, 1, "i_texCoord"); glAttachShader(shaderProgramID, basicVertexShaderID); glAttachShader(shaderProgramID, basicFragmentShaderID); glLinkProgram(shaderProgramID); // Get the attribute/uniform locations texSamplerLoc = glGetUniformLocation(shaderProgramID, "s_texture"); fullBrightSamplerLoc = glGetUniformLocation(shaderProgramID, "s_fullBright"); projMatrixLoc = glGetUniformLocation(shaderProgramID, "u_projMatrix"); mvMatrixLoc = glGetUniformLocation(shaderProgramID, "u_mvMatrix"); texOffsetLoc = glGetUniformLocation(shaderProgramID, "u_texOffset"); texScaleLoc = glGetUniformLocation(shaderProgramID, "u_texScale"); tintLoc = glGetUniformLocation(shaderProgramID, "u_tint"); alphaLoc = glGetUniformLocation(shaderProgramID, "u_alpha"); fogRangeLoc = glGetUniformLocation(shaderProgramID, "u_fogRange"); fogColorLoc = glGetUniformLocation(shaderProgramID, "u_fogColor"); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_TEXTURE_COORD_ARRAY); polymost_resetVertexPointers(); texcache_init(); texcache_loadoffsets(); texcache_openfiles(); texcache_setupmemcache(); texcache_checkgarbage(); #if defined EDUKE32_GLES Polymost_DetermineTextureFormatSupport(); #endif } ////////// VISIBILITY FOG ROUTINES ////////// extern int32_t nofog; // in windows/SDL layers // only for r_usenewshading < 2 (not preferred) static void fogcalc_old(int32_t shade, int32_t vis) { float f; if (r_usenewshading==1) { f = 0.9f * shade; f = (vis > 239) ? (float)(gvisibility*((vis-240+f))) : (float)(gvisibility*(vis+16+f)); } else { f = (shade < 0) ? shade * 3.5f : shade * .66f; f = (vis > 239) ? (float)(gvisibility*((vis-240+f)/(klabs(vis-256)))) : (float)(gvisibility*(vis+16+f)); } if (f < 0.001f) f = 0.001f; else if (f > 100.0f) f = 100.0f; fogresult = f; } // For GL_LINEAR fog: #define FOGDISTCONST 600 #define FULLVIS_BEGIN 2.9e30f #define FULLVIS_END 3.0e30f static inline void fogcalc(int32_t tile, int32_t shade, int32_t vis, int32_t pal) { if (shade > 0 && getrendermode() == REND_POLYMOST && r_usetileshades == 1 && !(globalflags & GLOBAL_NO_GL_TILESHADES) && (!usehightile || !hicfindsubst(tile, pal, hictinting[pal].f & HICTINT_ALWAYSUSEART)) && (!usemodels || md_tilehasmodel(tile, pal) < 0)) shade >>= 1; fogcol = fogtable[pal]; if (r_usenewshading < 2) { fogcalc_old(shade, vis); return; } float combvis = (float) globalvisibility * (uint8_t) (vis+16); if (combvis == 0) { if (r_usenewshading == 2 && shade > 0) { // beg = -D*shade, end = D*(NUMSHADES-1-shade) // => end/beg = -(NUMSHADES-1-shade)/shade fogresult = (float) -FULLVIS_BEGIN; fogresult2 = FULLVIS_BEGIN * (float) (numshades-1-shade)/shade; } else { fogresult = (float) FULLVIS_BEGIN; fogresult2 = (float) FULLVIS_END; } } else if (r_usenewshading == 3 && shade >= numshades-1) { fogresult = -1; fogresult2 = 0; } else { combvis = 1.f/combvis; fogresult = (r_usenewshading == 3 && shade > 0) ? 0 : -(FOGDISTCONST * shade) * combvis; fogresult2 = (FOGDISTCONST * (numshades-1-shade)) * combvis; } } #define GL_FOG_MAX 1.0e37f void polymost2_calc_fog(int32_t shade, int32_t vis, int32_t pal) { if (nofog) return; fogresult = 0.f; fogresult2 = -GL_FOG_MAX; // hide fog behind the camera fogcol = fogtable[pal]; if (((uint8_t)(vis + 16)) > 0 && g_visibility > 0) { GLfloat glfogconstant = 262144.f; GLfloat fogrange = (frealmaxshade * glfogconstant) / (((uint8_t)(vis + 16)) * globalvisibility); GLfloat normalizedshade = shade / frealmaxshade; GLfloat fogshade = normalizedshade * fogrange; fogresult = -fogshade; fogresult2 = fogrange - fogshade; // substract shade from fog if (shade > 0 && shade < realmaxshade) { fogresult = 1.f - (fogresult2 / (fogresult2 - fogresult)); fogresult = (fogresult - normalizedshade) / (1.f - normalizedshade); fogresult = -((fogresult2 / (1.f - fogresult)) - fogresult2) ; } } } void calc_and_apply_fog(int32_t tile, int32_t shade, int32_t vis, int32_t pal) { if (nofog) return; if (r_usenewshading == 4) { fogresult = 0.f; fogresult2 = -GL_FOG_MAX; // hide fog behind the camera fogcol = fogtable[pal]; if (((uint8_t)(vis + 16)) > 0 && globalvisibility > 0) { GLfloat glfogconstant = 262144.f; GLfloat fogrange = (frealmaxshade * glfogconstant) / (((uint8_t)(vis + 16)) * globalvisibility); GLfloat normalizedshade = shade / frealmaxshade; GLfloat fogshade = normalizedshade * fogrange; fogresult = -fogshade; fogresult2 = fogrange - fogshade; // substract shade from fog if (shade > 0 && shade < realmaxshade) { fogresult = 1.f - (fogresult2 / (fogresult2 - fogresult)); fogresult = (fogresult - normalizedshade) / (1.f - normalizedshade); fogresult = -((fogresult2 / (1.f - fogresult)) - fogresult2) ; } } glFogf(GL_FOG_START, fogresult); glFogf(GL_FOG_END, fogresult2); glFogfv(GL_FOG_COLOR, (GLfloat *)&fogcol); return; } fogcalc(tile, shade, vis, pal); glFogfv(GL_FOG_COLOR, (GLfloat *)&fogcol); if (r_usenewshading < 2) glFogf(GL_FOG_DENSITY, fogresult); else { glFogf(GL_FOG_START, fogresult); glFogf(GL_FOG_END, fogresult2); } } void calc_and_apply_fog_factor(int32_t tile, int32_t shade, int32_t vis, int32_t pal, float factor) { if (nofog) return; if (r_usenewshading == 4) { fogresult = 0.f; fogresult2 = -GL_FOG_MAX; // hide fog behind the camera fogcol = fogtable[pal]; if (((uint8_t)(vis + 16)) > 0 && ((((uint8_t)(vis + 16)) / 8.f) + shade) > 0) { GLfloat normalizedshade = shade / frealmaxshade; GLfloat fogrange = (((uint8_t)(vis + 16)) / (8.f * frealmaxshade)) + normalizedshade; // substract shade from fog if (shade > 0 && shade < realmaxshade) fogrange = (fogrange - normalizedshade) / (1.f - normalizedshade); fogresult = -(GL_FOG_MAX * fogrange); fogresult2 = GL_FOG_MAX - (GL_FOG_MAX * fogrange); } glFogf(GL_FOG_START, fogresult); glFogf(GL_FOG_END, fogresult2); glFogfv(GL_FOG_COLOR, (GLfloat *)&fogcol); return; } // NOTE: for r_usenewshading >= 2, the fog beginning/ending distance results are // unused. fogcalc(tile, shade, vis, pal); glFogfv(GL_FOG_COLOR, (GLfloat *)&fogcol); if (r_usenewshading < 2) glFogf(GL_FOG_DENSITY, fogresult*factor); else { glFogf(GL_FOG_START, (GLfloat) FULLVIS_BEGIN); glFogf(GL_FOG_END, (GLfloat) FULLVIS_END); } } //////////////////// static float get_projhack_ratio(void) { if (glprojectionhacks) { static constexpr float const projhack_zoom = 1.3f; static constexpr float const maxcoshoriz = 0.540971179375801f; // 128/sqrt(128^2+199^2) = cos of an horiz diff of 199 static constexpr float const factor = (projhack_zoom - 1.f) * (1.f / maxcoshoriz); return 1.f + (factor * (1.f - Bfabsf(gchang))); } // No projection hacks (legacy or new-aspect) return 1.f; } static void resizeglcheck(void) { #ifndef EDUKE32_GLES //FUK if (lastglpolygonmode != r_polygonmode) { lastglpolygonmode = r_polygonmode; switch (r_polygonmode) { default: case 0: glPolygonMode(GL_FRONT_AND_BACK,GL_FILL); break; case 1: glPolygonMode(GL_FRONT_AND_BACK,GL_LINE); break; case 2: glPolygonMode(GL_FRONT_AND_BACK,GL_POINT); break; } } if (r_polygonmode) //FUK { glClearColor(1.0,1.0,1.0,0.0); glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); glDisable(GL_TEXTURE_2D); } #else glPolygonMode(GL_FRONT_AND_BACK,GL_FILL); #endif if ((glox1 != windowxy1.x) || (gloy1 != windowxy1.y) || (glox2 != windowxy2.x) || (gloy2 != windowxy2.y)) { const int32_t ourxdimen = (windowxy2.x-windowxy1.x+1); float ratio = get_projhack_ratio(); const int32_t fovcorrect = (int32_t)(ourxdimen*ratio - ourxdimen); ratio = 1.f/ratio; glox1 = (float)windowxy1.x; gloy1 = (float)windowxy1.y; glox2 = (float)windowxy2.x; gloy2 = (float)windowxy2.y; glViewport(windowxy1.x-(fovcorrect/2), yres-(windowxy2.y+1), ourxdimen+fovcorrect, windowxy2.y-windowxy1.y+1); glMatrixMode(GL_PROJECTION); float m[4][4]; Bmemset(m,0,sizeof(m)); m[0][0] = fydimen * ratio; m[0][2] = 1.f; m[1][1] = fxdimen; m[1][2] = 1.f; m[2][2] = 1.f; m[2][3] = fydimen * ratio; m[3][2] =-1.f; glLoadMatrixf(&m[0][0]); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); if (!nofog) glEnable(GL_FOG); //glEnable(GL_TEXTURE_2D); } } static void fixtransparency(coltype *dapic, vec2_t dasiz, vec2_t dasiz2, int32_t dameth) { if (!(dameth & DAMETH_MASKPROPS)) return; vec2_t doxy = { dasiz2.x-1, dasiz2.y-1 }; if (dameth & DAMETH_CLAMPED) { doxy.x = min(doxy.x, dasiz.x); doxy.y = min(doxy.y, dasiz.y); } else { dasiz = dasiz2; } //Make repeating textures duplicate top/left parts dasiz.x--; dasiz.y--; //Hacks for optimization inside loop int32_t const naxsiz2 = -dasiz2.x; //Set transparent pixels to average color of neighboring opaque pixels //Doing this makes bilinear filtering look much better for masked textures (I.E. sprites) for (bssize_t y=doxy.y; y>=0; y--) { coltype * wpptr = &dapic[y*dasiz2.x+doxy.x]; for (bssize_t x=doxy.x; x>=0; x--,wpptr--) { if (wpptr->a) continue; int r = 0, g = 0, b = 0, j = 0; if ((x> 0) && (wpptr[ -1].a)) { r += wpptr[ -1].r; g += wpptr[ -1].g; b += wpptr[ -1].b; j++; } if ((x 0) && (wpptr[naxsiz2].a)) { r += wpptr[naxsiz2].r; g += wpptr[naxsiz2].g; b += wpptr[naxsiz2].b; j++; } if ((yr = r ; wpptr->g = g ; wpptr->b = b ; break; case 2: wpptr->r = ((r + 1)>>1); wpptr->g = ((g + 1)>>1); wpptr->b = ((b + 1)>>1); break; case 3: wpptr->r = ((r*85+128)>>8); wpptr->g = ((g*85+128)>>8); wpptr->b = ((b*85+128)>>8); break; case 4: wpptr->r = ((r + 2)>>2); wpptr->g = ((g + 2)>>2); wpptr->b = ((b + 2)>>2); break; } } } } #if defined EDUKE32_GLES // sorted first in increasing order of size, then in decreasing order of quality static int32_t const texfmts_rgb_mask[] = { GL_RGB5_A1, GL_RGBA, 0 }; static int32_t const texfmts_rgb[] = { GL_RGB565, GL_RGB5_A1, GL_RGB, GL_RGBA, 0 }; static int32_t const texfmts_rgba[] = { GL_RGBA4, GL_RGBA, 0 } ; static int32_t texfmt_rgb_mask; static int32_t texfmt_rgb; static int32_t texfmt_rgba; #if defined EDUKE32_IOS static int32_t const comprtexfmts_rgb[] = { GL_ETC1_RGB8_OES, 0 }; static int32_t const comprtexfmts_rgba[] = { 0 }; static int32_t const comprtexfmts_rgb_mask[] = { 0 }; #else static int32_t const comprtexfmts_rgb[] = { GL_COMPRESSED_RGB8_ETC2, GL_ETC1_RGB8_OES, 0 }; // TODO: waiting on etcpak support for ETC2 with alpha static int32_t const comprtexfmts_rgba[] = { /*GL_COMPRESSED_RGBA8_ETC2_EAC,*/ 0 }; static int32_t const comprtexfmts_rgb_mask[] = { /*GL_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2,*/ 0 }; #endif static int32_t comprtexfmt_rgb_mask; static int32_t comprtexfmt_rgb; static int32_t comprtexfmt_rgba; # ifdef __cplusplus extern "C" { # endif extern uint64_t ProcessRGB(uint8_t const *); extern uint64_t ProcessRGB_ETC2(uint8_t const *); # ifdef __cplusplus } # endif typedef uint64_t (*ETCFunction_t)(uint8_t const *); static ETCFunction_t Polymost_PickETCFunction(int32_t const comprtexfmt) { switch (comprtexfmt) { case GL_ETC1_RGB8_OES: return ProcessRGB; case GL_COMPRESSED_RGB8_ETC2: return ProcessRGB_ETC2; # if 0 case GL_COMPRESSED_RGBA8_ETC2_EAC: case GL_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2: # endif default: EDUKE32_UNREACHABLE_SECTION(return NULL); } } static int Polymost_ConfirmNoGLError(void) { GLenum checkerr, err = GL_NO_ERROR; while ((checkerr = glGetError()) != GL_NO_ERROR) err = checkerr; return err == GL_NO_ERROR; } static int32_t Polymost_TryDummyTexture(coltype const * const pic, int32_t const * formats) { while (*formats) { glTexImage2D(GL_TEXTURE_2D, 0, *formats, 4,4, 0, GL_RGBA, GL_UNSIGNED_BYTE, pic); if (Polymost_ConfirmNoGLError()) return *formats; ++formats; } initputs("No texture formats supported?!\n"); return 0; } static int32_t Polymost_TryCompressedDummyTexture(coltype const * const pic, int32_t const * formats) { while (*formats) { ETCFunction_t func = Polymost_PickETCFunction(*formats); uint64_t const comprpic = func((uint8_t const *)pic); jwzgles_glCompressedTexImage2D(GL_TEXTURE_2D, 0, *formats, 4,4, 0, sizeof(uint64_t), &comprpic); if (Polymost_ConfirmNoGLError()) return *formats; ++formats; } return 0; } static void Polymost_DetermineTextureFormatSupport(void) { // init dummy texture to trigger possible failure of all compression modes coltype pic[4*4] = { { 0, 0, 0, 0 } }; GLuint tex = 0; glGenTextures(1, &tex); glBindTexture(GL_TEXTURE_2D, tex); BuildGLErrorCheck(); // XXX: Clear errors. texfmt_rgb = Polymost_TryDummyTexture(pic, texfmts_rgb); texfmt_rgba = Polymost_TryDummyTexture(pic, texfmts_rgba); texfmt_rgb_mask = Polymost_TryDummyTexture(pic, texfmts_rgb_mask); comprtexfmt_rgb = Polymost_TryCompressedDummyTexture(pic, comprtexfmts_rgb); comprtexfmt_rgba = Polymost_TryCompressedDummyTexture(pic, comprtexfmts_rgba); comprtexfmt_rgb_mask = Polymost_TryCompressedDummyTexture(pic, comprtexfmts_rgb_mask); glDeleteTextures(1, &tex); } #endif static void Polymost_SendTexToDriver(int32_t const doalloc, vec2_t const siz, int32_t const texfmt, coltype const * const pic, int32_t const intexfmt, #if defined EDUKE32_GLES int32_t const comprtexfmt, int32_t const texcompress_ok, #endif int32_t const level) { #if defined EDUKE32_GLES if (texcompress_ok && comprtexfmt && (siz.x & 3) == 0 && (siz.y & 3) == 0) { size_t const picLength = siz.x * siz.y; size_t const fourRows = siz.x << 2u; GLsizei const imageSize = picLength >> 1u; // 4x4 pixels --> 8 bytes uint8_t * const comprpic = (uint8_t *)Xaligned_alloc(8, imageSize); ETCFunction_t func = Polymost_PickETCFunction(comprtexfmt); coltype buf[4*4]; uint64_t * out = (uint64_t *)comprpic; for (coltype const * row = pic, * const pic_end = pic + picLength; row < pic_end; row += fourRows) for (coltype const * block = row, * const row_end = row + siz.x; block < row_end; block += 4) { buf[0] = block[0]; buf[1] = block[siz.x]; buf[2] = block[siz.x*2]; buf[3] = block[siz.x*3]; buf[4] = block[1]; buf[5] = block[siz.x+1]; buf[6] = block[siz.x*2+1]; buf[7] = block[siz.x*3+1]; buf[8] = block[2]; buf[9] = block[siz.x+2]; buf[10] = block[siz.x*2+2]; buf[11] = block[siz.x*3+2]; buf[12] = block[3]; buf[13] = block[siz.x+3]; buf[14] = block[siz.x*2+3]; buf[15] = block[siz.x*3+3]; *out++ = func((uint8_t const *)buf); } if (doalloc & 1) jwzgles_glCompressedTexImage2D(GL_TEXTURE_2D, level, comprtexfmt, siz.x,siz.y, 0, imageSize, comprpic); else jwzgles_glCompressedTexSubImage2D(GL_TEXTURE_2D, level, 0,0, siz.x,siz.y, comprtexfmt, imageSize, comprpic); Baligned_free(comprpic); return; } #endif #if B_BIG_ENDIAN GLenum type = GL_UNSIGNED_INT_8_8_8_8; #else GLenum type = GL_UNSIGNED_INT_8_8_8_8_REV; #endif if (doalloc & 1) glTexImage2D(GL_TEXTURE_2D, level, intexfmt, siz.x,siz.y, 0, texfmt, type, pic); else glTexSubImage2D(GL_TEXTURE_2D, level, 0,0, siz.x,siz.y, texfmt, type, pic); } void uploadtexture(int32_t doalloc, vec2_t siz, int32_t texfmt, coltype *pic, vec2_t tsiz, int32_t dameth) { const int artimmunity = !!(dameth & DAMETH_ARTIMMUNITY); const int hi = !!(dameth & DAMETH_HI); const int nodownsize = !!(dameth & DAMETH_NODOWNSIZE) || artimmunity; const int nomiptransfix = !!(dameth & DAMETH_NOFIX); const int texcompress_ok = !(dameth & DAMETH_NOTEXCOMPRESS) && (glusetexcompr == 2 || (glusetexcompr && !artimmunity)); #if !defined EDUKE32_GLES int32_t intexfmt; if (texcompress_ok && glinfo.texcompr) intexfmt = GL_COMPRESSED_RGBA; else intexfmt = GL_RGBA8; #else const int onebitalpha = !!(dameth & DAMETH_ONEBITALPHA); int32_t const intexfmt = hasalpha ? (onebitalpha ? texfmt_rgb_mask : texfmt_rgba) : texfmt_rgb; int32_t const comprtexfmt = hasalpha ? (onebitalpha ? comprtexfmt_rgb_mask : comprtexfmt_rgba) : comprtexfmt_rgb; #endif dameth &= ~DAMETH_UPLOADTEXTURE_MASK; if (gltexmaxsize <= 0) { GLint i = 0; glGetIntegerv(GL_MAX_TEXTURE_SIZE, &i); if (!i) gltexmaxsize = 6; // 2^6 = 64 == default GL max texture size else { gltexmaxsize = 0; for (; i>1; i>>=1) gltexmaxsize++; #ifdef EDUKE32_GLES while ((1<<(gltexmaxsize-1)) > xdim) gltexmaxsize--; #endif } } gltexmiplevel = max(0, min(gltexmaxsize-1, gltexmiplevel)); int miplevel = gltexmiplevel; while ((siz.x >> miplevel) > (1 << gltexmaxsize) || (siz.y >> miplevel) > (1 << gltexmaxsize)) miplevel++; if (hi && !nodownsize && r_downsize > miplevel) miplevel = r_downsize; // don't use mipmaps if mipmapping is disabled if (glfiltermodes[gltexfiltermode].min == GL_NEAREST || glfiltermodes[gltexfiltermode].min == GL_LINEAR) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0); } if (!miplevel) Polymost_SendTexToDriver(doalloc, siz, texfmt, pic, intexfmt, #if defined EDUKE32_GLES comprtexfmt, texcompress_ok, #endif 0); // don't generate mipmaps if we're not going to use them if (glfiltermodes[gltexfiltermode].min == GL_NEAREST || glfiltermodes[gltexfiltermode].min == GL_LINEAR) { return; } vec2_t siz2 = siz; for (bssize_t j=1; (siz2.x > 1) || (siz2.y > 1); j++) { vec2_t const siz3 = { max(1, siz2.x >> 1), max(1, siz2.y >> 1) }; // this came from the GL_ARB_texture_non_power_of_two spec //x3 = ((x2+1)>>1); y3 = ((y2+1)>>1); for (bssize_t y=0; yr = r; wpptr->g = g; wpptr->b = b; wpptr->a = a; break; case 2: wpptr->r = ((r+1)>>1); wpptr->g = ((g+1)>>1); wpptr->b = ((b+1)>>1); wpptr->a = ((a+1)>>1); break; case 3: wpptr->r = ((r*85+128)>>8); wpptr->g = ((g*85+128)>>8); wpptr->b = ((b*85+128)>>8); wpptr->a = ((a*85+128)>>8); break; case 4: wpptr->r = ((r+2)>>2); wpptr->g = ((g+2)>>2); wpptr->b = ((b+2)>>2); wpptr->a = ((a+2)>>2); break; default: EDUKE32_UNREACHABLE_SECTION(break); } //if (wpptr->a) wpptr->a = 255; } } if (!nomiptransfix) { vec2_t const tsizzle = { (tsiz.x + (1 << j)-1) >> j, (tsiz.y + (1 << j)-1) >> j }; fixtransparency(pic, tsizzle, siz3, dameth); } if (j >= miplevel) Polymost_SendTexToDriver(doalloc, siz3, texfmt, pic, intexfmt, #if defined EDUKE32_GLES comprtexfmt, texcompress_ok, #endif j - miplevel); siz2 = siz3; } } #if 0 // TODO: make configurable static int32_t tile_is_sky(int32_t tilenum) { return return (tilenum >= 78 /*CLOUDYOCEAN*/ && tilenum <= 99 /*REDSKY2*/); } # define clamp_if_tile_is_sky(x, y) (tile_is_sky(x) ? (y) : GL_REPEAT) #else # define clamp_if_tile_is_sky(x, y) (GL_REPEAT) #endif static void polymost_setuptexture(const int32_t dameth, int filter) { const GLuint clamp_mode = glinfo.clamptoedge ? GL_CLAMP_TO_EDGE : GL_CLAMP; gltexfiltermode = clamp(gltexfiltermode, 0, NUMGLFILTERMODES-1); if (filter == -1) filter = gltexfiltermode; glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, glfiltermodes[filter].mag); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, glfiltermodes[filter].min); #ifdef USE_GLEXT if (glinfo.maxanisotropy > 1.f) { uint32_t i = (unsigned)Blrintf(glinfo.maxanisotropy); if ((unsigned)glanisotropy > i) glanisotropy = i; glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, glanisotropy); } #endif if (!(dameth & DAMETH_CLAMPED)) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, clamp_if_tile_is_sky(dapic, clamp_mode)); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); } else { // For sprite textures, clamping looks better than wrapping glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, clamp_mode); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, clamp_mode); } } void gloadtile_art(int32_t dapic, int32_t dapal, int32_t tintpalnum, int32_t dashade, int32_t dameth, pthtyp *pth, int32_t doalloc) { static int32_t fullbrightloadingpass = 0; vec2s_t const & tsizart = tilesiz[dapic]; vec2_t siz = { 0, 0 }, tsiz = { tsizart.x, tsizart.y }; size_t const picdim = tsiz.x*tsiz.y; char hasalpha = 0, hasfullbright = 0; char npoty = 0; texcacheheader cachead; char texcacheid[BMAX_PATH]; { // Absolutely disgusting. uint32_t firstint = 0; if (waloff[dapic]) Bmemcpy(&firstint, (void *)waloff[dapic], min(4, picdim)); sprintf(texcacheid, "%08x", firstint); } texcache_calcid(texcacheid, texcacheid, picdim | ((unsigned)dapal<<24u), DAMETH_NARROW_MASKPROPS(dameth) | ((unsigned)dapic<<8u) | ((unsigned)dashade<<24u), tintpalnum); int32_t gotcache = texcache_readtexheader(texcacheid, &cachead, 0); if (gotcache && !texcache_loadtile(&cachead, &doalloc, pth)) { hasalpha = !!(cachead.flags & CACHEAD_HASALPHA); hasfullbright = !!(cachead.flags & CACHEAD_HASFULLBRIGHT); npoty = !!(cachead.flags & CACHEAD_NPOTWALL); } else { if (!glinfo.texnpot) { for (siz.x = 1; siz.x < tsiz.x; siz.x += siz.x) { } for (siz.y = 1; siz.y < tsiz.y; siz.y += siz.y) { } } else { if ((tsiz.x|tsiz.y) == 0) siz.x = siz.y = 1; else siz = tsiz; } coltype *pic = (coltype *)Xmalloc(siz.x*siz.y*sizeof(coltype)); if (!waloff[dapic]) { //Force invalid textures to draw something - an almost purely transparency texture //This allows the Z-buffer to be updated for mirrors (which are invalidated textures) pic[0].r = pic[0].g = pic[0].b = 0; pic[0].a = 1; tsiz.x = tsiz.y = 1; hasalpha = 1; } else { const int dofullbright = !(picanm[dapic].sf & PICANM_NOFULLBRIGHT_BIT) && !(globalflags & GLOBAL_NO_GL_FULLBRIGHT); for (bssize_t y = 0; y < siz.y; y++) { coltype *wpptr = &pic[y * siz.x]; int32_t y2 = (y < tsiz.y) ? y : y - tsiz.y; for (bssize_t x = 0; x < siz.x; x++, wpptr++) { int32_t dacol; int32_t x2 = (x < tsiz.x) ? x : x-tsiz.x; if ((dameth & DAMETH_CLAMPED) && (x >= tsiz.x || y >= tsiz.y)) //Clamp texture { wpptr->r = wpptr->g = wpptr->b = wpptr->a = 0; continue; } dacol = *(char *)(waloff[dapic]+x2*tsiz.y+y2); if (dacol == 255) { wpptr->a = 0; hasalpha = 1; } else wpptr->a = 255; char *p = (char *)(palookup[dapal])+(int32_t)(dashade<<8); dacol = (uint8_t)p[dacol]; if (!fullbrightloadingpass) { // regular texture if (IsPaletteIndexFullbright(dacol) && dofullbright) hasfullbright = 1; } else { // texture with only fullbright areas if (!IsPaletteIndexFullbright(dacol)) // regular colors { wpptr->a = 0; hasalpha = 1; } } bricolor((palette_t *)wpptr, dacol); if (!fullbrightloadingpass && tintpalnum >= 0) { polytint_t const & tint = hictinting[tintpalnum]; polytintflags_t const effect = tint.f; uint8_t const r = tint.r; uint8_t const g = tint.g; uint8_t const b = tint.b; if (effect & HICTINT_GRAYSCALE) { wpptr->g = wpptr->r = wpptr->b = (uint8_t) ((wpptr->r * GRAYSCALE_COEFF_RED) + (wpptr->g * GRAYSCALE_COEFF_GREEN) + (wpptr->b * GRAYSCALE_COEFF_BLUE)); } if (effect & HICTINT_INVERT) { wpptr->b = 255 - wpptr->b; wpptr->g = 255 - wpptr->g; wpptr->r = 255 - wpptr->r; } if (effect & HICTINT_COLORIZE) { wpptr->b = min((int32_t)((wpptr->b) * b) >> 6, 255); wpptr->g = min((int32_t)((wpptr->g) * g) >> 6, 255); wpptr->r = min((int32_t)((wpptr->r) * r) >> 6, 255); } switch (effect & HICTINT_BLENDMASK) { case HICTINT_BLEND_SCREEN: wpptr->b = 255 - (((255 - wpptr->b) * (255 - b)) >> 8); wpptr->g = 255 - (((255 - wpptr->g) * (255 - g)) >> 8); wpptr->r = 255 - (((255 - wpptr->r) * (255 - r)) >> 8); break; case HICTINT_BLEND_OVERLAY: wpptr->b = wpptr->b < 128 ? (wpptr->b * b) >> 7 : 255 - (((255 - wpptr->b) * (255 - b)) >> 7); wpptr->g = wpptr->g < 128 ? (wpptr->g * g) >> 7 : 255 - (((255 - wpptr->g) * (255 - g)) >> 7); wpptr->r = wpptr->r < 128 ? (wpptr->r * r) >> 7 : 255 - (((255 - wpptr->r) * (255 - r)) >> 7); break; case HICTINT_BLEND_HARDLIGHT: wpptr->b = b < 128 ? (wpptr->b * b) >> 7 : 255 - (((255 - wpptr->b) * (255 - b)) >> 7); wpptr->g = g < 128 ? (wpptr->g * g) >> 7 : 255 - (((255 - wpptr->g) * (255 - g)) >> 7); wpptr->r = r < 128 ? (wpptr->r * r) >> 7 : 255 - (((255 - wpptr->r) * (255 - r)) >> 7); break; } } //swap r & b so that we deal with the data as BGRA uint8_t tmpR = wpptr->r; wpptr->r = wpptr->b; wpptr->b = tmpR; } } } if (doalloc) glGenTextures(1,(GLuint *)&pth->glpic); //# of textures (make OpenGL allocate structure) glBindTexture(GL_TEXTURE_2D,pth->glpic); fixtransparency(pic,tsiz,siz,dameth); if (polymost_want_npotytex(dameth, siz.y) && tsiz.x == siz.x && tsiz.y == siz.y) // XXX { const int32_t nextpoty = 1 << ((picsiz[dapic] >> 4) + 1); const int32_t ydif = nextpoty - siz.y; coltype *paddedpic; Bassert(ydif < siz.y); paddedpic = (coltype *)Xrealloc(pic, siz.x * nextpoty * sizeof(coltype)); pic = paddedpic; Bmemcpy(&pic[siz.x * siz.y], pic, siz.x * ydif * sizeof(coltype)); siz.y = tsiz.y = nextpoty; npoty = 1; } uploadtexture(doalloc, siz, GL_BGRA, pic, tsiz, dameth | DAMETH_ARTIMMUNITY | (dapic >= MAXUSERTILES ? (DAMETH_NOTEXCOMPRESS|DAMETH_NODOWNSIZE) : 0) | /* never process these short-lived tiles */ (hasfullbright ? DAMETH_HASFULLBRIGHT : 0) | (npoty ? DAMETH_NPOTWALL : 0) | (hasalpha ? (DAMETH_HASALPHA|DAMETH_ONEBITALPHA) : 0)); Bfree(pic); } polymost_setuptexture(dameth, -1); pth->picnum = dapic; pth->palnum = dapal; pth->shade = dashade; pth->effects = 0; pth->flags = TO_PTH_CLAMPED(dameth) | TO_PTH_NOTRANSFIX(dameth) | (hasalpha*PTH_HASALPHA) | (npoty*PTH_NPOTWALL); pth->hicr = NULL; #if defined USE_GLEXT && !defined EDUKE32_GLES if (!gotcache && glinfo.texcompr && glusetexcache && glusetexcompr == 2 && dapic < MAXUSERTILES) { cachead.quality = 0; cachead.xdim = tsiz.x; cachead.ydim = tsiz.y; cachead.flags = (check_nonpow2(siz.x) || check_nonpow2(siz.y)) * CACHEAD_NONPOW2 | npoty * CACHEAD_NPOTWALL | hasalpha * CACHEAD_HASALPHA | hasfullbright * CACHEAD_HASFULLBRIGHT | CACHEAD_NODOWNSIZE; texcache_writetex_fromdriver(texcacheid, &cachead); } #endif if (hasfullbright && !fullbrightloadingpass) { // Load the ONLY texture that'll be assembled with the regular one to // make the final texture with fullbright pixels. fullbrightloadingpass = 1; if (!pth->ofb) pth->ofb = (pthtyp *)Xcalloc(1,sizeof(pthtyp)); pth->flags |= PTH_HASFULLBRIGHT; gloadtile_art(dapic, dapal, -1, 0, (dameth & ~DAMETH_MASKPROPS) | DAMETH_MASK, pth->ofb, 1); fullbrightloadingpass = 0; } } int32_t gloadtile_hi(int32_t dapic,int32_t dapalnum, int32_t facen, hicreplctyp *hicr, int32_t dameth, pthtyp *pth, int32_t doalloc, polytintflags_t effect) { if (!hicr) return -1; char *fn; if (facen > 0) { if (!hicr->skybox || facen > 6 || !hicr->skybox->face[facen-1]) return -1; fn = hicr->skybox->face[facen-1]; } else { if (!hicr->filename) return -1; fn = hicr->filename; } int32_t filh; if (EDUKE32_PREDICT_FALSE((filh = kopen4load(fn, 0)) < 0)) { OSD_Printf("hightile: %s (pic %d) not found\n", fn, dapic); return -2; } int32_t picfillen = kfilelength(filh); kclose(filh); // FIXME: shouldn't have to do this. bug in cache1d.c int32_t startticks = getticks(), willprint = 0; char hasalpha; texcacheheader cachead; char texcacheid[BMAX_PATH]; texcache_calcid(texcacheid, fn, picfillen+(dapalnum<<8), DAMETH_NARROW_MASKPROPS(dameth), effect & HICTINT_IN_MEMORY); int32_t gotcache = texcache_readtexheader(texcacheid, &cachead, 0); vec2_t siz = { 0, 0 }, tsiz = { 0, 0 }; if (gotcache && !texcache_loadtile(&cachead, &doalloc, pth)) { tsiz.x = cachead.xdim; tsiz.y = cachead.ydim; hasalpha = !!(cachead.flags & CACHEAD_HASALPHA); } else { // CODEDUP: mdloadskin int32_t isart = 0; gotcache = 0; // the compressed version will be saved to disk int32_t const length = kpzbufload(fn); if (length == 0) return -1; // tsizx/y = replacement texture's natural size // xsiz/y = 2^x size of replacement #ifdef WITHKPLIB kpgetdim(kpzbuf,picfillen,&tsiz.x,&tsiz.y); #endif if (tsiz.x == 0 || tsiz.y == 0) { if (E_CheckUnitArtFileHeader((uint8_t *)kpzbuf, picfillen)) return -1; tsiz.x = B_LITTLE16(B_UNBUF16(&kpzbuf[16])); tsiz.y = B_LITTLE16(B_UNBUF16(&kpzbuf[18])); if (tsiz.x == 0 || tsiz.y == 0) return -1; isart = 1; } pth->siz = tsiz; if (!glinfo.texnpot) { for (siz.x=1; siz.x picfillen) return -2; } int32_t const bytesperline = siz.x * sizeof(coltype); coltype *pic = (coltype *)Xcalloc(siz.y, bytesperline); static coltype *lastpic = NULL; static char *lastfn = NULL; static int32_t lastsize = 0; if (lastpic && lastfn && !Bstrcmp(lastfn,fn)) { willprint=1; Bmemcpy(pic, lastpic, siz.x*siz.y*sizeof(coltype)); } else { if (isart) { E_RenderArtDataIntoBuffer((palette_t *)pic, (uint8_t *)&kpzbuf[ARTv1_UNITOFFSET], siz.x, tsiz.x, tsiz.y); } #ifdef WITHKPLIB else { if (kprender(kpzbuf,picfillen,(intptr_t)pic,bytesperline,siz.x,siz.y)) { Bfree(pic); return -2; } } #endif willprint=2; if (hicprecaching) { lastfn = fn; // careful... if (!lastpic) { lastpic = (coltype *)Bmalloc(siz.x*siz.y*sizeof(coltype)); lastsize = siz.x*siz.y; } else if (lastsize < siz.x*siz.y) { Bfree(lastpic); lastpic = (coltype *)Bmalloc(siz.x*siz.y*sizeof(coltype)); } if (lastpic) Bmemcpy(lastpic, pic, siz.x*siz.y*sizeof(coltype)); } else if (lastpic) { DO_FREE_AND_NULL(lastpic); lastfn = NULL; lastsize = 0; } } char *cptr = britable[gammabrightness ? 0 : curbrightness]; polytint_t const & tint = hictinting[dapalnum]; int32_t r = (glinfo.bgra) ? tint.r : tint.b; int32_t g = tint.g; int32_t b = (glinfo.bgra) ? tint.b : tint.r; char al = 255; char onebitalpha = 1; for (bssize_t y = 0, j = 0; y < tsiz.y; ++y, j += siz.x) { coltype tcol, *rpptr = &pic[j]; for (bssize_t x = 0; x < tsiz.x; ++x) { tcol.b = cptr[rpptr[x].b]; tcol.g = cptr[rpptr[x].g]; tcol.r = cptr[rpptr[x].r]; al &= tcol.a = rpptr[x].a; onebitalpha &= tcol.a == 0 || tcol.a == 255; if (effect & HICTINT_GRAYSCALE) { tcol.g = tcol.r = tcol.b = (uint8_t) ((tcol.b * GRAYSCALE_COEFF_RED) + (tcol.g * GRAYSCALE_COEFF_GREEN) + (tcol.r * GRAYSCALE_COEFF_BLUE)); } if (effect & HICTINT_INVERT) { tcol.b = 255 - tcol.b; tcol.g = 255 - tcol.g; tcol.r = 255 - tcol.r; } if (effect & HICTINT_COLORIZE) { tcol.b = min((int32_t)((tcol.b) * r) >> 6, 255); tcol.g = min((int32_t)((tcol.g) * g) >> 6, 255); tcol.r = min((int32_t)((tcol.r) * b) >> 6, 255); } switch (effect & HICTINT_BLENDMASK) { case HICTINT_BLEND_SCREEN: tcol.b = 255 - (((255 - tcol.b) * (255 - r)) >> 8); tcol.g = 255 - (((255 - tcol.g) * (255 - g)) >> 8); tcol.r = 255 - (((255 - tcol.r) * (255 - b)) >> 8); break; case HICTINT_BLEND_OVERLAY: tcol.b = tcol.b < 128 ? (tcol.b * r) >> 7 : 255 - (((255 - tcol.b) * (255 - r)) >> 7); tcol.g = tcol.g < 128 ? (tcol.g * g) >> 7 : 255 - (((255 - tcol.g) * (255 - g)) >> 7); tcol.r = tcol.r < 128 ? (tcol.r * b) >> 7 : 255 - (((255 - tcol.r) * (255 - b)) >> 7); break; case HICTINT_BLEND_HARDLIGHT: tcol.b = r < 128 ? (tcol.b * r) >> 7 : 255 - (((255 - tcol.b) * (255 - r)) >> 7); tcol.g = g < 128 ? (tcol.g * g) >> 7 : 255 - (((255 - tcol.g) * (255 - g)) >> 7); tcol.r = b < 128 ? (tcol.r * b) >> 7 : 255 - (((255 - tcol.r) * (255 - b)) >> 7); break; } rpptr[x] = tcol; } } hasalpha = (al != 255); if ((!(dameth & DAMETH_CLAMPED)) || facen) //Duplicate texture pixels (wrapping tricks for non power of 2 texture sizes) { if (siz.x > tsiz.x) // Copy left to right { for (int32_t y = 0, *lptr = (int32_t *)pic; y < tsiz.y; y++, lptr += siz.x) Bmemcpy(&lptr[tsiz.x], lptr, (siz.x - tsiz.x) << 2); } if (siz.y > tsiz.y) // Copy top to bottom Bmemcpy(&pic[siz.x * tsiz.y], pic, (siz.y - tsiz.y) * siz.x << 2); } if (!glinfo.bgra) { for (bssize_t i=siz.x*siz.y, j=0; j>r_downsize <= tilesiz[dapic].x || tsiz.y>>r_downsize <= tilesiz[dapic].y) hicr->flags |= HICR_ARTIMMUNITY; if ((doalloc&3)==1) glGenTextures(1, &pth->glpic); //# of textures (make OpenGL allocate structure) glBindTexture(GL_TEXTURE_2D,pth->glpic); fixtransparency(pic,tsiz,siz,dameth); int32_t const texfmt = glinfo.bgra ? GL_BGRA : GL_RGBA; uploadtexture(doalloc,siz,texfmt,pic,tsiz, dameth | DAMETH_HI | DAMETH_NOFIX | TO_DAMETH_NODOWNSIZE(hicr->flags) | TO_DAMETH_NOTEXCOMPRESS(hicr->flags) | TO_DAMETH_ARTIMMUNITY(hicr->flags) | (onebitalpha ? DAMETH_ONEBITALPHA : 0) | (hasalpha ? DAMETH_HASALPHA : 0)); Bfree(pic); } // precalculate scaling parameters for replacement if (facen > 0) { pth->scale.x = (float)tsiz.x * (1.0f/64.f); pth->scale.y = (float)tsiz.y * (1.0f/64.f); } else { pth->scale.x = (float)tsiz.x / (float)tilesiz[dapic].x; pth->scale.y = (float)tsiz.y / (float)tilesiz[dapic].y; } polymost_setuptexture(dameth, hicr->flags & HICR_FORCEFILTER ? TEXFILTER_ON : -1); if (tsiz.x>>r_downsize <= tilesiz[dapic].x || tsiz.y>>r_downsize <= tilesiz[dapic].y) hicr->flags |= HICR_ARTIMMUNITY; pth->picnum = dapic; pth->effects = effect; pth->flags = TO_PTH_CLAMPED(dameth) | TO_PTH_NOTRANSFIX(dameth) | PTH_HIGHTILE | ((facen>0) * PTH_SKYBOX) | (hasalpha ? PTH_HASALPHA : 0) | (hicr->flags & HICR_FORCEFILTER ? PTH_FORCEFILTER : 0); pth->skyface = facen; pth->hicr = hicr; #if defined USE_GLEXT && !defined EDUKE32_GLES if (!gotcache && glinfo.texcompr && glusetexcache && !(hicr->flags & HICR_NOTEXCOMPRESS) && (glusetexcompr == 2 || (glusetexcompr && !(hicr->flags & HICR_ARTIMMUNITY)))) { const int32_t nonpow2 = check_nonpow2(siz.x) || check_nonpow2(siz.y); // save off the compressed version cachead.quality = (hicr->flags & (HICR_NODOWNSIZE|HICR_ARTIMMUNITY)) ? 0 : r_downsize; cachead.xdim = tsiz.x >> cachead.quality; cachead.ydim = tsiz.y >> cachead.quality; // handle nodownsize: cachead.flags = nonpow2 * CACHEAD_NONPOW2 | (hasalpha ? CACHEAD_HASALPHA : 0) | (hicr->flags & (HICR_NODOWNSIZE|HICR_ARTIMMUNITY) ? CACHEAD_NODOWNSIZE : 0); /// OSD_Printf("Caching \"%s\"\n", fn); texcache_writetex_fromdriver(texcacheid, &cachead); if (willprint) { int32_t etime = getticks() - startticks; if (etime >= MIN_CACHETIME_PRINT) OSD_Printf("Load tile %4d: p%d-m%d-e%d %s... cached... %d ms\n", dapic, dapalnum, dameth, effect, willprint == 2 ? fn : "", etime); willprint = 0; } else OSD_Printf("Cached \"%s\"\n", fn); } #endif if (willprint) { int32_t etime = getticks()-startticks; if (etime>=MIN_CACHETIME_PRINT) OSD_Printf("Load tile %4d: p%d-m%d-e%d %s... %d ms\n", dapic, dapalnum, dameth, effect, willprint==2 ? fn : "", etime); } return 0; } #ifdef USE_GLEXT void polymost_setupdetailtexture(const int32_t texunits, const int32_t tex) { glActiveTexture(texunits); glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, tex); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE); glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_PREVIOUS); glTexEnvf(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_TEXTURE); glTexEnvf(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR); glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_PREVIOUS); glTexEnvf(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_ALPHA); glTexEnvf(GL_TEXTURE_ENV, GL_RGB_SCALE, 2.0f); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glClientActiveTexture(texunits); glEnableClientState(GL_TEXTURE_COORD_ARRAY); } void polymost_setupglowtexture(const int32_t texunits, const int32_t tex) { glActiveTexture(texunits); glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, tex); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE); glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_INTERPOLATE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_PREVIOUS); glTexEnvf(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_TEXTURE); glTexEnvf(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE2_RGB, GL_TEXTURE); glTexEnvf(GL_TEXTURE_ENV, GL_OPERAND2_RGB, GL_ONE_MINUS_SRC_ALPHA); glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_PREVIOUS); glTexEnvf(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_ALPHA); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glClientActiveTexture(texunits); glEnableClientState(GL_TEXTURE_COORD_ARRAY); } #endif //(dpx,dpy) specifies an n-sided polygon. The polygon must be a convex clockwise loop. // n must be <= 8 (assume clipping can double number of vertices) //method: 0:solid, 1:masked(255 is transparent), 2:transluscent #1, 3:transluscent #2 // +4 means it's a sprite, so wraparound isn't needed // drawpoly's hack globals static int32_t pow2xsplit = 0, skyclamphack = 0; static float drawpoly_alpha = 0.f; static uint8_t drawpoly_blend = 0; static inline pthtyp *our_texcache_fetch(int32_t dameth) { if (r_usenewshading == 4) return texcache_fetch(globalpicnum, globalpal, getpalookup((r_usetileshades == 1 && !(globalflags & GLOBAL_NO_GL_TILESHADES)), globalshade), dameth); // r_usetileshades 1 is TX's method. return texcache_fetch(globalpicnum, globalpal, getpalookup((r_usetileshades == 1 && !(globalflags & GLOBAL_NO_GL_TILESHADES)) ? globvis>>3 : 0, globalshade), dameth); } static void polymost2_drawVBO(GLenum mode, int32_t vertexBufferID, int32_t indexBufferID, const int32_t numElements, float projectionMatrix[4*4], float modelViewMatrix[4*4], int32_t dameth, float texScale[2], float texOffset[2], char cullFaces) { if (dameth == DAMETH_BACKFACECULL || #ifdef YAX_ENABLE g_nodraw || #endif (uint32_t)globalpicnum >= MAXTILES) { return; } glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); if (cullFaces) { glEnable(GL_CULL_FACE); } //POGOTODO: this is temporary, the permanent fix is to not allow the transform to affect the windings in the first place in polymost2_drawSprite() if (cullFaces == 1) { glCullFace(GL_BACK); } else { glCullFace(GL_FRONT); } //POGOTODO: in the future, state changes like binding these buffers can be batched. For now, just switch on every VBO rendered glBindBuffer(GL_ARRAY_BUFFER, vertexBufferID); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBufferID); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); if (palookup[globalpal] == NULL) { globalpal = 0; } //Load texture (globalpicnum) setgotpic(globalpicnum); if (!waloff[globalpicnum]) { loadtile(globalpicnum); } pthtyp *pth = our_texcache_fetch(dameth); if (!pth) { if (editstatus) { Bsprintf(ptempbuf, "pth==NULL! (bad pal?) pic=%d pal=%d", globalpicnum, globalpal); polymost_printext256(8,8, editorcolors[15],editorcolors[5], ptempbuf, 0); } return; } glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, (pth && pth->flags & PTH_HASFULLBRIGHT && r_fullbrights) ? pth->ofb->glpic : blankTextureID); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_REPEAT); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_REPEAT); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, pth ? pth->glpic : blankTextureID); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_REPEAT); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_REPEAT); //POGOTODO: handle tinting & shading completely with fragment shader //POGOTODO: handle fullbright & glow completely with fragment shader //POGOTODO: glAlphaFunc is deprecated, move this into the fragment shader float const al = waloff[globalpicnum] ? alphahackarray[globalpicnum] != 0 ? alphahackarray[globalpicnum] * (1.f/255.f): (pth && pth->hicr && pth->hicr->alphacut >= 0.f ? pth->hicr->alphacut : 0.f) : 0.f; glAlphaFunc(GL_GREATER, al); //POGOTODO: batch this, only apply it to sprites that actually need blending glEnable(GL_BLEND); glEnable(GL_ALPHA_TEST); handle_blend((dameth & DAMETH_MASKPROPS) > DAMETH_MASK, drawpoly_blend, (dameth & DAMETH_MASKPROPS) == DAMETH_TRANS2); glUseProgram(shaderProgramID); //POGOTODO: batch uniform binding float tint[4] = {1.0f, 1.0f, 1.0f, 1.0f}; polytint_t const & polytint = hictinting[globalpal]; //POGOTODO: full bright pass uses its own globalshade... tint[0] = (1.f-(polytint.sr*(1.f/255.f)))*getshadefactor(globalshade)+(polytint.sr*(1.f/255.f)); tint[1] = (1.f-(polytint.sg*(1.f/255.f)))*getshadefactor(globalshade)+(polytint.sg*(1.f/255.f)); tint[2] = (1.f-(polytint.sb*(1.f/255.f)))*getshadefactor(globalshade)+(polytint.sb*(1.f/255.f)); // spriteext full alpha control float alpha = float_trans(dameth & DAMETH_MASKPROPS, drawpoly_blend) * (1.f - drawpoly_alpha); if (pth) { // tinting polytintflags_t const tintflags = hictinting[globalpal].f; if (!(tintflags & HICTINT_PRECOMPUTED)) { if (pth->flags & PTH_HIGHTILE) { if (pth->palnum != globalpal || (pth->effects & HICTINT_IN_MEMORY) || (tintflags & HICTINT_APPLYOVERALTPAL)) hictinting_apply(tint, globalpal); } else if (tintflags & (HICTINT_USEONART|HICTINT_ALWAYSUSEART)) hictinting_apply(tint, globalpal); } // global tinting if ((pth->flags & PTH_HIGHTILE) && have_basepal_tint()) hictinting_apply(tint, MAXPALOOKUPS-1); } glUniformMatrix4fv(projMatrixLoc, 1, false, projectionMatrix); glUniformMatrix4fv(mvMatrixLoc, 1, false, modelViewMatrix); glUniform1i(texSamplerLoc, 0); glUniform1i(fullBrightSamplerLoc, 1); glUniform2fv(texOffsetLoc, 1, texOffset); glUniform2fv(texScaleLoc, 1, texScale); glUniform4fv(tintLoc, 1, tint); glUniform1f(alphaLoc, alpha); const float fogRange[2] = {fogresult, fogresult2}; glUniform2fv(fogRangeLoc, 1, fogRange); glUniform4fv(fogColorLoc, 1, (GLfloat*) &fogcol); if (indexBufferID == 0) { glDrawArrays(mode, 0, numElements); } else { glDrawElements(mode, numElements, GL_UNSIGNED_SHORT, 0); } glUseProgram(0); glDisableVertexAttribArray(0); glDisableVertexAttribArray(1); //POGOTODO: again, these state changes should be batched in the future, rather than on each VBO rendered glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glDisable(GL_CULL_FACE); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_TEXTURE_COORD_ARRAY); polymost_resetVertexPointers(); } static void polymost_lockSubBuffer(uint32_t subBufferIndex) { if (drawpolyVertsSync[subBufferIndex]) { glDeleteSync(drawpolyVertsSync[subBufferIndex]); } drawpolyVertsSync[subBufferIndex] = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0); } static void polymost_waitForSubBuffer(uint32_t subBufferIndex) { if (drawpolyVertsSync[subBufferIndex]) { while (true) { // we only need to flush if there's a possibility that drawpolyVertsBufferLength is // so small that we can eat through 3 times the buffer size in a single frame GLenum waitResult = glClientWaitSync(drawpolyVertsSync[subBufferIndex], GL_SYNC_FLUSH_COMMANDS_BIT, 500000); if (waitResult == GL_ALREADY_SIGNALED || waitResult == GL_CONDITION_SATISFIED) { return; } static char loggedLongWait = false; if (waitResult == GL_TIMEOUT_EXPIRED && !loggedLongWait) { OSD_Printf("polymost_waitForBuffer(): Had to wait for the drawpoly buffer to become available. For performance, try increasing buffer size with r_drawpolyVertsBufferLength.\n"); loggedLongWait = true; } } } } static void polymost_drawpoly(vec2f_t const * const dpxy, int32_t const n, int32_t method) { if (method == DAMETH_BACKFACECULL || #ifdef YAX_ENABLE g_nodraw || #endif (uint32_t)globalpicnum >= MAXTILES) return; const int32_t method_ = method; if (n == 3) { if ((dpxy[0].x-dpxy[1].x) * (dpxy[2].y-dpxy[1].y) >= (dpxy[2].x-dpxy[1].x) * (dpxy[0].y-dpxy[1].y)) return; //for triangle } else { float f = 0; //f is area of polygon / 2 for (bssize_t i=n-2, j=n-1,k=0; k= 3) && (px[j-1] == px[0]) && (py[j-1] == py[0])) j--; if (j < 3) return; int const npoints = j; if (skyclamphack) method |= DAMETH_CLAMPED; pthtyp *pth = our_texcache_fetch(method); if (!pth) { if (editstatus) { Bsprintf(ptempbuf, "pth==NULL! (bad pal?) pic=%d pal=%d", globalpicnum, globalpal); polymost_printext256(8,8, editorcolors[15],editorcolors[5], ptempbuf, 0); } return; } static int32_t fullbright_pass = 0; if (pth->flags & PTH_HASFULLBRIGHT && r_fullbrights) { if (!fullbright_pass) fullbright_pass = 1; else if (fullbright_pass == 2) pth = pth->ofb; } // If we aren't rendmode 3, we're in Polymer, which means this code is // used for rotatesprite only. Polymer handles all the material stuff, // just submit the geometry and don't mess with textures. if (getrendermode() == REND_POLYMOST) { glBindTexture(GL_TEXTURE_2D, pth ? pth->glpic : 0); if (drawpoly_srepeat) glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_REPEAT); if (drawpoly_trepeat) glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_REPEAT); } // texture scale by parkar request if (pth && pth->hicr && !drawingskybox && ((pth->hicr->scale.x != 1.0f) || (pth->hicr->scale.y != 1.0f))) { glMatrixMode(GL_TEXTURE); glLoadIdentity(); glScalef(pth->hicr->scale.x, pth->hicr->scale.y, 1.0f); glMatrixMode(GL_MODELVIEW); } #ifdef USE_GLEXT int32_t texunits = GL_TEXTURE0; // detail texture if (r_detailmapping) { pthtyp *detailpth = NULL; if (usehightile && !drawingskybox && hicfindsubst(globalpicnum, DETAILPAL, 1) && (detailpth = texcache_fetch(globalpicnum, DETAILPAL, 0, method & ~DAMETH_MASKPROPS)) && detailpth && detailpth->hicr && detailpth->hicr->palnum == DETAILPAL) { polymost_setupdetailtexture(++texunits, detailpth->glpic); glMatrixMode(GL_TEXTURE); glLoadIdentity(); if (pth && pth->hicr && ((pth->hicr->scale.x != 1.0f) || (pth->hicr->scale.y != 1.0f))) glScalef(pth->hicr->scale.x, pth->hicr->scale.y, 1.0f); if ((detailpth->hicr->scale.x != 1.0f) || (detailpth->hicr->scale.y != 1.0f)) glScalef(detailpth->hicr->scale.x, detailpth->hicr->scale.y, 1.0f); glMatrixMode(GL_MODELVIEW); } } // glow texture if (r_glowmapping) { pthtyp *glowpth = NULL; if (usehightile && !drawingskybox && hicfindsubst(globalpicnum, GLOWPAL, 1) && (glowpth = texcache_fetch(globalpicnum, GLOWPAL, 0, (method & ~DAMETH_MASKPROPS) | DAMETH_MASK)) && glowpth && glowpth->hicr && (glowpth->hicr->palnum == GLOWPAL)) { polymost_setupglowtexture(++texunits, glowpth->glpic); } } #endif vec2f_t hacksc = { 1.f, 1.f }; if (pth && (pth->flags & PTH_HIGHTILE)) { hacksc = pth->scale; tsiz = pth->siz; } vec2_t tsiz2 = tsiz; if (!glinfo.texnpot) { for (tsiz2.x = 1; tsiz2.x < tsiz.x; tsiz2.x += tsiz2.x) ; /* do nothing */ for (tsiz2.y = 1; tsiz2.y < tsiz.y; tsiz2.y += tsiz2.y) ; /* do nothing */ } if (!(method & DAMETH_MASKPROPS) && fullbright_pass < 2) { glDisable(GL_BLEND); glDisable(GL_ALPHA_TEST); } else { float const al = waloff[globalpicnum] ? alphahackarray[globalpicnum] != 0 ? alphahackarray[globalpicnum] * (1.f/255.f): (pth && pth->hicr && pth->hicr->alphacut >= 0.f ? pth->hicr->alphacut : 0.f) : 0.f; glAlphaFunc(GL_GREATER, al); handle_blend((method & DAMETH_MASKPROPS) > DAMETH_MASK, drawpoly_blend, (method & DAMETH_MASKPROPS) == DAMETH_TRANS2); glEnable(GL_BLEND); glEnable(GL_ALPHA_TEST); } float pc[4]; #ifdef POLYMER if (getrendermode() == REND_POLYMER && pr_artmapping && !(globalflags & GLOBAL_NO_GL_TILESHADES) && polymer_eligible_for_artmap(globalpicnum, pth)) pc[0] = pc[1] = pc[2] = 1.0f; else #endif { polytint_t const & tint = hictinting[globalpal]; pc[0] = (1.f-(tint.sr*(1.f/255.f)))*getshadefactor(globalshade)+(tint.sr*(1.f/255.f)); pc[1] = (1.f-(tint.sg*(1.f/255.f)))*getshadefactor(globalshade)+(tint.sg*(1.f/255.f)); pc[2] = (1.f-(tint.sb*(1.f/255.f)))*getshadefactor(globalshade)+(tint.sb*(1.f/255.f)); } // spriteext full alpha control pc[3] = float_trans(method & DAMETH_MASKPROPS, drawpoly_blend) * (1.f - drawpoly_alpha); if (pth) { // tinting polytintflags_t const tintflags = hictinting[globalpal].f; if (!(tintflags & HICTINT_PRECOMPUTED)) { if (pth->flags & PTH_HIGHTILE) { if (pth->palnum != globalpal || (pth->effects & HICTINT_IN_MEMORY) || (tintflags & HICTINT_APPLYOVERALTPAL)) hictinting_apply(pc, globalpal); } else if (tintflags & (HICTINT_USEONART|HICTINT_ALWAYSUSEART)) hictinting_apply(pc, globalpal); } // global tinting if ((pth->flags & PTH_HIGHTILE) && have_basepal_tint()) hictinting_apply(pc, MAXPALOOKUPS-1); globaltinting_apply(pc); } glColor4f(pc[0], pc[1], pc[2], pc[3]); //Hack for walls&masked walls which use textures that are not a power of 2 if ((pow2xsplit) && (tsiz.x != tsiz2.x)) { vec3f_t const opxy[3] = { { py[1] - py[2], py[2] - py[0], py[0] - py[1] }, { px[2] - px[1], px[0] - px[2], px[1] - px[0] }, { px[0] - .5f, py[0] - .5f, 0 } }; float const r = 1.f / (opxy[0].x*px[0] + opxy[0].y*px[1] + opxy[0].z*px[2]); vec3f_t ngx = { (opxy[0].x * dd[0] + opxy[0].y * dd[1] + opxy[0].z * dd[2]) * r, ((opxy[0].x * uu[0] + opxy[0].y * uu[1] + opxy[0].z * uu[2]) * r) * hacksc.x, ((opxy[0].x * vv[0] + opxy[0].y * vv[1] + opxy[0].z * vv[2]) * r) * hacksc.y }; vec3f_t ngy = { (opxy[1].x * dd[0] + opxy[1].y * dd[1] + opxy[1].z * dd[2]) * r, ((opxy[1].x * uu[0] + opxy[1].y * uu[1] + opxy[1].z * uu[2]) * r) * hacksc.x, ((opxy[1].x * vv[0] + opxy[1].y * vv[1] + opxy[1].z * vv[2]) * r) * hacksc.y }; vec3f_t ngo = { dd[0] - opxy[2].x * ngx.d - opxy[2].y * ngy.d, (uu[0] - opxy[2].x * ngx.u - opxy[2].y * ngy.u) * hacksc.x, (vv[0] - opxy[2].x * ngx.v - opxy[2].y * ngy.v) * hacksc.y }; float const uoffs = ((float)(tsiz2.x - tsiz.x) * 0.5f); ngx.u -= ngx.d * uoffs; ngy.u -= ngy.d * uoffs; ngo.u -= ngo.d * uoffs; float du0 = 0.f, du1 = 0.f; //Find min&max u coordinates (du0...du1) for (bssize_t i=0; i du1) du1 = f; } float const rf = 1.0f / tsiz.x; int const ix1 = (int)floorf(du1 * rf); for (bssize_t ix0 = (int)floorf(du0 * rf); ix0 <= ix1; ++ix0) { du0 = (float)(ix0 * tsiz.x); // + uoffs; du1 = (float)((ix0 + 1) * tsiz.x); // + uoffs; float duj = (px[0]*ngx.u + py[0]*ngy.u + ngo.u) / (px[0]*ngx.d + py[0]*ngy.d + ngo.d); int i = 0, nn = 0; do { j = i + 1; if (j == npoints) j = 0; float const dui = duj; duj = (px[j]*ngx.u + py[j]*ngy.u + ngo.u) / (px[j]*ngx.d + py[j]*ngy.d + ngo.d); if ((du0 <= dui) && (dui <= du1)) { uu[nn] = px[i]; vv[nn] = py[i]; nn++; } //ox*(ngx.u-ngx.d*du1) + oy*(ngy.u-ngdy*du1) + (ngo.u-ngo.d*du1) = 0 //(px[j]-px[i])*f + px[i] = ox //(py[j]-py[i])*f + py[i] = oy ///Solve for f //((px[j]-px[i])*f + px[i])*(ngx.u-ngx.d*du1) + //((py[j]-py[i])*f + py[i])*(ngy.u-ngdy*du1) + (ngo.u-ngo.d*du1) = 0 //POGOTODO: this could be a static inline function -- the do/while loop should be just a pair of braces #define DRAWPOLY_MATH_BULLSHIT(XXX) \ do \ { \ float const f = -(px[i] * (ngx.u - ngx.d * XXX) + py[i] * (ngy.u - ngy.d * XXX) + (ngo.u - ngo.d * XXX)) / \ ((px[j] - px[i]) * (ngx.u - ngx.d * XXX) + (py[j] - py[i]) * (ngy.u - ngy.d * XXX)); \ uu[nn] = (px[j] - px[i]) * f + px[i]; \ vv[nn] = (py[j] - py[i]) * f + py[i]; \ ++nn; \ } while (0) if (duj <= dui) { if ((du1 < duj) != (du1 < dui)) DRAWPOLY_MATH_BULLSHIT(du1); if ((du0 < duj) != (du0 < dui)) DRAWPOLY_MATH_BULLSHIT(du0); } else { if ((du0 < duj) != (du0 < dui)) DRAWPOLY_MATH_BULLSHIT(du0); if ((du1 < duj) != (du1 < dui)) DRAWPOLY_MATH_BULLSHIT(du1); } #undef DRAWPOLY_MATH_BULLSHIT i = j; } while (i); if (nn < 3) continue; if (nn+drawpolyVertsOffset > (drawpolyVertsSubBufferIndex+1)*drawpolyVertsBufferLength) { if (persistentStreamBuffer) { // lock this sub buffer polymost_lockSubBuffer(drawpolyVertsSubBufferIndex); drawpolyVertsSubBufferIndex = (drawpolyVertsSubBufferIndex+1)%3; drawpolyVertsOffset = drawpolyVertsSubBufferIndex*drawpolyVertsBufferLength; // wait for the next sub buffer to become available before writing to it // our buffer size should be long enough that no waiting is ever necessary polymost_waitForSubBuffer(drawpolyVertsSubBufferIndex); } else { glBufferData(GL_ARRAY_BUFFER, sizeof(float)*5*drawpolyVertsBufferLength, NULL, GL_STREAM_DRAW); drawpolyVertsOffset = 0; } } vec2f_t const invtsiz2 = { 1.f / tsiz2.x, 1.f / tsiz2.y }; uint32_t off = persistentStreamBuffer ? drawpolyVertsOffset : 0; for (i = 0; i (drawpolyVertsSubBufferIndex+1)*drawpolyVertsBufferLength) { if (persistentStreamBuffer) { // lock this sub buffer polymost_lockSubBuffer(drawpolyVertsSubBufferIndex); drawpolyVertsSubBufferIndex = (drawpolyVertsSubBufferIndex+1)%3; drawpolyVertsOffset = drawpolyVertsSubBufferIndex*drawpolyVertsBufferLength; // wait for the next sub buffer to become available before writing to it // our buffer size should be long enough that no waiting is ever necessary polymost_waitForSubBuffer(drawpolyVertsSubBufferIndex); } else { glBufferData(GL_ARRAY_BUFFER, sizeof(float)*5*drawpolyVertsBufferLength, NULL, GL_STREAM_DRAW); drawpolyVertsOffset = 0; } } vec2f_t const scale = { 1.f / tsiz2.x * hacksc.x, 1.f / tsiz2.y * hacksc.y }; uint32_t off = persistentStreamBuffer ? drawpolyVertsOffset : 0; for (bssize_t i = 0; i < npoints; ++i) { float const r = 1.f / dd[i]; //update verts drawpolyVerts[(off+i)*5] = (px[i] - ghalfx) * r * grhalfxdown10x; drawpolyVerts[(off+i)*5+1] = (ghoriz - py[i]) * r * grhalfxdown10; drawpolyVerts[(off+i)*5+2] = r * (1.f / 1024.f); //update texcoords drawpolyVerts[(off+i)*5+3] = uu[i] * r * scale.x; drawpolyVerts[(off+i)*5+4] = vv[i] * r * scale.y; } if (!persistentStreamBuffer) { glBufferSubData(GL_ARRAY_BUFFER, drawpolyVertsOffset*sizeof(float)*5, npoints*sizeof(float)*5, drawpolyVerts); } glDrawArrays(GL_TRIANGLE_FAN, drawpolyVertsOffset, npoints); drawpolyVertsOffset += npoints; } #ifdef USE_GLEXT while (texunits > GL_TEXTURE0) { glActiveTexture(texunits); glMatrixMode(GL_TEXTURE); glLoadIdentity(); glMatrixMode(GL_MODELVIEW); glClientActiveTexture(texunits); glDisableClientState(GL_TEXTURE_COORD_ARRAY); glTexEnvf(GL_TEXTURE_ENV, GL_RGB_SCALE, 1.0f); glDisable(GL_TEXTURE_2D); --texunits; } glActiveTexture(GL_TEXTURE0); #endif glMatrixMode(GL_TEXTURE); glLoadIdentity(); glMatrixMode(GL_MODELVIEW); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); if (getrendermode() != REND_POLYMOST) return; int const clamp_mode = glinfo.clamptoedge ? GL_CLAMP_TO_EDGE : GL_CLAMP; if (drawpoly_srepeat) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, clamp_mode); if (drawpoly_trepeat) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, clamp_mode); if (fullbright_pass == 1) { int32_t const shade = globalshade; globalshade = -128; fullbright_pass = 2; glDisable(GL_FOG); glDepthFunc(GL_EQUAL); polymost_drawpoly(dpxy, n, method_); glDepthFunc(GL_LEQUAL); if (!nofog) glEnable(GL_FOG); globalshade = shade; fullbright_pass = 0; } } static inline void vsp_finalize_init(int32_t const vcnt) { for (bssize_t i=0; i= n1.x) || (n0.x >= dm1.x) || (vsp[i].ctag <= 0)) continue; float const dx = n1.x-n0.x; float const cy[2] = { vsp[i].cy[0], vsp[i].fy[0] }, cv[2] = { vsp[i].cy[1]-cy[0], vsp[i].fy[1]-cy[1] }; int scnt = 0; //Test if left edge requires split (dm0.x,dm0.y) (nx0,cy(0)), if ((dm0.x > n0.x) && (dm0.x < n1.x)) { float const t = (dm0.x-n0.x)*cv[dir] - (dm0.y-cy[dir])*dx; if (((!dir) && (t < 0.f)) || ((dir) && (t > 0.f))) { spx[scnt] = dm0.x; spt[scnt] = -1; scnt++; } } //Test for intersection on umost (0) and dmost (1) float const d[2] = { ((dm0.y - dm1.y) * dx) - ((dm0.x - dm1.x) * cv[0]), ((dm0.y - dm1.y) * dx) - ((dm0.x - dm1.x) * cv[1]) }; float const n[2] = { ((dm0.y - cy[0]) * dx) - ((dm0.x - n0.x) * cv[0]), ((dm0.y - cy[1]) * dx) - ((dm0.x - n0.x) * cv[1]) }; float const fnx[2] = { dm0.x + ((n[0] / d[0]) * (dm1.x - dm0.x)), dm0.x + ((n[1] / d[1]) * (dm1.x - dm0.x)) }; if ((Bfabsf(d[0]) > Bfabsf(n[0])) && (d[0] * n[0] >= 0.f) && (fnx[0] > n0.x) && (fnx[0] < n1.x)) spx[scnt] = fnx[0], spt[scnt++] = 0; if ((Bfabsf(d[1]) > Bfabsf(n[1])) && (d[1] * n[1] >= 0.f) && (fnx[1] > n0.x) && (fnx[1] < n1.x)) spx[scnt] = fnx[1], spt[scnt++] = 1; //Nice hack to avoid full sort later :) if ((scnt >= 2) && (spx[scnt-1] < spx[scnt-2])) { swapfloat(&spx[scnt-1], &spx[scnt-2]); swaplong(&spt[scnt-1], &spt[scnt-2]); } //Test if right edge requires split if ((dm1.x > n0.x) && (dm1.x < n1.x)) { float const t = (dm1.x-n0.x)*cv[dir] - (dm1.y-cy[dir])*dx; if (((!dir) && (t < 0.f)) || ((dir) && (t > 0.f))) { spx[scnt] = dm1.x; spt[scnt] = -1; scnt++; } } vsp[i].tag = vsp[newi].tag = -1; float const rdx = 1.f/dx; for (bssize_t z=0, vcnt=0; z<=scnt; z++,i=vcnt) { float t; if (z == scnt) goto skip; t = (spx[z]-n0.x)*rdx; vcnt = vsinsaft(i); vsp[i].cy[1] = t*cv[0] + cy[0]; vsp[i].fy[1] = t*cv[1] + cy[1]; vsp[vcnt].x = spx[z]; vsp[vcnt].cy[0] = vsp[i].cy[1]; vsp[vcnt].fy[0] = vsp[i].fy[1]; vsp[vcnt].tag = spt[z]; skip: ; int32_t const ni = vsp[i].n; if (!ni) continue; //this 'if' fixes many bugs! float const dx0 = vsp[i].x; if (dm0.x > dx0) continue; float const dx1 = vsp[ni].x; if (dm1.x < dx1) continue; n0.y = (dx0-dm0.x)*slop + dm0.y; n1.y = (dx1-dm0.x)*slop + dm0.y; // dx0 dx1 // ~ ~ //---------------------------- // t0+=0 t1+=0 // vsp[i].cy[0] vsp[i].cy[1] //============================ // t0+=1 t1+=3 //============================ // vsp[i].fy[0] vsp[i].fy[1] // t0+=2 t1+=6 // // ny0 ? ny1 ? int k = 4; if ((vsp[i].tag == 0) || (n0.y <= vsp[i].cy[0]+DOMOST_OFFSET)) k--; if ((vsp[i].tag == 1) || (n0.y >= vsp[i].fy[0]-DOMOST_OFFSET)) k++; if ((vsp[ni].tag == 0) || (n1.y <= vsp[i].cy[1]+DOMOST_OFFSET)) k -= 3; if ((vsp[ni].tag == 1) || (n1.y >= vsp[i].fy[1]-DOMOST_OFFSET)) k += 3; if (!dir) { switch (k) { case 4: case 5: case 7: { vec2f_t const dpxy[4] = { { dx0, vsp[i].cy[0] }, { dx1, vsp[i].cy[1] }, { dx1, n1.y }, { dx0, n0.y } }; vsp[i].cy[0] = n0.y; vsp[i].cy[1] = n1.y; vsp[i].ctag = gtag; polymost_drawpoly(dpxy, 4, domostpolymethod); } break; case 1: case 2: { vec2f_t const dpxy[3] = { { dx0, vsp[i].cy[0] }, { dx1, vsp[i].cy[1] }, { dx0, n0.y } }; vsp[i].cy[0] = n0.y; vsp[i].ctag = gtag; polymost_drawpoly(dpxy, 3, domostpolymethod); } break; case 3: case 6: { vec2f_t const dpxy[3] = { { dx0, vsp[i].cy[0] }, { dx1, vsp[i].cy[1] }, { dx1, n1.y } }; vsp[i].cy[1] = n1.y; vsp[i].ctag = gtag; polymost_drawpoly(dpxy, 3, domostpolymethod); } break; case 8: { vec2f_t const dpxy[4] = { { dx0, vsp[i].cy[0] }, { dx1, vsp[i].cy[1] }, { dx1, vsp[i].fy[1] }, { dx0, vsp[i].fy[0] } }; vsp[i].ctag = vsp[i].ftag = -1; polymost_drawpoly(dpxy, 4, domostpolymethod); } default: break; } } else { switch (k) { case 4: case 3: case 1: { vec2f_t const dpxy[4] = { { dx0, n0.y }, { dx1, n1.y }, { dx1, vsp[i].fy[1] }, { dx0, vsp[i].fy[0] } }; vsp[i].fy[0] = n0.y; vsp[i].fy[1] = n1.y; vsp[i].ftag = gtag; polymost_drawpoly(dpxy, 4, domostpolymethod); } break; case 7: case 6: { vec2f_t const dpxy[3] = { { dx0, n0.y }, { dx1, vsp[i].fy[1] }, { dx0, vsp[i].fy[0] } }; vsp[i].fy[0] = n0.y; vsp[i].ftag = gtag; polymost_drawpoly(dpxy, 3, domostpolymethod); } break; case 5: case 2: { vec2f_t const dpxy[3] = { { dx0, vsp[i].fy[0] }, { dx1, n1.y }, { dx1, vsp[i].fy[1] } }; vsp[i].fy[1] = n1.y; vsp[i].ftag = gtag; polymost_drawpoly(dpxy, 3, domostpolymethod); } break; case 0: { vec2f_t const dpxy[4] = { { dx0, vsp[i].cy[0] }, { dx1, vsp[i].cy[1] }, { dx1, vsp[i].fy[1] }, { dx0, vsp[i].fy[0] } }; vsp[i].ctag = vsp[i].ftag = -1; polymost_drawpoly(dpxy, 4, domostpolymethod); } default: break; } } } } gtag++; //Combine neighboring vertical strips with matching collinear top&bottom edges //This prevents x-splits from propagating through the entire scan #ifdef COMBINE_STRIPS int i = vsp[0].n; while (i) { if ((vsp[i].cy[0] >= vsp[i].fy[0]) && (vsp[i].cy[1] >= vsp[i].fy[1])) vsp[i].ctag = vsp[i].ftag = -1; int const ni = vsp[i].n; if ((vsp[i].ctag == vsp[ni].ctag) && (vsp[i].ftag == vsp[ni].ftag) && ((vsp[i].cy[1] <= vsp[ni].cy[1]) || (vsp[i].fy[1] <= vsp[ni].fy[1]))) { vsp[i].cy[1] = vsp[ni].cy[1]; vsp[i].fy[1] = vsp[ni].fy[1]; vsdel(ni); } else i = ni; } #endif } #define POINT2(i) (wall[wall[i].point2]) void polymost_editorfunc(void) { const float ratio = (r_usenewaspect ? (fxdim / fydim) / (320.f / 240.f) : 1.f) * (1.f / get_projhack_ratio()); vec3f_t tvect = { (searchx - ghalfx) * ratio, (searchy - ghoriz) * ratio, ghalfx }; //Tilt rotation vec3f_t o = { tvect.x * gctang + tvect.y * gstang, tvect.y * gctang - tvect.x * gstang, tvect.z }; //Up/down rotation tvect.x = o.z*gchang - o.y*gshang; tvect.y = o.x; tvect.z = o.y*gchang + o.z*gshang; //Standard Left/right rotation vec3_t v = { Blrintf(tvect.x * fcosglobalang - tvect.y * fsinglobalang), Blrintf(tvect.x * fsinglobalang + tvect.y * fcosglobalang), Blrintf(tvect.z * 16384.f) }; vec3_t vect = { globalposx, globalposy, globalposz }; hitdata_t *hit = &polymost_hitdata; hitallsprites = 1; hitscan((const vec3_t *) &vect, globalcursectnum, //Start position v.x>>10, v.y>>10, v.z>>6, hit, 0xffff0030); if (hit->sect != -1) // if hitsect is -1, hitscan overflowed somewhere { int32_t cz, fz; getzsofslope(hit->sect, hit->pos.x, hit->pos.y, &cz, &fz); hitallsprites = 0; searchsector = hit->sect; if (hit->pos.zpos.z>fz) searchstat = 2; else if (hit->wall >= 0) { searchbottomwall = searchwall = hit->wall; searchstat = 0; if (wall[hit->wall].nextwall >= 0) { getzsofslope(wall[hit->wall].nextsector, hit->pos.x, hit->pos.y, &cz, &fz); if (hit->pos.z > fz) { searchisbottom = 1; if (wall[hit->wall].cstat&2) //'2' bottoms of walls searchbottomwall = wall[hit->wall].nextwall; } else { searchisbottom = 0; if ((hit->pos.z > cz) && (wall[hit->wall].cstat&(16+32))) //masking or 1-way searchstat = 4; } } } else if (hit->sprite >= 0) { searchwall = hit->sprite; searchstat = 3; } else { getzsofslope(hit->sect, hit->pos.x, hit->pos.y, &cz, &fz); if ((hit->pos.z<<1) < cz+fz) searchstat = 1; else searchstat = 2; //if (vz < 0) searchstat = 1; else searchstat = 2; //Won't work for slopes :/ } if (preview_mouseaim) { if (spritesortcnt == maxspritesonscreen) spritesortcnt--; uspritetype *tsp = &tsprite[spritesortcnt]; double dadist, x, y, z; Bmemcpy(tsp, &hit->pos, sizeof(vec3_t)); x = tsp->x-globalposx; y=tsp->y-globalposy; z=(tsp->z-globalposz)/16.0; dadist = Bsqrt(x*x + y*y + z*z); tsp->sectnum = hit->sect; tsp->picnum = 2523; // CROSSHAIR tsp->cstat = 128; if (hit->wall != -1) { tsp->cstat |= 16; int const ang = getangle(wall[hit->wall].x - POINT2(hit->wall).x, wall[hit->wall].y - POINT2(hit->wall).y); tsp->ang = ang + 512; vec2_t const offs = { sintable[(ang + 1024) & 2047] >> 11, sintable[(ang + 512) & 2047] >> 11}; tsp->x -= offs.x; tsp->y -= offs.y; } else if (hit->sprite == -1 && (hit->pos.z == sector[hit->sect].floorz || hit->pos.z == sector[hit->sect].ceilingz)) { tsp->cstat = 32; tsp->ang = getangle(hit->pos.x - globalposx, hit->pos.y - globalposy); } else if (hit->sprite >= 0) { if (sprite[hit->sprite].cstat & 16) { tsp->cstat |= 16; tsp->ang = sprite[hit->sprite].ang; } else tsp->ang = (globalang + 1024) & 2047; vec2_t const offs = { sintable[(tsp->ang + 1536) & 2047] >> 11, sintable[(tsp->ang + 1024) & 2047] >> 11 }; tsp->x -= offs.x; tsp->y -= offs.y; } static int lastupdate = 0; static int shd = 30; static int shdinc = 1; if (totalclock > lastupdate) { shd += shdinc; if (shd >= 30 || shd <= 0) { shdinc = -shdinc; shd += shdinc; } lastupdate = totalclock + 3; } tsp->shade = 30-shd; tsp->owner = MAXSPRITES-1; tsp->xrepeat = tsp->yrepeat = min(max(1, (int32_t) (dadist*((double)(shd*3)/3200.0))), 255); tsp->extra = 0; sprite[tsp->owner].xoffset = sprite[tsp->owner].yoffset = 0; tspriteptr[spritesortcnt++] = tsp; } if ((searchstat == 1 || searchstat == 2) && searchsector >= 0) { vec2_t const scrv = { (v.x >> 12), (v.y >> 12) }; vec2_t const scrv_r = { scrv.y, -scrv.x }; walltype const * const wal = &wall[sector[searchsector].wallptr]; uint64_t bestwdistsq = 0x7fffffff; int32_t bestk = -1; for (bssize_t k = 0; k < sector[searchsector].wallnum; k++) { vec2_t const w1 = { wal[k].x, wal[k].y }; vec2_t const w2 = { wall[wal[k].point2].x, wall[wal[k].point2].y }; vec2_t const w21 = { w1.x - w2.x, w1.y - w2.y }; vec2_t const pw1 = { w1.x - hit->pos.x, w1.y - hit->pos.y }; vec2_t const pw2 = { w2.x - hit->pos.x, w2.y - hit->pos.y }; float w1d = (float)(scrv_r.x * pw1.x + scrv_r.y * pw1.y); float w2d = (float)-(scrv_r.x * pw2.x + scrv_r.y * pw2.y); if ((w1d == 0 && w2d == 0) || (w1d < 0 || w2d < 0)) continue; vec2_t const ptonline = { (int32_t)(w2.x + (w2d / (w1d + w2d)) * w21.x), (int32_t)(w2.y + (w2d / (w1d + w2d)) * w21.y) }; vec2_t const scrp = { ptonline.x - vect.x, ptonline.y - vect.y }; if (scrv.x * scrp.x + scrv.y * scrp.y <= 0) continue; int64_t const t1 = scrp.x; int64_t const t2 = scrp.y; uint64_t const wdistsq = t1 * t1 + t2 * t2; if (wdistsq < bestwdistsq) { bestk = k; bestwdistsq = wdistsq; } } if (bestk >= 0) searchwall = sector[searchsector].wallptr + bestk; } } searchit = 0; } void polymost_scansector(int32_t sectnum); // variables that are set to ceiling- or floor-members, depending // on which one is processed right now static int32_t global_cf_z; static float global_cf_xpanning, global_cf_ypanning, global_cf_heinum; static int32_t global_cf_shade, global_cf_pal, global_cf_fogpal; static int32_t (*global_getzofslope_func)(int16_t, int32_t, int32_t); static void polymost_internal_nonparallaxed(vec2f_t n0, vec2f_t n1, float ryp0, float ryp1, float x0, float x1, float y0, float y1, int32_t sectnum) { int const have_floor = sectnum & MAXSECTORS; sectnum &= ~MAXSECTORS; usectortype const * const sec = (usectortype *)§or[sectnum]; // comments from floor code: //(singlobalang/-16384*(sx-ghalfx) + 0*(sy-ghoriz) + (cosviewingrangeglobalang/16384)*ghalfx)*d + globalposx = u*16 //(cosglobalang/ 16384*(sx-ghalfx) + 0*(sy-ghoriz) + (sinviewingrangeglobalang/16384)*ghalfx)*d + globalposy = v*16 //( 0*(sx-ghalfx) + 1*(sy-ghoriz) + ( 0)*ghalfx)*d + globalposz/16 = (sec->floorz/16) float ft[4] = { fglobalposx, fglobalposy, fcosglobalang, fsinglobalang }; if (globalorientation & 64) { //relative alignment vec2f_t fxy = { (float)(wall[wall[sec->wallptr].point2].x - wall[sec->wallptr].x), (float)(wall[wall[sec->wallptr].point2].y - wall[sec->wallptr].y) }; float r = polymost_invsqrt_approximation(fxy.x * fxy.x + fxy.y * fxy.y); fxy.x *= r; fxy.y *= r; ft[0] = ((float)(globalposx - wall[sec->wallptr].x)) * fxy.x + ((float)(globalposy - wall[sec->wallptr].y)) * fxy.y; ft[1] = ((float)(globalposy - wall[sec->wallptr].y)) * fxy.x - ((float)(globalposx - wall[sec->wallptr].x)) * fxy.y; ft[2] = fcosglobalang * fxy.x + fsinglobalang * fxy.y; ft[3] = fsinglobalang * fxy.x - fcosglobalang * fxy.y; globalorientation ^= (!(globalorientation & 4)) ? 32 : 16; } xtex.d = 0; ytex.d = gxyaspect; if (!(globalorientation&2) && global_cf_z-globalposz) // PK 2012: don't allow div by zero ytex.d /= (double)(global_cf_z-globalposz); otex.d = -ghoriz * ytex.d; if (globalorientation & 8) { ft[0] *= (1.f / 8.f); ft[1] *= -(1.f / 8.f); ft[2] *= (1.f / 2097152.f); ft[3] *= (1.f / 2097152.f); } else { ft[0] *= (1.f / 16.f); ft[1] *= -(1.f / 16.f); ft[2] *= (1.f / 4194304.f); ft[3] *= (1.f / 4194304.f); } xtex.u = ft[3] * -(1.f / 65536.f) * (double)viewingrange; xtex.v = ft[2] * -(1.f / 65536.f) * (double)viewingrange; ytex.u = ft[0] * ytex.d; ytex.v = ft[1] * ytex.d; otex.u = ft[0] * otex.d; otex.v = ft[1] * otex.d; otex.u += (ft[2] - xtex.u) * ghalfx; otex.v -= (ft[3] + xtex.v) * ghalfx; //Texture flipping if (globalorientation&4) { swapdouble(&xtex.u, &xtex.v); swapdouble(&ytex.u, &ytex.v); swapdouble(&otex.u, &otex.v); } if (globalorientation&16) { xtex.u = -xtex.u; ytex.u = -ytex.u; otex.u = -otex.u; } if (globalorientation&32) { xtex.v = -xtex.v; ytex.v = -ytex.v; otex.v = -otex.v; } //Texture panning vec2f_t fxy = { global_cf_xpanning * ((float)(1 << (picsiz[globalpicnum] & 15))) * (1.0f / 256.f), global_cf_ypanning * ((float)(1 << (picsiz[globalpicnum] >> 4))) * (1.0f / 256.f) }; if ((globalorientation&(2+64)) == (2+64)) //Hack for panning for slopes w/ relative alignment { float r = global_cf_heinum * (1.0f / 4096.f); r = polymost_invsqrt_approximation(r * r + 1); if (!(globalorientation & 4)) fxy.y *= r; else fxy.x *= r; } ytex.u += ytex.d*fxy.x; otex.u += otex.d*fxy.x; ytex.v += ytex.d*fxy.y; otex.v += otex.d*fxy.y; if (globalorientation&2) //slopes { //Pick some point guaranteed to be not collinear to the 1st two points vec2f_t const oxy = { n0.x + (n1.y - n0.y), n0.y + (n0.x - n1.x) }; float const ox2 = (oxy.y - fglobalposy) * gcosang - (oxy.x - fglobalposx) * gsinang; float oy2 = 1.f / ((oxy.x - fglobalposx) * gcosang2 + (oxy.y - fglobalposy) * gsinang2); double const px[3] = { x0, x1, ghalfx * ox2 * oy2 + ghalfx }; oy2 *= gyxscale; double py[3] = { ryp0 + (double)ghoriz, ryp1 + (double)ghoriz, oy2 + (double)ghoriz }; vec3d_t const duv[3] = { { (px[0] * xtex.d + py[0] * ytex.d + otex.d), (px[0] * xtex.u + py[0] * ytex.u + otex.u), (px[0] * xtex.v + py[0] * ytex.v + otex.v) }, { (px[1] * xtex.d + py[1] * ytex.d + otex.d), (px[1] * xtex.u + py[1] * ytex.u + otex.u), (px[1] * xtex.v + py[1] * ytex.v + otex.v) }, { (px[2] * xtex.d + py[2] * ytex.d + otex.d), (px[2] * xtex.u + py[2] * ytex.u + otex.u), (px[2] * xtex.v + py[2] * ytex.v + otex.v) } }; py[0] = y0; py[1] = y1; py[2] = (double)((float)(global_getzofslope_func(sectnum, (int)oxy.x, (int)oxy.y) - globalposz) * oy2 + ghoriz); vec3f_t oxyz[2] = { { (float)(py[1] - py[2]), (float)(py[2] - py[0]), (float)(py[0] - py[1]) }, { (float)(px[2] - px[1]), (float)(px[0] - px[2]), (float)(px[1] - px[0]) } }; float const r = 1.f / (oxyz[0].x * px[0] + oxyz[0].y * px[1] + oxyz[0].z * px[2]); xtex.d = (oxyz[0].x * duv[0].d + oxyz[0].y * duv[1].d + oxyz[0].z * duv[2].d) * r; xtex.u = (oxyz[0].x * duv[0].u + oxyz[0].y * duv[1].u + oxyz[0].z * duv[2].u) * r; xtex.v = (oxyz[0].x * duv[0].v + oxyz[0].y * duv[1].v + oxyz[0].z * duv[2].v) * r; ytex.d = (oxyz[1].x * duv[0].d + oxyz[1].y * duv[1].d + oxyz[1].z * duv[2].d) * r; ytex.u = (oxyz[1].x * duv[0].u + oxyz[1].y * duv[1].u + oxyz[1].z * duv[2].u) * r; ytex.v = (oxyz[1].x * duv[0].v + oxyz[1].y * duv[1].v + oxyz[1].z * duv[2].v) * r; otex.d = duv[0].d - px[0] * xtex.d - py[0] * ytex.d; otex.u = duv[0].u - px[0] * xtex.u - py[0] * ytex.u; otex.v = duv[0].v - px[0] * xtex.v - py[0] * ytex.v; if (globalorientation&64) //Hack for relative alignment on slopes { float r = global_cf_heinum * (1.0f / 4096.f); r = Bsqrtf(r*r+1); if (!(globalorientation&4)) { xtex.v *= r; ytex.v *= r; otex.v *= r; } else { xtex.u *= r; ytex.u *= r; otex.u *= r; } } } domostpolymethod = (globalorientation>>7) & DAMETH_MASKPROPS; pow2xsplit = 0; drawpoly_alpha = 0.f; drawpoly_blend = 0; calc_and_apply_fog(globalpicnum, fogshade(global_cf_shade, global_cf_pal), sec->visibility, POLYMOST_CHOOSE_FOG_PAL(global_cf_fogpal, global_cf_pal)); if (have_floor) { if (globalposz > getflorzofslope(sectnum, globalposx, globalposy)) domostpolymethod = DAMETH_BACKFACECULL; //Back-face culling polymost_domost(x0, y0, x1, y1); //flor } else { if (globalposz < getceilzofslope(sectnum, globalposx, globalposy)) domostpolymethod = DAMETH_BACKFACECULL; //Back-face culling polymost_domost(x1, y1, x0, y0); //ceil } domostpolymethod = DAMETH_NOMASK; } static void calc_ypanning(int32_t refposz, float ryp0, float ryp1, float x0, float x1, uint8_t ypan, uint8_t yrepeat, int32_t dopancor) { float const t0 = ((float)(refposz-globalposz))*ryp0 + ghoriz; float const t1 = ((float)(refposz-globalposz))*ryp1 + ghoriz; float t = ((xtex.d*x0 + otex.d) * (float)yrepeat) / ((x1-x0) * ryp0 * 2048.f); int i = (1<<(picsiz[globalpicnum]>>4)); if (i < tilesiz[globalpicnum].y) i <<= 1; #ifdef NEW_MAP_FORMAT if (g_loadedMapVersion >= 10) i = tilesiz[globalpicnum].y; else #endif if (polymost_is_npotmode()) { t *= (float)tilesiz[globalpicnum].y / i; i = tilesiz[globalpicnum].y; } else if (dopancor) { // Carry out panning "correction" to make it look like classic in some // cases, but failing in the general case. int32_t yoffs = Blrintf((i-tilesiz[globalpicnum].y)*(255.f/i)); if (ypan > 256-yoffs) ypan -= yoffs; } float const fy = (float) (ypan * i) * (1.f/256.f); xtex.v = (t0-t1)*t; ytex.v = (x1-x0)*t; otex.v = -xtex.v*x0 - ytex.v*t0 + fy*otex.d; xtex.v += fy*xtex.d; ytex.v += fy*ytex.d; } static inline int32_t testvisiblemost(float const x0, float const x1) { for (bssize_t i=vsp[0].n, newi; i; i=newi) { newi = vsp[i].n; if ((x0 < vsp[newi].x) && (vsp[i].x < x1) && (vsp[i].ctag >= 0)) return 1; } return 0; } static inline int polymost_getclosestpointonwall(vec2_t const * const pos, int32_t dawall, vec2_t * const n) { vec2_t const w = { wall[dawall].x, wall[dawall].y }; vec2_t const d = { POINT2(dawall).x - w.x, POINT2(dawall).y - w.y }; int64_t i = d.x * (pos->x - w.x) + d.y * (pos->y - w.y); if (i < 0) return 1; int64_t const j = d.x * d.x + d.y * d.y; if (i > j) return 1; i = tabledivide64((i << 15), j) << 15; n->x = w.x + ((d.x * i) >> 30); n->y = w.y + ((d.y * i) >> 30); return 0; } static void polymost_drawalls(int32_t const bunch) { drawpoly_alpha = 0.f; drawpoly_blend = 0; int32_t const sectnum = thesector[bunchfirst[bunch]]; usectortype const * const sec = (usectortype *)§or[sectnum]; //DRAW WALLS SECTION! for (bssize_t z=bunchfirst[bunch]; z>=0; z=bunchp2[z]) { int32_t const wallnum = thewall[z]; #ifdef YAX_ENABLE if (yax_nomaskpass==1 && yax_isislandwall(wallnum, !yax_globalcf) && (yax_nomaskdidit=1)) continue; #endif uwalltype * const wal = (uwalltype *)&wall[wallnum], *wal2 = (uwalltype *)&wall[wal->point2]; int32_t const nextsectnum = wal->nextsector; usectortype * const nextsec = nextsectnum>=0 ? (usectortype *)§or[nextsectnum] : NULL; //Offset&Rotate 3D coordinates to screen 3D space vec2f_t walpos = { (float)(wal->x-globalposx), (float)(wal->y-globalposy) }; vec2f_t p0 = { walpos.y * gcosang - walpos.x * gsinang, walpos.x * gcosang2 + walpos.y * gsinang2 }; vec2f_t const op0 = p0; walpos.x = (float)(wal2->x-globalposx); walpos.y = (float)(wal2->y-globalposy); vec2f_t p1 = { walpos.y * gcosang - walpos.x * gsinang, walpos.x * gcosang2 + walpos.y * gsinang2 }; //Clip to close parallel-screen plane vec2f_t n0, n1; float t0, t1; if (p0.y < SCISDIST) { if (p1.y < SCISDIST) continue; t0 = (SCISDIST-p0.y)/(p1.y-p0.y); p0.x = (p1.x-p0.x)*t0+p0.x; p0.y = SCISDIST; n0.x = (wal2->x-wal->x)*t0+wal->x; n0.y = (wal2->y-wal->y)*t0+wal->y; } else { t0 = 0.f; n0.x = (float)wal->x; n0.y = (float)wal->y; } if (p1.y < SCISDIST) { t1 = (SCISDIST-op0.y)/(p1.y-op0.y); p1.x = (p1.x-op0.x)*t1+op0.x; p1.y = SCISDIST; n1.x = (wal2->x-wal->x)*t1+wal->x; n1.y = (wal2->y-wal->y)*t1+wal->y; } else { t1 = 1.f; n1.x = (float)wal2->x; n1.y = (float)wal2->y; } float ryp0 = 1.f/p0.y, ryp1 = 1.f/p1.y; //Generate screen coordinates for front side of wall float const x0 = ghalfx*p0.x*ryp0 + ghalfx, x1 = ghalfx*p1.x*ryp1 + ghalfx; if (x1 <= x0) continue; ryp0 *= gyxscale; ryp1 *= gyxscale; int32_t cz, fz; getzsofslope(sectnum,/*Blrintf(nx0)*/(int)n0.x,/*Blrintf(ny0)*/(int)n0.y,&cz,&fz); float const cy0 = ((float)(cz-globalposz))*ryp0 + ghoriz, fy0 = ((float)(fz-globalposz))*ryp0 + ghoriz; getzsofslope(sectnum,/*Blrintf(nx1)*/(int)n1.x,/*Blrintf(ny1)*/(int)n1.y,&cz,&fz); float const cy1 = ((float)(cz-globalposz))*ryp1 + ghoriz, fy1 = ((float)(fz-globalposz))*ryp1 + ghoriz; // Floor globalpicnum = sec->floorpicnum; globalshade = sec->floorshade; globalpal = sec->floorpal; globalorientation = sec->floorstat; globvis = (sector[sectnum].visibility != 0) ? mulscale4(globalcisibility, (uint8_t)(sector[sectnum].visibility + 16)) : globalcisibility; DO_TILE_ANIM(globalpicnum, sectnum); int32_t dapskybits, dapyoffs, daptileyscale; int8_t const * dapskyoff = getpsky(globalpicnum, NULL, &dapskybits, &dapyoffs, &daptileyscale); global_cf_fogpal = sec->fogpal; global_cf_shade = sec->floorshade, global_cf_pal = sec->floorpal; global_cf_z = sec->floorz; // REFACT global_cf_xpanning = sec->floorxpanning; global_cf_ypanning = sec->floorypanning, global_cf_heinum = sec->floorheinum; global_getzofslope_func = &getflorzofslope; if (!(globalorientation&1)) { #ifdef YAX_ENABLE if (globalposz <= sec->floorz || yax_getbunch(sectnum, YAX_FLOOR) < 0 || yax_getnextwall(wallnum, YAX_FLOOR) >= 0) #endif polymost_internal_nonparallaxed(n0, n1, ryp0, ryp1, x0, x1, fy0, fy1, sectnum | MAXSECTORS); } else if ((nextsectnum < 0) || (!(sector[nextsectnum].floorstat&1))) { //Parallaxing sky... hacked for Ken's mountain texture calc_and_apply_fog_factor(sec->floorpicnum, sec->floorshade, sec->visibility, sec->floorpal, 0.005f); //Use clamping for tiled sky textures //(don't wrap around edges if the sky use multiple panels) for (bssize_t i=(1<0; i--) if (dapskyoff[i] != dapskyoff[i-1]) { skyclamphack = r_parallaxskyclamping; break; } if (!usehightile || !hicfindskybox(globalpicnum, globalpal)) { float const dd = fxdimen*.0000001f; //Adjust sky depth based on screen size! float vv[2]; float t = (float)((1<<(picsiz[globalpicnum]&15))<>1)+dapyoffs)) - vv[1]*ghoriz; int i = (1<<(picsiz[globalpicnum]>>4)); if (i != tilesiz[globalpicnum].y) i += i; vec3f_t o; if ((tilesiz[globalpicnum].y * daptileyscale * (1.f/65536.f)) > 256) { //Hack to draw black rectangle below sky when looking down... xtex.d = xtex.u = xtex.v = 0; ytex.d = gxyaspect * (1.f / 262144.f); ytex.u = 0; ytex.v = (float)(tilesiz[globalpicnum].y - 1) * ytex.d; otex.d = -ghoriz * ytex.d; otex.u = 0; otex.v = (float)(tilesiz[globalpicnum].y - 1) * otex.d; o.y = ((float)tilesiz[globalpicnum].y*dd-vv[0])/vv[1]; if ((o.y > fy0) && (o.y > fy1)) polymost_domost(x0,o.y,x1,o.y); else if ((o.y > fy0) != (o.y > fy1)) { // fy0 fy1 // \ / //oy---------- oy---------- // \ / // fy1 fy0 o.x = (o.y-fy0)*(x1-x0)/(fy1-fy0) + x0; if (o.y > fy0) { polymost_domost(x0,o.y,o.x,o.y); polymost_domost(o.x,o.y,x1,fy1); } else { polymost_domost(x0,fy0,o.x,o.y); polymost_domost(o.x,o.y,x1,o.y); } } else polymost_domost(x0,fy0,x1,fy1); #if 0 //Hack to draw color rectangle above sky when looking up... xtex.d = xtex.u = xtex.v = 0; ytex.d = gxyaspect * (1.f / -262144.f); ytex.u = 0; ytex.v = 0; otex.d = -ghoriz * ytex.d; otex.u = 0; otex.v = 0; o.y = -vv[0]/vv[1]; if ((o.y < fy0) && (o.y < fy1)) polymost_domost(x1,o.y,x0,o.y); else if ((o.y < fy0) != (o.y < fy1)) { o.x = (o.y-fy0)*(x1-x0)/(fy1-fy0) + x0; if (o.y < fy0) { polymost_domost(o.x,o.y,x0,o.y); polymost_domost(x1,fy1,o.x,o.y); } else { polymost_domost(o.x,o.y,x0,fy0); polymost_domost(x1,o.y,o.x,o.y); } } else polymost_domost(x1,fy1,x0,fy0); #endif } else skyclamphack = 0; xtex.d = xtex.v = 0; ytex.d = ytex.u = 0; otex.d = dd; xtex.u = otex.d * (t * (float)((uint64_t)(xdimscale * yxaspect) * viewingrange)) * (1.f / (16384.f * 65536.f * 65536.f * 5.f * 1024.f)); ytex.v = vv[1]; otex.v = r_parallaxskypanning ? vv[0] + dd*(float)sec->floorypanning*(float)i*(1.f/256.f) : vv[0]; i = globalpicnum; float const r = (fy1-fy0)/(x1-x0); //slope of line o.y = fviewingrange/(ghalfx*256.f); o.z = 1.f/o.y; int y = ((((int32_t)((x0-ghalfx)*o.y))+globalang)>>(11-dapskybits)); float fx = x0; do { globalpicnum = dapskyoff[y&((1<floorxpanning:0)) - xtex.u*ghalfx; y++; o.x = fx; fx = ((float)((y<<(11-dapskybits))-globalang))*o.z+ghalfx; if (fx > x1) { fx = x1; i = -1; } pow2xsplit = 0; polymost_domost(o.x,(o.x-x0)*r+fy0,fx,(fx-x0)*r+fy0); //flor } while (i >= 0); } else //NOTE: code copied from ceiling code... lots of duplicated stuff :/ { //Skybox code for parallax floor! float sky_t0, sky_t1; // _nx0, _ny0, _nx1, _ny1; float sky_ryp0, sky_ryp1, sky_x0, sky_x1, sky_cy0, sky_fy0, sky_cy1, sky_fy1, sky_ox0, sky_ox1; static vec2f_t const skywal[4] = { { -512, -512 }, { 512, -512 }, { 512, 512 }, { -512, 512 } }; pow2xsplit = 0; skyclamphack = 1; for (bssize_t i=0; i<4; i++) { walpos = skywal[i&3]; vec2f_t skyp0 = { walpos.y * gcosang - walpos.x * gsinang, walpos.x * gcosang2 + walpos.y * gsinang2 }; walpos = skywal[(i + 1) & 3]; vec2f_t skyp1 = { walpos.y * gcosang - walpos.x * gsinang, walpos.x * gcosang2 + walpos.y * gsinang2 }; vec2f_t const oskyp0 = skyp0; //Clip to close parallel-screen plane if (skyp0.y < SCISDIST) { if (skyp1.y < SCISDIST) continue; sky_t0 = (SCISDIST-skyp0.y)/(skyp1.y-skyp0.y); skyp0.x = (skyp1.x-skyp0.x)*sky_t0+skyp0.x; skyp0.y = SCISDIST; } else { sky_t0 = 0.f; } if (skyp1.y < SCISDIST) { sky_t1 = (SCISDIST-oskyp0.y)/(skyp1.y-oskyp0.y); skyp1.x = (skyp1.x-oskyp0.x)*sky_t1+oskyp0.x; skyp1.y = SCISDIST; } else { sky_t1 = 1.f; } sky_ryp0 = 1.f/skyp0.y; sky_ryp1 = 1.f/skyp1.y; //Generate screen coordinates for front side of wall sky_x0 = ghalfx*skyp0.x*sky_ryp0 + ghalfx; sky_x1 = ghalfx*skyp1.x*sky_ryp1 + ghalfx; if ((sky_x1 <= sky_x0) || (sky_x0 >= x1) || (x0 >= sky_x1)) continue; sky_ryp0 *= gyxscale; sky_ryp1 *= gyxscale; sky_cy0 = -8192.f*sky_ryp0 + ghoriz; sky_fy0 = 8192.f*sky_ryp0 + ghoriz; sky_cy1 = -8192.f*sky_ryp1 + ghoriz; sky_fy1 = 8192.f*sky_ryp1 + ghoriz; sky_ox0 = sky_x0; sky_ox1 = sky_x1; //Make sure: x0<=_x0<_x1<=x1 float nfy[2] = { fy0, fy1 }; if (sky_x0 < x0) { float const t = (x0-sky_x0)/(sky_x1-sky_x0); sky_cy0 += (sky_cy1-sky_cy0)*t; sky_fy0 += (sky_fy1-sky_fy0)*t; sky_x0 = x0; } else if (sky_x0 > x0) nfy[0] += (sky_x0-x0)*(fy1-fy0)/(x1-x0); if (sky_x1 > x1) { float const t = (x1-sky_x1)/(sky_x1-sky_x0); sky_cy1 += (sky_cy1-sky_cy0)*t; sky_fy1 += (sky_fy1-sky_fy0)*t; sky_x1 = x1; } else if (sky_x1 < x1) nfy[1] += (sky_x1-x1)*(fy1-fy0)/(x1-x0); // (skybox floor) //(_x0,_fy0)-(_x1,_fy1) // (skybox wall) //(_x0,_cy0)-(_x1,_cy1) // (skybox ceiling) //(_x0,nfy0)-(_x1,nfy1) //floor of skybox drawingskybox = 6; //floor/6th texture/index 5 of skybox float const ft[4] = { 512 / 16, 512 / -16, fcosglobalang * (1.f / 2147483648.f), fsinglobalang * (1.f / 2147483648.f) }; xtex.d = 0; ytex.d = gxyaspect*(1.f/4194304.f); otex.d = -ghoriz*ytex.d; xtex.u = ft[3]*fviewingrange*(-1.0/65536.0); xtex.v = ft[2]*fviewingrange*(-1.0/65536.0); ytex.u = ft[0]*ytex.d; ytex.v = ft[1]*ytex.d; otex.u = ft[0]*otex.d; otex.v = ft[1]*otex.d; otex.u += (ft[2]-xtex.u)*ghalfx; otex.v -= (ft[3]+xtex.v)*ghalfx; xtex.v = -xtex.v; ytex.v = -ytex.v; otex.v = -otex.v; //y-flip skybox floor if ((sky_fy0 > nfy[0]) && (sky_fy1 > nfy[1])) polymost_domost(sky_x0,sky_fy0,sky_x1,sky_fy1); else if ((sky_fy0 > nfy[0]) != (sky_fy1 > nfy[1])) { //(ox,oy) is intersection of: (_x0,_fy0)-(_x1,_fy1) // (_x0,nfy0)-(_x1,nfy1) float const t = (sky_fy0-nfy[0])/(nfy[1]-nfy[0]-sky_fy1+sky_fy0); vec2f_t const o = { sky_x0 + (sky_x1-sky_x0)*t, sky_fy0 + (sky_fy1-sky_fy0)*t }; if (nfy[0] > sky_fy0) { polymost_domost(sky_x0,nfy[0],o.x,o.y); polymost_domost(o.x,o.y,sky_x1,sky_fy1); } else { polymost_domost(sky_x0,sky_fy0,o.x,o.y); polymost_domost(o.x,o.y,sky_x1,nfy[1]); } } else polymost_domost(sky_x0,nfy[0],sky_x1,nfy[1]); //wall of skybox drawingskybox = i+1; //i+1th texture/index i of skybox xtex.d = (sky_ryp0-sky_ryp1)*gxyaspect*(1.f/512.f) / (sky_ox0-sky_ox1); ytex.d = 0; otex.d = sky_ryp0*gxyaspect*(1.f/512.f) - xtex.d*sky_ox0; xtex.u = (sky_t0*sky_ryp0 - sky_t1*sky_ryp1)*gxyaspect*(64.f/512.f) / (sky_ox0-sky_ox1); otex.u = sky_t0*sky_ryp0*gxyaspect*(64.f/512.f) - xtex.u*sky_ox0; ytex.u = 0; sky_t0 = -8192.f*sky_ryp0 + ghoriz; sky_t1 = -8192.f*sky_ryp1 + ghoriz; float const t = ((xtex.d*sky_ox0 + otex.d)*8.f) / ((sky_ox1-sky_ox0) * sky_ryp0 * 2048.f); xtex.v = (sky_t0-sky_t1)*t; ytex.v = (sky_ox1-sky_ox0)*t; otex.v = -xtex.v*sky_ox0 - ytex.v*sky_t0; if ((sky_cy0 > nfy[0]) && (sky_cy1 > nfy[1])) polymost_domost(sky_x0,sky_cy0,sky_x1,sky_cy1); else if ((sky_cy0 > nfy[0]) != (sky_cy1 > nfy[1])) { //(ox,oy) is intersection of: (_x0,_fy0)-(_x1,_fy1) // (_x0,nfy0)-(_x1,nfy1) float const t = (sky_cy0-nfy[0])/(nfy[1]-nfy[0]-sky_cy1+sky_cy0); vec2f_t const o = { sky_x0 + (sky_x1 - sky_x0) * t, sky_cy0 + (sky_cy1 - sky_cy0) * t }; if (nfy[0] > sky_cy0) { polymost_domost(sky_x0,nfy[0],o.x,o.y); polymost_domost(o.x,o.y,sky_x1,sky_cy1); } else { polymost_domost(sky_x0,sky_cy0,o.x,o.y); polymost_domost(o.x,o.y,sky_x1,nfy[1]); } } else polymost_domost(sky_x0,nfy[0],sky_x1,nfy[1]); } //Ceiling of skybox drawingskybox = 5; //ceiling/5th texture/index 4 of skybox float const ft[4] = { 512 / 16, -512 / -16, fcosglobalang * (1.f / 2147483648.f), fsinglobalang * (1.f / 2147483648.f) }; xtex.d = 0; ytex.d = gxyaspect*(-1.f/4194304.f); otex.d = -ghoriz*ytex.d; xtex.u = ft[3]*fviewingrange*(-1.0/65536.0); xtex.v = ft[2]*fviewingrange*(-1.0/65536.0); ytex.u = ft[0]*ytex.d; ytex.v = ft[1]*ytex.d; otex.u = ft[0]*otex.d; otex.v = ft[1]*otex.d; otex.u += (ft[2]-xtex.u)*ghalfx; otex.v -= (ft[3]+xtex.v)*ghalfx; polymost_domost(x0,fy0,x1,fy1); skyclamphack = 0; drawingskybox = 0; } skyclamphack = 0; if (!nofog) glEnable(GL_FOG); } // Ceiling globalpicnum = sec->ceilingpicnum; globalshade = sec->ceilingshade; globalpal = sec->ceilingpal; globalorientation = sec->ceilingstat; globvis = (sector[sectnum].visibility != 0) ? mulscale4(globalcisibility, (uint8_t)(sector[sectnum].visibility + 16)) : globalcisibility; DO_TILE_ANIM(globalpicnum, sectnum); dapskyoff = getpsky(globalpicnum, NULL, &dapskybits, &dapyoffs, &daptileyscale); global_cf_fogpal = sec->fogpal; global_cf_shade = sec->ceilingshade, global_cf_pal = sec->ceilingpal; global_cf_z = sec->ceilingz; // REFACT global_cf_xpanning = sec->ceilingxpanning; global_cf_ypanning = sec->ceilingypanning, global_cf_heinum = sec->ceilingheinum; global_getzofslope_func = &getceilzofslope; if (!(globalorientation&1)) { #ifdef YAX_ENABLE if (globalposz >= sec->ceilingz || yax_getbunch(sectnum, YAX_CEILING) < 0 || yax_getnextwall(wallnum, YAX_CEILING) >= 0) #endif polymost_internal_nonparallaxed(n0, n1, ryp0, ryp1, x0, x1, cy0, cy1, sectnum); } else if ((nextsectnum < 0) || (!(sector[nextsectnum].ceilingstat&1))) { //Parallaxing sky... hacked for Ken's mountain texture calc_and_apply_fog_factor(sec->ceilingpicnum, sec->ceilingshade, sec->visibility, sec->ceilingpal, 0.005f); //Use clamping for tiled sky textures //(don't wrap around edges if the sky use multiple panels) for (bssize_t i=(1<0; i--) if (dapskyoff[i] != dapskyoff[i-1]) { skyclamphack = r_parallaxskyclamping; break; } if (!usehightile || !hicfindskybox(globalpicnum, globalpal)) { float const dd = fxdimen*.0000001f; //Adjust sky depth based on screen size! float vv[2]; float t = (float)((1<<(picsiz[globalpicnum]&15))<>1)+dapyoffs)) - vv[1]*ghoriz; int i = (1<<(picsiz[globalpicnum]>>4)); if (i != tilesiz[globalpicnum].y) i += i; vec3f_t o; if ((tilesiz[globalpicnum].y * daptileyscale * (1.f/65536.f)) > 256) { #if 0 //Hack to draw black rectangle below sky when looking down... xtex.d = xtex.u = xtex.v = 0; ytex.d = gxyaspect * (1.f / 262144.f); ytex.u = 0; ytex.v = (float)(tilesiz[globalpicnum].y - 1) * ytex.d; otex.d = -ghoriz * ytex.d; otex.u = 0; otex.v = (float)(tilesiz[globalpicnum].y - 1) * otex.d; o.y = ((float)tilesiz[globalpicnum].y*dd-vv[0])/vv[1]; if ((o.y > cy0) && (o.y > cy1)) polymost_domost(x0,o.y,x1,o.y); else if ((o.y > cy0) != (o.y > cy1)) { o.x = (o.y-cy0)*(x1-x0)/(cy1-cy0) + x0; if (o.y > cy0) { polymost_domost(x0,o.y,o.x,o.y); polymost_domost(o.x,o.y,x1,cy1); } else { polymost_domost(x0,cy0,o.x,o.y); polymost_domost(o.x,o.y,x1,o.y); } } else polymost_domost(x0,cy0,x1,cy1); #endif //Hack to draw color rectangle above sky when looking up... xtex.d = xtex.u = xtex.v = 0; ytex.d = gxyaspect * (1.f / -262144.f); ytex.u = 0; ytex.v = 0; otex.d = -ghoriz * ytex.d; otex.u = 0; otex.v = 0; o.y = -vv[0]/vv[1]; if ((o.y < cy0) && (o.y < cy1)) polymost_domost(x1,o.y,x0,o.y); else if ((o.y < cy0) != (o.y < cy1)) { /* cy1 cy0 // / \ //oy---------- oy--------- // / \ // cy0 cy1 */ o.x = (o.y-cy0)*(x1-x0)/(cy1-cy0) + x0; if (o.y < cy0) { polymost_domost(o.x,o.y,x0,o.y); polymost_domost(x1,cy1,o.x,o.y); } else { polymost_domost(o.x,o.y,x0,cy0); polymost_domost(x1,o.y,o.x,o.y); } } else polymost_domost(x1,cy1,x0,cy0); } else skyclamphack = 0; xtex.d = xtex.v = 0; ytex.d = ytex.u = 0; otex.d = dd; xtex.u = otex.d * (t * (float)((uint64_t)(xdimscale * yxaspect) * viewingrange)) * (1.f / (16384.f * 65536.f * 65536.f * 5.f * 1024.f)); ytex.v = vv[1]; otex.v = r_parallaxskypanning ? vv[0] + dd*(float)sec->ceilingypanning*(float)i*(1.f/256.f) : vv[0]; i = globalpicnum; float const r = (cy1-cy0)/(x1-x0); //slope of line o.y = fviewingrange/(ghalfx*256.f); o.z = 1.f/o.y; int y = ((((int32_t)((x0-ghalfx)*o.y))+globalang)>>(11-dapskybits)); float fx = x0; do { globalpicnum = dapskyoff[y&((1<ceilingxpanning:0)) - xtex.u*ghalfx; y++; o.x = fx; fx = ((float)((y<<(11-dapskybits))-globalang))*o.z+ghalfx; if (fx > x1) { fx = x1; i = -1; } pow2xsplit = 0; polymost_domost(fx,(fx-x0)*r+cy0,o.x,(o.x-x0)*r+cy0); //ceil } while (i >= 0); } else { //Skybox code for parallax ceiling! float sky_t0, sky_t1; // _nx0, _ny0, _nx1, _ny1; float sky_ryp0, sky_ryp1, sky_x0, sky_x1, sky_cy0, sky_fy0, sky_cy1, sky_fy1, sky_ox0, sky_ox1; static vec2f_t const skywal[4] = { { -512, -512 }, { 512, -512 }, { 512, 512 }, { -512, 512 } }; pow2xsplit = 0; skyclamphack = 1; for (bssize_t i=0; i<4; i++) { walpos = skywal[i&3]; vec2f_t skyp0 = { walpos.y * gcosang - walpos.x * gsinang, walpos.x * gcosang2 + walpos.y * gsinang2 }; walpos = skywal[(i + 1) & 3]; vec2f_t skyp1 = { walpos.y * gcosang - walpos.x * gsinang, walpos.x * gcosang2 + walpos.y * gsinang2 }; vec2f_t const oskyp0 = skyp0; //Clip to close parallel-screen plane if (skyp0.y < SCISDIST) { if (skyp1.y < SCISDIST) continue; sky_t0 = (SCISDIST-skyp0.y)/(skyp1.y-skyp0.y); skyp0.x = (skyp1.x-skyp0.x)*sky_t0+skyp0.x; skyp0.y = SCISDIST; } else { sky_t0 = 0.f; } if (skyp1.y < SCISDIST) { sky_t1 = (SCISDIST-oskyp0.y)/(skyp1.y-oskyp0.y); skyp1.x = (skyp1.x-oskyp0.x)*sky_t1+oskyp0.x; skyp1.y = SCISDIST; } else { sky_t1 = 1.f; } sky_ryp0 = 1.f/skyp0.y; sky_ryp1 = 1.f/skyp1.y; //Generate screen coordinates for front side of wall sky_x0 = ghalfx*skyp0.x*sky_ryp0 + ghalfx; sky_x1 = ghalfx*skyp1.x*sky_ryp1 + ghalfx; if ((sky_x1 <= sky_x0) || (sky_x0 >= x1) || (x0 >= sky_x1)) continue; sky_ryp0 *= gyxscale; sky_ryp1 *= gyxscale; sky_cy0 = -8192.f*sky_ryp0 + ghoriz; sky_fy0 = 8192.f*sky_ryp0 + ghoriz; sky_cy1 = -8192.f*sky_ryp1 + ghoriz; sky_fy1 = 8192.f*sky_ryp1 + ghoriz; sky_ox0 = sky_x0; sky_ox1 = sky_x1; //Make sure: x0<=_x0<_x1<=x1 float ncy[2] = { cy0, cy1 }; if (sky_x0 < x0) { float const t = (x0-sky_x0)/(sky_x1-sky_x0); sky_cy0 += (sky_cy1-sky_cy0)*t; sky_fy0 += (sky_fy1-sky_fy0)*t; sky_x0 = x0; } else if (sky_x0 > x0) ncy[0] += (sky_x0-x0)*(cy1-cy0)/(x1-x0); if (sky_x1 > x1) { float const t = (x1-sky_x1)/(sky_x1-sky_x0); sky_cy1 += (sky_cy1-sky_cy0)*t; sky_fy1 += (sky_fy1-sky_fy0)*t; sky_x1 = x1; } else if (sky_x1 < x1) ncy[1] += (sky_x1-x1)*(cy1-cy0)/(x1-x0); // (skybox ceiling) //(_x0,_cy0)-(_x1,_cy1) // (skybox wall) //(_x0,_fy0)-(_x1,_fy1) // (skybox floor) //(_x0,ncy0)-(_x1,ncy1) //ceiling of skybox drawingskybox = 5; //ceiling/5th texture/index 4 of skybox float const ft[4] = { 512 / 16, -512 / -16, fcosglobalang * (1.f / 2147483648.f), fsinglobalang * (1.f / 2147483648.f) }; xtex.d = 0; ytex.d = gxyaspect*(-1.f/4194304.f); otex.d = -ghoriz*ytex.d; xtex.u = ft[3]*fviewingrange*(-1.0/65536.0); xtex.v = ft[2]*fviewingrange*(-1.0/65536.0); ytex.u = ft[0]*ytex.d; ytex.v = ft[1]*ytex.d; otex.u = ft[0]*otex.d; otex.v = ft[1]*otex.d; otex.u += (ft[2]-xtex.u)*ghalfx; otex.v -= (ft[3]+xtex.v)*ghalfx; if ((sky_cy0 < ncy[0]) && (sky_cy1 < ncy[1])) polymost_domost(sky_x1,sky_cy1,sky_x0,sky_cy0); else if ((sky_cy0 < ncy[0]) != (sky_cy1 < ncy[1])) { //(ox,oy) is intersection of: (_x0,_cy0)-(_x1,_cy1) // (_x0,ncy0)-(_x1,ncy1) float const t = (sky_cy0-ncy[0])/(ncy[1]-ncy[0]-sky_cy1+sky_cy0); vec2f_t const o = { sky_x0 + (sky_x1-sky_x0)*t, sky_cy0 + (sky_cy1-sky_cy0)*t }; if (ncy[0] < sky_cy0) { polymost_domost(o.x,o.y,sky_x0,ncy[0]); polymost_domost(sky_x1,sky_cy1,o.x,o.y); } else { polymost_domost(o.x,o.y,sky_x0,sky_cy0); polymost_domost(sky_x1,ncy[1],o.x,o.y); } } else polymost_domost(sky_x1,ncy[1],sky_x0,ncy[0]); //wall of skybox drawingskybox = i+1; //i+1th texture/index i of skybox xtex.d = (sky_ryp0-sky_ryp1)*gxyaspect*(1.f/512.f) / (sky_ox0-sky_ox1); ytex.d = 0; otex.d = sky_ryp0*gxyaspect*(1.f/512.f) - xtex.d*sky_ox0; xtex.u = (sky_t0*sky_ryp0 - sky_t1*sky_ryp1)*gxyaspect*(64.f/512.f) / (sky_ox0-sky_ox1); otex.u = sky_t0*sky_ryp0*gxyaspect*(64.f/512.f) - xtex.u*sky_ox0; ytex.u = 0; sky_t0 = -8192.f*sky_ryp0 + ghoriz; sky_t1 = -8192.f*sky_ryp1 + ghoriz; float const t = ((xtex.d*sky_ox0 + otex.d)*8.f) / ((sky_ox1-sky_ox0) * sky_ryp0 * 2048.f); xtex.v = (sky_t0-sky_t1)*t; ytex.v = (sky_ox1-sky_ox0)*t; otex.v = -xtex.v*sky_ox0 - ytex.v*sky_t0; if ((sky_fy0 < ncy[0]) && (sky_fy1 < ncy[1])) polymost_domost(sky_x1,sky_fy1,sky_x0,sky_fy0); else if ((sky_fy0 < ncy[0]) != (sky_fy1 < ncy[1])) { //(ox,oy) is intersection of: (_x0,_fy0)-(_x1,_fy1) // (_x0,ncy0)-(_x1,ncy1) float const t = (sky_fy0-ncy[0])/(ncy[1]-ncy[0]-sky_fy1+sky_fy0); vec2f_t const o = { sky_x0 + (sky_x1 - sky_x0) * t, sky_fy0 + (sky_fy1 - sky_fy0) * t }; if (ncy[0] < sky_fy0) { polymost_domost(o.x,o.y,sky_x0,ncy[0]); polymost_domost(sky_x1,sky_fy1,o.x,o.y); } else { polymost_domost(o.x,o.y,sky_x0,sky_fy0); polymost_domost(sky_x1,ncy[1],o.x,o.y); } } else polymost_domost(sky_x1,ncy[1],sky_x0,ncy[0]); } //Floor of skybox drawingskybox = 6; //floor/6th texture/index 5 of skybox float const ft[4] = { 512 / 16, 512 / -16, fcosglobalang * (1.f / 2147483648.f), fsinglobalang * (1.f / 2147483648.f) }; xtex.d = 0; ytex.d = gxyaspect*(1.f/4194304.f); otex.d = -ghoriz*ytex.d; xtex.u = ft[3]*fviewingrange*(-1.0/65536.0); xtex.v = ft[2]*fviewingrange*(-1.0/65536.0); ytex.u = ft[0]*ytex.d; ytex.v = ft[1]*ytex.d; otex.u = ft[0]*otex.d; otex.v = ft[1]*otex.d; otex.u += (ft[2]-xtex.u)*ghalfx; otex.v -= (ft[3]+xtex.v)*ghalfx; xtex.v = -xtex.v; ytex.v = -ytex.v; otex.v = -otex.v; //y-flip skybox floor polymost_domost(x1,cy1,x0,cy0); skyclamphack = 0; drawingskybox = 0; } skyclamphack = 0; if (!nofog) glEnable(GL_FOG); } // Wall xtex.d = (ryp0-ryp1)*gxyaspect / (x0-x1); ytex.d = 0; otex.d = ryp0*gxyaspect - xtex.d*x0; xtex.u = (t0*ryp0 - t1*ryp1)*gxyaspect*(float)wal->xrepeat*8.f / (x0-x1); otex.u = t0*ryp0*gxyaspect*(float)wal->xrepeat*8.f - xtex.u*x0; otex.u += (float)wal->xpanning*otex.d; xtex.u += (float)wal->xpanning*xtex.d; ytex.u = 0; float const ogux = xtex.u, oguy = ytex.u, oguo = otex.u; Bassert(domostpolymethod == DAMETH_NOMASK); domostpolymethod = DAMETH_WALL; if (nextsectnum >= 0) { getzsofslope(nextsectnum,/*Blrintf(nx0)*/(int)n0.x,/*Blrintf(ny0)*/(int)n0.y,&cz,&fz); float const ocy0 = ((float)(cz-globalposz))*ryp0 + ghoriz; float const ofy0 = ((float)(fz-globalposz))*ryp0 + ghoriz; getzsofslope(nextsectnum,/*Blrintf(nx1)*/(int)n1.x,/*Blrintf(ny1)*/(int)n1.y,&cz,&fz); float const ocy1 = ((float)(cz-globalposz))*ryp1 + ghoriz; float const ofy1 = ((float)(fz-globalposz))*ryp1 + ghoriz; if ((wal->cstat&48) == 16) maskwall[maskwallcnt++] = z; if (((cy0 < ocy0) || (cy1 < ocy1)) && (!((sec->ceilingstat§or[nextsectnum].ceilingstat)&1))) { globalpicnum = wal->picnum; globalshade = wal->shade; globalpal = (int32_t)((uint8_t)wal->pal); globvis = globalvisibility; if (sector[sectnum].visibility != 0) globvis = mulscale4(globvis, (uint8_t)(sector[sectnum].visibility+16)); DO_TILE_ANIM(globalpicnum, wallnum+16384); int i = (!(wal->cstat&4)) ? sector[nextsectnum].ceilingz : sec->ceilingz; // over calc_ypanning(i, ryp0, ryp1, x0, x1, wal->ypanning, wal->yrepeat, wal->cstat&4); if (wal->cstat&8) //xflip { float const t = (float)(wal->xrepeat*8 + wal->xpanning*2); xtex.u = xtex.d*t - xtex.u; ytex.u = ytex.d*t - ytex.u; otex.u = otex.d*t - otex.u; } if (wal->cstat&256) { xtex.v = -xtex.v; ytex.v = -ytex.v; otex.v = -otex.v; } //yflip calc_and_apply_fog(wal->picnum, fogshade(wal->shade, wal->pal), sec->visibility, get_floor_fogpal(sec)); pow2xsplit = 1; polymost_domost(x1,ocy1,x0,ocy0); if (wal->cstat&8) { xtex.u = ogux; ytex.u = oguy; otex.u = oguo; } } if (((ofy0 < fy0) || (ofy1 < fy1)) && (!((sec->floorstat§or[nextsectnum].floorstat)&1))) { uwalltype *nwal; if (!(wal->cstat&2)) nwal = wal; else { nwal = (uwalltype *)&wall[wal->nextwall]; otex.u += (float)(nwal->xpanning - wal->xpanning) * otex.d; xtex.u += (float)(nwal->xpanning - wal->xpanning) * xtex.d; ytex.u += (float)(nwal->xpanning - wal->xpanning) * ytex.d; } globalpicnum = nwal->picnum; globalshade = nwal->shade; globalpal = (int32_t)((uint8_t)nwal->pal); globvis = globalvisibility; if (sector[sectnum].visibility != 0) globvis = mulscale4(globvis, (uint8_t)(sector[sectnum].visibility+16)); DO_TILE_ANIM(globalpicnum, wallnum+16384); int i = (!(nwal->cstat&4)) ? sector[nextsectnum].floorz : sec->ceilingz; // under calc_ypanning(i, ryp0, ryp1, x0, x1, nwal->ypanning, wal->yrepeat, !(nwal->cstat&4)); if (wal->cstat&8) //xflip { float const t = (float)(wal->xrepeat*8 + nwal->xpanning*2); xtex.u = xtex.d*t - xtex.u; ytex.u = ytex.d*t - ytex.u; otex.u = otex.d*t - otex.u; } if (nwal->cstat&256) { xtex.v = -xtex.v; ytex.v = -ytex.v; otex.v = -otex.v; } //yflip calc_and_apply_fog(nwal->picnum, fogshade(nwal->shade, nwal->pal), sec->visibility, get_floor_fogpal(sec)); pow2xsplit = 1; polymost_domost(x0,ofy0,x1,ofy1); if (wal->cstat&(2+8)) { otex.u = oguo; xtex.u = ogux; ytex.u = oguy; } } } if ((nextsectnum < 0) || (wal->cstat&32)) //White/1-way wall { do { const int maskingOneWay = (nextsectnum >= 0 && (wal->cstat&32)); if (maskingOneWay) { vec2_t n, pos = { globalposx, globalposy }; if (!polymost_getclosestpointonwall(&pos, wallnum, &n) && klabs(pos.x - n.x) + klabs(pos.y - n.y) <= 128) break; } globalpicnum = (nextsectnum < 0) ? wal->picnum : wal->overpicnum; globalshade = wal->shade; globalpal = wal->pal; globvis = (sector[sectnum].visibility != 0) ? mulscale4(globalvisibility, (uint8_t)(sector[sectnum].visibility + 16)) : globalvisibility; DO_TILE_ANIM(globalpicnum, wallnum+16384); int i; int const nwcs4 = !(wal->cstat & 4); if (nextsectnum >= 0) { i = nwcs4 ? nextsec->ceilingz : sec->ceilingz; } else { i = nwcs4 ? sec->ceilingz : sec->floorz; } // white / 1-way calc_ypanning(i, ryp0, ryp1, x0, x1, wal->ypanning, wal->yrepeat, nwcs4 && !maskingOneWay); if (wal->cstat&8) //xflip { float const t = (float) (wal->xrepeat*8 + wal->xpanning*2); xtex.u = xtex.d*t - xtex.u; ytex.u = ytex.d*t - ytex.u; otex.u = otex.d*t - otex.u; } if (wal->cstat&256) { xtex.v = -xtex.v; ytex.v = -ytex.v; otex.v = -otex.v; } //yflip calc_and_apply_fog(wal->picnum, fogshade(wal->shade, wal->pal), sec->visibility, get_floor_fogpal(sec)); pow2xsplit = 1; polymost_domost(x0, cy0, x1, cy1); } while (0); } domostpolymethod = DAMETH_NOMASK; if (nextsectnum >= 0) if ((!(gotsector[nextsectnum>>3]&pow2char[nextsectnum&7])) && testvisiblemost(x0,x1)) polymost_scansector(nextsectnum); } } static int32_t polymost_bunchfront(const int32_t b1, const int32_t b2) { int b1f = bunchfirst[b1]; const float x2b2 = dxb2[bunchlast[b2]]; const float x1b1 = dxb1[b1f]; if (x1b1 >= x2b2) return -1; int b2f = bunchfirst[b2]; const float x1b2 = dxb1[b2f]; if (x1b2 >= dxb2[bunchlast[b1]]) return -1; if (x1b1 >= x1b2) { while (dxb2[b2f]<=x1b1) b2f=bunchp2[b2f]; return wallfront(b1f, b2f); } while (dxb2[b1f]<=x1b2) b1f=bunchp2[b1f]; return wallfront(b1f, b2f); } void polymost_scansector(int32_t sectnum) { if (sectnum < 0) return; sectorborder[0] = sectnum; int sectorbordercnt = 1; do { sectnum = sectorborder[--sectorbordercnt]; for (bssize_t z=headspritesect[sectnum]; z>=0; z=nextspritesect[z]) { uspritetype const * const spr = (uspritetype *)&sprite[z]; if ((spr->cstat & 0x8000 && !showinvisibility) || spr->xrepeat == 0 || spr->yrepeat == 0) continue; vec2_t const s = { spr->x-globalposx, spr->y-globalposy }; if ((spr->cstat&48) || (usemodels && tile2model[spr->picnum].modelid>=0) || ((s.x * gcosang) + (s.y * gsinang) > 0)) { if ((spr->cstat&(64+48))!=(64+16) || dmulscale6(sintable[(spr->ang+512)&2047],-s.x, sintable[spr->ang&2047],-s.y) > 0) if (engine_addtsprite(z, sectnum)) break; } } gotsector[sectnum>>3] |= pow2char[sectnum&7]; int const bunchfrst = numbunches; int const onumscans = numscans; int const startwall = sector[sectnum].wallptr; int const endwall = sector[sectnum].wallnum + startwall; int scanfirst = numscans; vec2f_t p2 = { 0, 0 }; uwalltype *wal; int z; for (z=startwall,wal=(uwalltype *)&wall[z]; zpoint2]; vec2f_t const fp1 = { (float)(wal->x - globalposx), (float)(wal->y - globalposy) }; vec2f_t const fp2 = { (float)(wal2->x - globalposx), (float)(wal2->y - globalposy) }; int const nextsectnum = wal->nextsector; //Scan close sectors vec2f_t p1; if (nextsectnum >= 0 && !(wal->cstat&32) && sectorbordercnt < ARRAY_SSIZE(sectorborder)) #ifdef YAX_ENABLE if (yax_nomaskpass==0 || !yax_isislandwall(z, !yax_globalcf) || (yax_nomaskdidit=1, 0)) #endif if ((gotsector[nextsectnum>>3]&pow2char[nextsectnum&7]) == 0) { float const d = fp1.x*fp2.y - fp2.x*fp1.y; p1.x = fp2.x-fp1.x; p1.y = fp2.y-fp1.y; if (d*d <= (p1.x*p1.x + p1.y*p1.y) * (SCISDIST*SCISDIST*260.f)) { sectorborder[sectorbordercnt++] = nextsectnum; gotsector[nextsectnum>>3] |= pow2char[nextsectnum&7]; } } if ((z == startwall) || (wall[z-1].point2 != z)) { p1.x = ((fp1.y * fcosglobalang) - (fp1.x * fsinglobalang)) * (1.0f/64.f); p1.y = ((fp1.x * (float)cosviewingrangeglobalang) + (fp1.y * (float)sinviewingrangeglobalang)) * (1.0f/64.f); } else { p1 = p2; } p2.x = ((fp2.y * fcosglobalang) - (fp2.x * fsinglobalang)) * (1.0f/64.f); p2.y = ((fp2.x * (float) cosviewingrangeglobalang) + (fp2.y * (float) sinviewingrangeglobalang)) * (1.0f/64.f); //if wall is facing you... if ((p1.y >= SCISDIST || p2.y >= SCISDIST) && (p1.x*p2.y < p2.x*p1.y)) { dxb1[numscans] = (p1.y >= SCISDIST) ? (p1.x*ghalfx/p1.y + ghalfx) : -1e32f; dxb2[numscans] = (p2.y >= SCISDIST) ? (p2.x*ghalfx/p2.y + ghalfx) : 1e32f; if (dxb1[numscans] < dxb2[numscans]) { thesector[numscans] = sectnum; thewall[numscans] = z; bunchp2[numscans] = numscans + 1; numscans++; } } if ((wall[z].point2 < z) && (scanfirst < numscans)) { bunchp2[numscans-1] = scanfirst; scanfirst = numscans; } } for (bssize_t z=onumscans; z dxb1[bunchp2[z]])) { bunchfirst[numbunches++] = bunchp2[z]; bunchp2[z] = -1; #ifdef YAX_ENABLE if (scansector_retfast) return; #endif } } for (bssize_t z=bunchfrst; z=0; zz=bunchp2[zz]) { } bunchlast[z] = zz; } } while (sectorbordercnt > 0); } /*Init viewport boundary (must be 4 point convex loop): // (px[0],py[0]).----.(px[1],py[1]) // / \ // / \ // (px[3],py[3]).--------------.(px[2],py[2]) */ static void polymost_initmosts(const float * px, const float * py, int const n) { if (n < 3) return; int32_t imin = (px[1] < px[0]); for (bssize_t i=n-1; i>=2; i--) if (px[i] < px[imin]) imin = i; int32_t vcnt = 1; //0 is dummy solid node vsp[vcnt].x = px[imin]; vsp[vcnt].cy[0] = vsp[vcnt].fy[0] = py[imin]; vcnt++; int i = imin+1, j = imin-1; if (i >= n) i = 0; if (j < 0) j = n-1; do { if (px[i] < px[j]) { if ((vcnt > 1) && (px[i] <= vsp[vcnt-1].x)) vcnt--; vsp[vcnt].x = px[i]; vsp[vcnt].cy[0] = py[i]; int k = j+1; if (k >= n) k = 0; //(px[k],py[k]) //(px[i],?) //(px[j],py[j]) vsp[vcnt].fy[0] = (px[i]-px[k])*(py[j]-py[k])/(px[j]-px[k]) + py[k]; vcnt++; i++; if (i >= n) i = 0; } else if (px[j] < px[i]) { if ((vcnt > 1) && (px[j] <= vsp[vcnt-1].x)) vcnt--; vsp[vcnt].x = px[j]; vsp[vcnt].fy[0] = py[j]; int k = i-1; if (k < 0) k = n-1; //(px[k],py[k]) //(px[j],?) //(px[i],py[i]) vsp[vcnt].cy[0] = (px[j]-px[k])*(py[i]-py[k])/(px[i]-px[k]) + py[k]; vcnt++; j--; if (j < 0) j = n-1; } else { if ((vcnt > 1) && (px[i] <= vsp[vcnt-1].x)) vcnt--; vsp[vcnt].x = px[i]; vsp[vcnt].cy[0] = py[i]; vsp[vcnt].fy[0] = py[j]; vcnt++; i++; if (i >= n) i = 0; if (i == j) break; j--; if (j < 0) j = n-1; } } while (i != j); if (px[i] > vsp[vcnt-1].x) { vsp[vcnt].x = px[i]; vsp[vcnt].cy[0] = vsp[vcnt].fy[0] = py[i]; vcnt++; } vsp_finalize_init(vcnt); gtag = vcnt; } void polymost_drawrooms() { if (getrendermode() == REND_CLASSIC) return; begindrawing(); frameoffset = frameplace + windowxy1.y*bytesperline + windowxy1.x; resizeglcheck(); #ifdef YAX_ENABLE if (numyaxbunches==0) #endif if (editstatus) glClear(GL_COLOR_BUFFER_BIT); glClear(GL_DEPTH_BUFFER_BIT); glDisable(GL_BLEND); glEnable(GL_TEXTURE_2D); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); //NEVER,LESS,(,L)EQUAL,GREATER,(NOT,G)EQUAL,ALWAYS // glDepthRange(0.0, 1.0); //<- this is more widely supported than glPolygonOffset //Polymost supports true look up/down :) Here, we convert horizon to angle. //gchang&gshang are cos&sin of this angle (respectively) gyxscale = ((float)xdimenscale)*(1.0f/131072.f); gxyaspect = ((float)xyaspect*fviewingrange)*(5.f/(65536.f*262144.f)); gviewxrange = fviewingrange * fxdimen * (1.f/(32768.f*1024.f)); gcosang = fcosglobalang*(1.0f/262144.f); gsinang = fsinglobalang*(1.0f/262144.f); gcosang2 = gcosang * (fviewingrange * (1.0f/65536.f)); gsinang2 = gsinang * (fviewingrange * (1.0f/65536.f)); ghalfx = (float)(xdimen>>1); grhalfxdown10 = 1.f/(ghalfx*1024.f); ghoriz = (float)globalhoriz; gvisibility = ((float)globalvisibility)*FOGSCALE; //global cos/sin height angle float r = (float)(ydimen>>1) - ghoriz; gshang = r/Bsqrtf(r*r+ghalfx*ghalfx); gchang = Bsqrtf(1.f-gshang*gshang); ghoriz = (float)(ydimen>>1); //global cos/sin tilt angle gctang = cosf(gtang); gstang = sinf(gtang); if (Bfabsf(gstang) < .001f) // This hack avoids nasty precision bugs in domost() { gstang = 0.f; gctang = (gctang > 0.f) ? 1.f : -1.f; } if (inpreparemirror) gstang = -gstang; //Generate viewport trapezoid (for handling screen up/down) vec3f_t p[4] = { { 0-1, 0-1, 0 }, { (float)(windowxy2.x + 1 - windowxy1.x + 2), 0-1, 0 }, { (float)(windowxy2.x + 1 - windowxy1.x + 2), (float)(windowxy2.y + 1 - windowxy1.y + 2), 0 }, { 0-1, (float)(windowxy2.y + 1 - windowxy1.y + 2), 0 } }; for (bssize_t i=0; i<4; i++) { //Tilt rotation (backwards) vec2f_t const o = { p[i].x-ghalfx, p[i].y-ghoriz }; vec3f_t const o2 = { o.x*gctang + o.y*gstang, o.y*gctang - o.x*gstang, ghalfx }; //Up/down rotation (backwards) p[i].x = o2.x; p[i].y = o2.y*gchang + o2.z*gshang; p[i].z = o2.z*gchang - o2.y*gshang; } //Clip to SCISDIST plane int n = 0; vec3f_t p2[6]; for (bssize_t i=0; i<4; i++) { int const j = i < 3 ? i + 1 : 0; if (p[i].z >= SCISDIST) p2[n++] = p[i]; if ((p[i].z >= SCISDIST) != (p[j].z >= SCISDIST)) { float const r = (SCISDIST - p[i].z) / (p[j].z - p[i].z); p2[n].x = (p[j].x - p[i].x) * r + p[i].x; p2[n].y = (p[j].y - p[i].y) * r + p[i].y; p2[n].z = SCISDIST; n++; } } if (n < 3) { enddrawing(); return; } float sx[4], sy[4]; for (bssize_t i = 0; i < n; i++) { float const r = ghalfx / p2[i].z; sx[i] = p2[i].x * r + ghalfx; sy[i] = p2[i].y * r + ghoriz; } polymost_initmosts(sx, sy, n); if (searchit == 2) polymost_editorfunc(); numscans = numbunches = 0; // MASKWALL_BAD_ACCESS // Fixes access of stale maskwall[maskwallcnt] (a "scan" index, in BUILD lingo): maskwallcnt = 0; // NOTE: globalcursectnum has been already adjusted in ADJUST_GLOBALCURSECTNUM. Bassert((unsigned)globalcursectnum < MAXSECTORS); polymost_scansector(globalcursectnum); grhalfxdown10x = grhalfxdown10; if (inpreparemirror) { grhalfxdown10x = -grhalfxdown10; inpreparemirror = 0; // see engine.c: INPREPAREMIRROR_NO_BUNCHES if (numbunches > 0) { polymost_drawalls(0); numbunches--; bunchfirst[0] = bunchfirst[numbunches]; bunchlast[0] = bunchlast[numbunches]; } } while (numbunches > 0) { Bmemset(ptempbuf,0,numbunches+3); ptempbuf[0] = 1; int32_t closest = 0; //Almost works, but not quite :( for (bssize_t i=1; ipoint2]; int32_t const sectnum = thesector[z]; usectortype const * const sec = (usectortype *)§or[sectnum]; // if (wal->nextsector < 0) return; // Without MASKWALL_BAD_ACCESS fix: // wal->nextsector is -1, WGR2 SVN Lochwood Hollow (Til' Death L1) (or trueror1.map) usectortype const * const nsec = (usectortype *)§or[wal->nextsector]; globalpicnum = wal->overpicnum; if ((uint32_t)globalpicnum >= MAXTILES) globalpicnum = 0; DO_TILE_ANIM(globalpicnum, (int16_t)thewall[z]+16384); globvis = (sector[sectnum].visibility != 0) ? mulscale4(globvis, (uint8_t)(sector[sectnum].visibility + 16)) : globalvisibility; globalshade = (int32_t)wal->shade; globalpal = (int32_t)((uint8_t)wal->pal); globalorientation = (int32_t)wal->cstat; vec2f_t s0 = { (float)(wal->x-globalposx), (float)(wal->y-globalposy) }; vec2f_t p0 = { s0.y*gcosang - s0.x*gsinang, s0.x*gcosang2 + s0.y*gsinang2 }; vec2f_t s1 = { (float)(wal2->x-globalposx), (float)(wal2->y-globalposy) }; vec2f_t p1 = { s1.y*gcosang - s1.x*gsinang, s1.x*gcosang2 + s1.y*gsinang2 }; if ((p0.y < SCISDIST) && (p1.y < SCISDIST)) return; //Clip to close parallel-screen plane vec2f_t const op0 = p0; float t0 = 0.f; if (p0.y < SCISDIST) { t0 = (SCISDIST - p0.y) / (p1.y - p0.y); p0.x = (p1.x - p0.x) * t0 + p0.x; p0.y = SCISDIST; } float t1 = 1.f; if (p1.y < SCISDIST) { t1 = (SCISDIST - op0.y) / (p1.y - op0.y); p1.x = (p1.x - op0.x) * t1 + op0.x; p1.y = SCISDIST; } int32_t m0 = (int32_t)((wal2->x - wal->x) * t0 + wal->x); int32_t m1 = (int32_t)((wal2->y - wal->y) * t0 + wal->y); int32_t cz[4], fz[4]; getzsofslope(sectnum, m0, m1, &cz[0], &fz[0]); getzsofslope(wal->nextsector, m0, m1, &cz[1], &fz[1]); m0 = (int32_t)((wal2->x - wal->x) * t1 + wal->x); m1 = (int32_t)((wal2->y - wal->y) * t1 + wal->y); getzsofslope(sectnum, m0, m1, &cz[2], &fz[2]); getzsofslope(wal->nextsector, m0, m1, &cz[3], &fz[3]); float ryp0 = 1.f/p0.y; float ryp1 = 1.f/p1.y; //Generate screen coordinates for front side of wall float const x0 = ghalfx*p0.x*ryp0 + ghalfx; float const x1 = ghalfx*p1.x*ryp1 + ghalfx; if (x1 <= x0) return; ryp0 *= gyxscale; ryp1 *= gyxscale; xtex.d = (ryp0-ryp1)*gxyaspect / (x0-x1); ytex.d = 0; otex.d = ryp0*gxyaspect - xtex.d*x0; //gux*x0 + guo = t0*wal->xrepeat*8*yp0 //gux*x1 + guo = t1*wal->xrepeat*8*yp1 xtex.u = (t0*ryp0 - t1*ryp1)*gxyaspect*(float)wal->xrepeat*8.f / (x0-x1); otex.u = t0*ryp0*gxyaspect*(float)wal->xrepeat*8.f - xtex.u*x0; otex.u += (float)wal->xpanning*otex.d; xtex.u += (float)wal->xpanning*xtex.d; ytex.u = 0; // mask calc_ypanning((!(wal->cstat & 4)) ? max(nsec->ceilingz, sec->ceilingz) : min(nsec->floorz, sec->floorz), ryp0, ryp1, x0, x1, wal->ypanning, wal->yrepeat, 0); if (wal->cstat&8) //xflip { float const t = (float)(wal->xrepeat*8 + wal->xpanning*2); xtex.u = xtex.d*t - xtex.u; ytex.u = ytex.d*t - ytex.u; otex.u = otex.d*t - otex.u; } if (wal->cstat&256) { xtex.v = -xtex.v; ytex.v = -ytex.v; otex.v = -otex.v; } //yflip int method = DAMETH_MASK | DAMETH_WALL; if (wal->cstat & 128) method = DAMETH_WALL | (((wal->cstat & 512)) ? DAMETH_TRANS2 : DAMETH_TRANS1); #ifdef NEW_MAP_FORMAT uint8_t const blend = wal->blend; #else uint8_t const blend = wallext[thewall[z]].blend; #endif handle_blend(!!(wal->cstat & 128), blend, !!(wal->cstat & 512)); drawpoly_alpha = 0.f; drawpoly_blend = blend; calc_and_apply_fog(wal->picnum, fogshade(wal->shade, wal->pal), sec->visibility, get_floor_fogpal(sec)); float const csy[4] = { ((float)(cz[0] - globalposz)) * ryp0 + ghoriz, ((float)(cz[1] - globalposz)) * ryp0 + ghoriz, ((float)(cz[2] - globalposz)) * ryp1 + ghoriz, ((float)(cz[3] - globalposz)) * ryp1 + ghoriz }; float const fsy[4] = { ((float)(fz[0] - globalposz)) * ryp0 + ghoriz, ((float)(fz[1] - globalposz)) * ryp0 + ghoriz, ((float)(fz[2] - globalposz)) * ryp1 + ghoriz, ((float)(fz[3] - globalposz)) * ryp1 + ghoriz }; //Clip 2 quadrilaterals // /csy3 // / | // csy0------/----csy2 // | /xxxxxxx| // | /xxxxxxxxx| // csy1/xxxxxxxxxxx| // |xxxxxxxxxxx/fsy3 // |xxxxxxxxx/ | // |xxxxxxx/ | // fsy0----/------fsy2 // | / // fsy1/ vec2f_t dpxy[4] = { { x0, csy[1] }, { x1, csy[3] }, { x1, fsy[3] }, { x0, fsy[1] } }; //Clip to (x0,csy[0])-(x1,csy[2]) vec2f_t dp2[4]; int n2 = 0; t1 = -((dpxy[0].x - x0) * (csy[2] - csy[0]) - (dpxy[0].y - csy[0]) * (x1 - x0)); for (bssize_t i=0; i<4; i++) { int j = i + 1; if (j >= 4) j = 0; t0 = t1; t1 = -((dpxy[j].x - x0) * (csy[2] - csy[0]) - (dpxy[j].y - csy[0]) * (x1 - x0)); if (t0 >= 0) dp2[n2++] = dpxy[i]; if ((t0 >= 0) != (t1 >= 0) && (t0 <= 0) != (t1 <= 0)) { float const r = t0 / (t0 - t1); dp2[n2].x = (dpxy[j].x - dpxy[i].x) * r + dpxy[i].x; dp2[n2].y = (dpxy[j].y - dpxy[i].y) * r + dpxy[i].y; n2++; } } if (n2 < 3) return; //Clip to (x1,fsy[2])-(x0,fsy[0]) t1 = -((dp2[0].x - x1) * (fsy[0] - fsy[2]) - (dp2[0].y - fsy[2]) * (x0 - x1)); int n = 0; for (bssize_t i = 0, j = 1; i < n2; j = ++i + 1) { if (j >= n2) j = 0; t0 = t1; t1 = -((dp2[j].x - x1) * (fsy[0] - fsy[2]) - (dp2[j].y - fsy[2]) * (x0 - x1)); if (t0 >= 0) dpxy[n++] = dp2[i]; if ((t0 >= 0) != (t1 >= 0) && (t0 <= 0) != (t1 <= 0)) { float const r = t0 / (t0 - t1); dpxy[n].x = (dp2[j].x - dp2[i].x) * r + dp2[i].x; dpxy[n].y = (dp2[j].y - dp2[i].y) * r + dp2[i].y; n++; } } if (n < 3) return; pow2xsplit = 0; skyclamphack = 0; polymost_drawpoly(dpxy, n, method); } typedef struct { uint32_t wrev; uint32_t srev; int16_t wall; int8_t wdist; int8_t filler; } wallspriteinfo_t; wallspriteinfo_t wsprinfo[MAXSPRITES]; void Polymost_prepare_loadboard(void) { Bmemset(wsprinfo, 0, sizeof(wsprinfo)); } static inline int32_t polymost_findwall(uspritetype const * const tspr, vec2_t const * const tsiz, int32_t * rd) { int32_t dist = 4, closest = -1; usectortype const * const sect = (usectortype * )§or[tspr->sectnum]; vec2_t n; for (bssize_t i=sect->wallptr; iwallptr + sect->wallnum; i++) { if ((wall[i].nextsector == -1 || ((sector[wall[i].nextsector].ceilingz > (tspr->z - ((tsiz->y * tspr->yrepeat) << 2))) || sector[wall[i].nextsector].floorz < tspr->z)) && !polymost_getclosestpointonwall((const vec2_t *) tspr, i, &n)) { int const dst = klabs(tspr->x - n.x) + klabs(tspr->y - n.y); if (dst <= dist) { dist = dst; closest = i; } } } *rd = dist; return closest; } int32_t polymost_lintersect(int32_t x1, int32_t y1, int32_t x2, int32_t y2, int32_t x3, int32_t y3, int32_t x4, int32_t y4) { // p1 to p2 is a line segment int32_t const x21 = x2 - x1, x34 = x3 - x4; int32_t const y21 = y2 - y1, y34 = y3 - y4; int32_t const bot = x21 * y34 - y21 * x34; if (!bot) return 0; int32_t const x31 = x3 - x1, y31 = y3 - y1; int32_t const topt = x31 * y34 - y31 * x34; int rv = 1; if (bot > 0) { if ((unsigned)topt >= (unsigned)bot) rv = 0; int32_t topu = x21 * y31 - y21 * x31; if ((unsigned)topu >= (unsigned)bot) rv = 0; } else { if ((unsigned)topt <= (unsigned)bot) rv = 0; int32_t topu = x21 * y31 - y21 * x31; if ((unsigned)topu <= (unsigned)bot) rv = 0; } return rv; } #define TSPR_OFFSET_FACTOR .000008f #define TSPR_OFFSET(tspr) ((TSPR_OFFSET_FACTOR + ((tspr->owner != -1 ? tspr->owner & 63 : 1) * TSPR_OFFSET_FACTOR)) * (float)sepdist(globalposx - tspr->x, globalposy - tspr->y, globalposz - tspr->z) * 0.025f) void polymost2_drawsprite(int32_t snum) { uspritetype *const tspr = tspriteptr[snum]; if (EDUKE32_PREDICT_FALSE(bad_tspr(tspr))) return; const usectortype *sec; int32_t spritenum = tspr->owner; DO_TILE_ANIM(tspr->picnum, spritenum + 32768); globalpicnum = tspr->picnum; globalshade = tspr->shade; globalpal = tspr->pal; globalorientation = tspr->cstat; globvis = globalvisibility; if (sector[tspr->sectnum].visibility != 0) globvis = mulscale4(globvis, (uint8_t)(sector[tspr->sectnum].visibility + 16)); vec2f_t off = { 0.f, 0.f }; if ((globalorientation & CSTAT_SPRITE_ALIGNMENT) != CSTAT_SPRITE_ALIGNMENT_SLAB) // only non-voxel sprites should do this { int const flag = usehightile && h_xsize[globalpicnum]; off.x = (int32_t)tspr->xoffset + (flag ? h_xoffs[globalpicnum] : picanm[globalpicnum].xofs); off.y = (int32_t)tspr->yoffset + (flag ? h_yoffs[globalpicnum] : picanm[globalpicnum].yofs); } int32_t method = DAMETH_MASK | DAMETH_CLAMPED; if (tspr->cstat & CSTAT_SPRITE_TRANSLUCENT) method = DAMETH_CLAMPED | ((tspr->cstat & CSTAT_SPRITE_TRANSLUCENT_INVERT) ? DAMETH_TRANS2 : DAMETH_TRANS1); handle_blend(!!(tspr->cstat & CSTAT_SPRITE_TRANSLUCENT), tspr->blend, !!(tspr->cstat & CSTAT_SPRITE_TRANSLUCENT_INVERT)); drawpoly_alpha = spriteext[spritenum].alpha; drawpoly_blend = tspr->blend; sec = (usectortype *)§or[tspr->sectnum]; polymost2_calc_fog(fogshade(globalshade, globalpal), sec->visibility, get_floor_fogpal(sec)); //POGOTODO: this while is an if statement while (!(spriteext[spritenum].flags & SPREXT_NOTMD)) { //POGOTODO: switch these to if/else for readability and rearrange for performance if (usemodels && tile2model[Ptile2tile(tspr->picnum, tspr->pal)].modelid >= 0 && tile2model[Ptile2tile(tspr->picnum, tspr->pal)].framenum >= 0) { if (polymost_mddraw(tspr)) return; break; // else, render as flat sprite } if (usevoxels && (tspr->cstat & CSTAT_SPRITE_ALIGNMENT) != CSTAT_SPRITE_ALIGNMENT_SLAB && tiletovox[tspr->picnum] >= 0 && voxmodels[tiletovox[tspr->picnum]]) { if (polymost_voxdraw(voxmodels[tiletovox[tspr->picnum]], tspr)) return; break; // else, render as flat sprite } if ((tspr->cstat & CSTAT_SPRITE_ALIGNMENT) == CSTAT_SPRITE_ALIGNMENT_SLAB && voxmodels[tspr->picnum]) { polymost_voxdraw(voxmodels[tspr->picnum], tspr); return; } break; } //POGO: some comments seem to indicate that spinning sprites were intended to be supported before the // decision was made to implement that behaviour with voxels. // Skip SPIN aligned sprites when not rendering as voxels. if ((globalorientation & CSTAT_SPRITE_ALIGNMENT) == CSTAT_SPRITE_ALIGNMENT_SLAB) { return; } vec2_t pos = *(vec2_t *)tspr; if (spriteext[spritenum].flags & SPREXT_AWAY1) { pos.x += (sintable[(tspr->ang + 512) & 2047] >> 13); pos.y += (sintable[(tspr->ang) & 2047] >> 13); } else if (spriteext[spritenum].flags & SPREXT_AWAY2) { pos.x -= (sintable[(tspr->ang + 512) & 2047] >> 13); pos.y -= (sintable[(tspr->ang) & 2047] >> 13); } vec2s_t const oldsiz = tilesiz[globalpicnum]; vec2_t tsiz = { oldsiz.x, oldsiz.y }; if (usehightile && h_xsize[globalpicnum]) { tsiz.x = h_xsize[globalpicnum]; tsiz.y = h_ysize[globalpicnum]; } if (tsiz.x <= 0 || tsiz.y <= 0) return; vec2f_t const ftsiz = { (float) tsiz.x, (float) tsiz.y }; //POGOTODO: some of these cases where we return could be done further up in order to skip doing throw away computation if ((globalorientation & CSTAT_SPRITE_ALIGNMENT_FLOOR) && (globalorientation & CSTAT_SPRITE_ONE_SIDED) != 0 && (globalposz > tspr->z) == (!(globalorientation & CSTAT_SPRITE_YFLIP))) { return; } //POGOTODO: in polymost1 any sprites that are too close are pre-clipped here before any calculation tilesiz[globalpicnum].x = tsiz.x; tilesiz[globalpicnum].y = tsiz.y; float texScale[2] = {1.0f, -1.0f}; float texOffset[2] = {((float) (spriteext[spritenum].xpanning) * (1.0f / 255.f)), ((float) (spriteext[spritenum].ypanning) * (1.0f / 255.f))}; float transformMatrix[4*4] = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; float modelViewMatrix[4*4] = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; float f = (65536.f*512.f) / (fxdimen*viewingrange); float g = 32.f / (fxdimen*gxyaspect); float horzScale = ftsiz.x*(1.f/64.f); float vertScale = ftsiz.y*(1.f/64.f); horzScale *= ((float)tspr->xrepeat) * (1.f/64.f); vertScale *= ((float)tspr->yrepeat) * (1.f/64.f); if ((globalorientation & CSTAT_SPRITE_ALIGNMENT)==CSTAT_SPRITE_ALIGNMENT_FACING) { horzScale *= 256.f/320.f; } else if ((globalorientation & CSTAT_SPRITE_ALIGNMENT)==CSTAT_SPRITE_ALIGNMENT_FLOOR) { //POGOTODO: fix floor sprites to be scaled up slightly by the right amount, and note their tex is slightly clipped on the leading edges vertScale += 1.f/320.f; } horzScale *= f; vertScale *= g; //handle sprite flipping horzScale *= -2.f*((globalorientation & CSTAT_SPRITE_XFLIP) != 0) + 1.f; vertScale *= -2.f*(((globalorientation & CSTAT_SPRITE_ALIGNMENT) != CSTAT_SPRITE_ALIGNMENT_FLOOR) & ((globalorientation & CSTAT_SPRITE_YFLIP) != 0)) + 1.f; //POGOTODO: replace this with simply using off.x and a different float for z offsets // switching that over should fix floor sprite offsets so that they flip properly when yflip/xflip is applied //handle orientation offsets vec2f_t orientationOffset = {0.f, 0.f}; vec3f_t offs = { 0.f, 0.f, 0.f }; off.x = 0.2f * ((float)tspr->xrepeat) * (((float) off.x) + (tsiz.x & 1)*0.5f*(((globalorientation & CSTAT_SPRITE_XFLIP) == 0)*-2.f + 1.f)); off.y = 4.f * ((float)tspr->yrepeat) * (((float) off.y) + (((globalorientation & CSTAT_SPRITE_YCENTER) != 0) & tsiz.y & 1)*0.5f); int16_t angle = globalang; float combinedClipScale = 1.f; if ((globalorientation & CSTAT_SPRITE_ALIGNMENT)==CSTAT_SPRITE_ALIGNMENT_FACING) { int const ang = (getangle(tspr->x - globalposx, tspr->y - globalposy) + 1024) & 2047; float const foffs = TSPR_OFFSET(tspr); offs = { (float) (sintable[(ang + 512) & 2047] >> 6) * foffs, (float) (sintable[(ang) & 2047] >> 6) * foffs, 0.f}; } else if ((globalorientation & CSTAT_SPRITE_ALIGNMENT)==CSTAT_SPRITE_ALIGNMENT_WALL) { angle = (tspr->ang+1024)&2047; /*float const foffs = TSPR_OFFSET(tspr); offs = { (float) (sintable[(tspr->ang + 512) & 2047] >> 6) * foffs, (float) (sintable[(tspr->ang) & 2047] >> 6) * foffs};*/ //POGOTODO: For now, just handle this exactly the same way as in polymost1. // Eventually, I should change how all sprites avoid z-fighting by offsetting the z-buffer depth // rather than offsetting the entire object in space. vec2f_t const extent = { (float)tspr->xrepeat * (float)sintable[(tspr->ang) & 2047] * (1.0f / 65536.f), (float)tspr->xrepeat * (float)sintable[(tspr->ang + 1536) & 2047] * (1.0f / 65536.f) }; //POGOTODO: this needs to be calculated before I make my adjustments to off.x above! float f = (float)(tsiz.x >> 1) + (float)off.x; vec2f_t const vf = { extent.x * f, extent.y * f }; int32_t const s = tspr->owner; int32_t walldist = 1; int32_t w = (s == -1) ? -1 : wsprinfo[s].wall; // find the wall most likely to be what the sprite is supposed to be ornamented against // this is really slow, so cache the result if (s == -1 || !wsprinfo[s].wall || (spritechanged[s] != wsprinfo[s].srev) || (w != -1 && wallchanged[w] != wsprinfo[s].wrev)) { w = polymost_findwall(tspr, &tsiz, &walldist); if (s != -1) { wallspriteinfo_t *ws = &wsprinfo[s]; ws->wall = w; if (w != -1) { ws->wdist = walldist; ws->wrev = wallchanged[w]; ws->srev = spritechanged[s]; } } } else if (s != -1) walldist = wsprinfo[s].wdist; // detect if the sprite is either on the wall line or the wall line and sprite intersect if (w != -1) { vec2_t v = { /*Blrintf(vf.x)*/(int)vf.x, /*Blrintf(vf.y)*/(int)vf.y }; if (walldist <= 2 || ((pos.x - v.x) + (pos.x + v.x)) == (wall[w].x + POINT2(w).x) || ((pos.y - v.y) + (pos.y + v.y)) == (wall[w].y + POINT2(w).y) || polymost_lintersect(pos.x - v.x, pos.y - v.y, pos.x + v.x, pos.y + v.y, wall[w].x, wall[w].y, POINT2(w).x, POINT2(w).y)) { int32_t const ang = getangle(wall[w].x - POINT2(w).x, wall[w].y - POINT2(w).y); float const foffs = TSPR_OFFSET(tspr); offs = { -(float)(sintable[(ang + 1024) & 2047] >> 6) * foffs, -(float)(sintable[(ang + 512) & 2047] >> 6) * foffs, 0.f}; } } //POGO: for full compatibility, facing sprites should also clip similarly (see polymost_drawsprite()) // Clip sprites to ceilings/floors when no parallaxing float fullCenterYOff = off.y + (((globalorientation & CSTAT_SPRITE_YCENTER) != 0) * 2.f) * ftsiz.y * ((float)tspr->yrepeat); if ((!(sector[tspr->sectnum].ceilingstat & 1)) && sector[tspr->sectnum].ceilingz > tspr->z + fullCenterYOff - ((tspr->yrepeat * tsiz.y) << 2)) { float clipScale = ((float) (tspr->z + fullCenterYOff - sector[tspr->sectnum].ceilingz))/((float)((tspr->yrepeat * tsiz.y) << 2)); if (clipScale <= 0.f) { //don't draw sprites fully clipped by the ceiling return; } texScale[1] *= clipScale; texOffset[1] += (1.f-clipScale)*(-1.f*((globalorientation & CSTAT_SPRITE_YFLIP) == CSTAT_SPRITE_YFLIP)); vertScale *= clipScale; combinedClipScale *= clipScale; } if ((!(sector[tspr->sectnum].floorstat & 1)) && sector[tspr->sectnum].floorz < tspr->z + fullCenterYOff) { float span = ((tspr->yrepeat * tsiz.y) << 2) - (tspr->z + fullCenterYOff - sector[tspr->sectnum].floorz); float clipScale = span/((float)((tspr->yrepeat * tsiz.y) << 2)); if (clipScale <= 0.f) { //don't draw sprites fully clipped by the floor return; } texScale[1] *= clipScale; texOffset[1] += (1.f-clipScale)*(-1.f*((globalorientation & CSTAT_SPRITE_YFLIP) != CSTAT_SPRITE_YFLIP)); vertScale *= clipScale; combinedClipScale *= clipScale; off.y += (float) (((tspr->yrepeat * tsiz.y) << 2) - span); } if (globalorientation & CSTAT_SPRITE_YCENTER) { combinedClipScale = 1.f; } } off.x *= ((float) ((globalorientation & CSTAT_SPRITE_XFLIP) != 0))*-2.f + 1.f; off.y *= ((float) (((globalorientation & CSTAT_SPRITE_ALIGNMENT) != CSTAT_SPRITE_ALIGNMENT_FACING) & ((globalorientation & CSTAT_SPRITE_YFLIP) != 0)))*-2.f + 1.f; if ((globalorientation & CSTAT_SPRITE_ALIGNMENT)==CSTAT_SPRITE_ALIGNMENT_FLOOR) { vertScale = -vertScale; orientationOffset.x += ftsiz.y*((float) tspr->yrepeat)*(1.f/8.f); // unfortunately, offsetting by only 1 isn't enough on most Android devices if (tspr->z == sec->ceilingz || tspr->z == sec->ceilingz + 1) tspr->z = sec->ceilingz + 2, orientationOffset.y += (tspr->owner & 31); if (tspr->z == sec->floorz || tspr->z == sec->floorz - 1) tspr->z = sec->floorz - 2, orientationOffset.y -= ((tspr->owner & 31)); angle = tspr->ang; } else { off.y -= (((globalorientation & CSTAT_SPRITE_YCENTER) != 0) * 2.f + ((globalorientation & CSTAT_SPRITE_YFLIP) != 0)*-4.f) * combinedClipScale * ftsiz.y * ((float)tspr->yrepeat); } vec3f_t a0; a0.x = ((float)(pos.y-globalposy)+offs.y) * -(1.f/1024.f)*-f; a0.y = ((float)(pos.x-globalposx)+offs.x) * (1.f/1024.f)*f; a0.z = ((float)(tspr->z-globalposz)+offs.z) * -(1.f/16384.f)*g; orientationOffset.x *= -(1.f/1024.f)*-f; orientationOffset.y *= -(1.f/16384.f)*g; calcmat(a0, &orientationOffset, f, modelViewMatrix, angle); if ((globalorientation & CSTAT_SPRITE_ALIGNMENT)==CSTAT_SPRITE_ALIGNMENT_FLOOR) { float temp = modelViewMatrix[4]; modelViewMatrix[4] = modelViewMatrix[8]*16.f; modelViewMatrix[8] = -temp*(1.f/16.f); temp = modelViewMatrix[5]; modelViewMatrix[5] = modelViewMatrix[9]*16.f; modelViewMatrix[9] = -temp*(1.f/16.f); temp = modelViewMatrix[6]; modelViewMatrix[6] = modelViewMatrix[10]*16.f; modelViewMatrix[10] = -temp*(1.f/16.f); } // mirrors if (grhalfxdown10x < 0) { modelViewMatrix[0] = -modelViewMatrix[0]; modelViewMatrix[4] = -modelViewMatrix[4]; modelViewMatrix[8] = -modelViewMatrix[8]; modelViewMatrix[12] = -modelViewMatrix[12]; } float ratio = 1.0f/get_projhack_ratio(); float projectionMatrix[4*4] = { fydimen * ratio, 0.0f, 1.0f, 0.0f, 0.0f, fxdimen, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, fydimen * ratio, 0.0f, 0.0f, -1.0f, 0.0f }; float scaleMatrix[4*4] = { horzScale, 0.0f, 0.0f, 0.0f, 0.0f, vertScale, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; float offsetMatrix[4*4] = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, -off.x*(1.f/1024.f)*f, off.y * (1.f/16384.f)*g, 0.0f, 1.0f }; multiplyMatrix4f(transformMatrix, scaleMatrix); multiplyMatrix4f(transformMatrix, offsetMatrix); //POGOTODO: for later optimization purposes (batching/caching), I need to split the modelViewMatrix into modelMatrix and viewMatrix multiplyMatrix4f(transformMatrix, modelViewMatrix); //POGOTODO: I should instead implement one-sided sprites & culling by switching the xflip/yflip from flipping scale to instead flipping texScale // Doing that will allow me to simplify a lot of this code, but it will require a lot of changes polymost2_drawVBO(GL_TRIANGLE_STRIP, quadVertsID, 0, 4, projectionMatrix, transformMatrix, method, texScale, texOffset, ((globalorientation & CSTAT_SPRITE_ONE_SIDED) != 0)*3 & ((((globalorientation & CSTAT_SPRITE_XFLIP) != 0) ^ ((globalorientation & CSTAT_SPRITE_YFLIP) != 0))+1)); drawpoly_srepeat = 0; drawpoly_trepeat = 0; tilesiz[globalpicnum] = oldsiz; } void polymost_drawsprite(int32_t snum) { if (r_enablepolymost2) { polymost2_drawsprite(snum); return; } uspritetype *const tspr = tspriteptr[snum]; if (EDUKE32_PREDICT_FALSE(bad_tspr(tspr))) return; const usectortype *sec; int32_t spritenum = tspr->owner; DO_TILE_ANIM(tspr->picnum, spritenum + 32768); globalpicnum = tspr->picnum; globalshade = tspr->shade; globalpal = tspr->pal; globalorientation = tspr->cstat; globvis = globalvisibility; if (sector[tspr->sectnum].visibility != 0) globvis = mulscale4(globvis, (uint8_t)(sector[tspr->sectnum].visibility + 16)); vec2_t off = { 0, 0 }; if ((globalorientation & 48) != 48) // only non-voxel sprites should do this { int const flag = usehightile && h_xsize[globalpicnum]; off.x = (int32_t)tspr->xoffset + (flag ? h_xoffs[globalpicnum] : picanm[globalpicnum].xofs); off.y = (int32_t)tspr->yoffset + (flag ? h_yoffs[globalpicnum] : picanm[globalpicnum].yofs); } int32_t method = DAMETH_MASK | DAMETH_CLAMPED; if (tspr->cstat & 2) method = DAMETH_CLAMPED | ((tspr->cstat & 512) ? DAMETH_TRANS2 : DAMETH_TRANS1); handle_blend(!!(tspr->cstat & 2), tspr->blend, !!(tspr->cstat & 512)); drawpoly_alpha = spriteext[spritenum].alpha; drawpoly_blend = tspr->blend; sec = (usectortype *)§or[tspr->sectnum]; calc_and_apply_fog(tspr->picnum, fogshade(globalshade, globalpal), sec->visibility, get_floor_fogpal(sec)); while (!(spriteext[spritenum].flags & SPREXT_NOTMD)) { if (usemodels && tile2model[Ptile2tile(tspr->picnum, tspr->pal)].modelid >= 0 && tile2model[Ptile2tile(tspr->picnum, tspr->pal)].framenum >= 0) { if (polymost_mddraw(tspr)) return; break; // else, render as flat sprite } if (usevoxels && (tspr->cstat & 48) != 48 && tiletovox[tspr->picnum] >= 0 && voxmodels[tiletovox[tspr->picnum]]) { if (polymost_voxdraw(voxmodels[tiletovox[tspr->picnum]], tspr)) return; break; // else, render as flat sprite } if ((tspr->cstat & 48) == 48 && voxmodels[tspr->picnum]) { polymost_voxdraw(voxmodels[tspr->picnum], tspr); return; } break; } vec2_t pos = *(vec2_t *)tspr; if (spriteext[spritenum].flags & SPREXT_AWAY1) { pos.x += (sintable[(tspr->ang + 512) & 2047] >> 13); pos.y += (sintable[(tspr->ang) & 2047] >> 13); } else if (spriteext[spritenum].flags & SPREXT_AWAY2) { pos.x -= (sintable[(tspr->ang + 512) & 2047] >> 13); pos.y -= (sintable[(tspr->ang) & 2047] >> 13); } vec2s_t const oldsiz = tilesiz[globalpicnum]; vec2_t tsiz = { oldsiz.x, oldsiz.y }; if (usehightile && h_xsize[globalpicnum]) { tsiz.x = h_xsize[globalpicnum]; tsiz.y = h_ysize[globalpicnum]; } if (tsiz.x <= 0 || tsiz.y <= 0) return; vec2f_t const ftsiz = { (float) tsiz.x, (float) tsiz.y }; switch ((globalorientation >> 4) & 3) { case 0: // Face sprite { // Project 3D to 2D if (globalorientation & 4) off.x = -off.x; // NOTE: yoff not negated not for y flipping, unlike wall and floor // aligned sprites. int const ang = (getangle(tspr->x - globalposx, tspr->y - globalposy) + 1024) & 2047; float const foffs = TSPR_OFFSET(tspr); vec2f_t const offs = { (float) (sintable[(ang + 512) & 2047] >> 6) * foffs, (float) (sintable[(ang) & 2047] >> 6) * foffs }; vec2f_t s0 = { (float)(tspr->x - globalposx) + offs.x, (float)(tspr->y - globalposy) + offs.y}; vec2f_t p0 = { s0.y * gcosang - s0.x * gsinang, s0.x * gcosang2 + s0.y * gsinang2 }; if (p0.y <= SCISDIST) return; float const ryp0 = 1.f / p0.y; s0.x = ghalfx * p0.x * ryp0 + ghalfx; s0.y = ((float) (tspr->z - globalposz)) * gyxscale * ryp0 + ghoriz; float const f = ryp0 * fxdimen * (1.0f / 160.f); vec2f_t ff = { ((float)tspr->xrepeat) * f, ((float)tspr->yrepeat) * f * ((float)yxaspect * (1.0f / 65536.f)) }; if (tsiz.x & 1) s0.x += ff.x * 0.5f; if (globalorientation & 128 && tsiz.y & 1) s0.y += ff.y * 0.5f; s0.x -= ff.x * (float) off.x; s0.y -= ff.y * (float) off.y; ff.x *= ftsiz.x; ff.y *= ftsiz.y; vec2f_t pxy[4]; pxy[0].x = pxy[3].x = s0.x - ff.x * 0.5f; pxy[1].x = pxy[2].x = s0.x + ff.x * 0.5f; if (!(globalorientation & 128)) { pxy[0].y = pxy[1].y = s0.y - ff.y; pxy[2].y = pxy[3].y = s0.y; } else { pxy[0].y = pxy[1].y = s0.y - ff.y * 0.5f; pxy[2].y = pxy[3].y = s0.y + ff.y * 0.5f; } xtex.d = ytex.d = ytex.u = xtex.v = 0; otex.d = ryp0 * gviewxrange; if (!(globalorientation & 4)) { xtex.u = ftsiz.x * otex.d / (pxy[1].x - pxy[0].x + .002f); otex.u = -xtex.u * (pxy[0].x - .001f); } else { xtex.u = ftsiz.x * otex.d / (pxy[0].x - pxy[1].x - .002f); otex.u = -xtex.u * (pxy[1].x + .001f); } if (!(globalorientation & 8)) { ytex.v = ftsiz.y * otex.d / (pxy[3].y - pxy[0].y + .002f); otex.v = -ytex.v * (pxy[0].y - .001f); } else { ytex.v = ftsiz.y * otex.d / (pxy[0].y - pxy[3].y - .002f); otex.v = -ytex.v * (pxy[3].y + .001f); } // sprite panning if (spriteext[spritenum].xpanning) { ytex.u -= ytex.d * ((float) (spriteext[spritenum].xpanning) * (1.0f / 255.f)) * ftsiz.x; otex.u -= otex.d * ((float) (spriteext[spritenum].xpanning) * (1.0f / 255.f)) * ftsiz.x; drawpoly_srepeat = 1; } if (spriteext[spritenum].ypanning) { ytex.v -= ytex.d * ((float) (spriteext[spritenum].ypanning) * (1.0f / 255.f)) * ftsiz.y; otex.v -= otex.d * ((float) (spriteext[spritenum].ypanning) * (1.0f / 255.f)) * ftsiz.y; drawpoly_trepeat = 1; } // Clip sprites to ceilings/floors when no parallaxing and not sloped if (!(sector[tspr->sectnum].ceilingstat & 3)) { s0.y = ((float) (sector[tspr->sectnum].ceilingz - globalposz)) * gyxscale * ryp0 + ghoriz; if (pxy[0].y < s0.y) pxy[0].y = pxy[1].y = s0.y; } if (!(sector[tspr->sectnum].floorstat & 3)) { s0.y = ((float) (sector[tspr->sectnum].floorz - globalposz)) * gyxscale * ryp0 + ghoriz; if (pxy[2].y > s0.y) pxy[2].y = pxy[3].y = s0.y; } tilesiz[globalpicnum].x = tsiz.x; tilesiz[globalpicnum].y = tsiz.y; pow2xsplit = 0; polymost_drawpoly(pxy, 4, method); drawpoly_srepeat = 0; drawpoly_trepeat = 0; } break; case 1: // Wall sprite { // Project 3D to 2D if (globalorientation & 4) off.x = -off.x; if (globalorientation & 8) off.y = -off.y; vec2f_t const extent = { (float)tspr->xrepeat * (float)sintable[(tspr->ang) & 2047] * (1.0f / 65536.f), (float)tspr->xrepeat * (float)sintable[(tspr->ang + 1536) & 2047] * (1.0f / 65536.f) }; float f = (float)(tsiz.x >> 1) + (float)off.x; vec2f_t const vf = { extent.x * f, extent.y * f }; vec2f_t vec0 = { (float)(pos.x - globalposx) - vf.x, (float)(pos.y - globalposy) - vf.y }; int32_t const s = tspr->owner; int32_t walldist = 1; int32_t w = (s == -1) ? -1 : wsprinfo[s].wall; // find the wall most likely to be what the sprite is supposed to be ornamented against // this is really slow, so cache the result if (s == -1 || !wsprinfo[s].wall || (spritechanged[s] != wsprinfo[s].srev) || (w != -1 && wallchanged[w] != wsprinfo[s].wrev)) { w = polymost_findwall(tspr, &tsiz, &walldist); if (s != -1) { wallspriteinfo_t *ws = &wsprinfo[s]; ws->wall = w; if (w != -1) { ws->wdist = walldist; ws->wrev = wallchanged[w]; ws->srev = spritechanged[s]; } } } else if (s != -1) walldist = wsprinfo[s].wdist; // detect if the sprite is either on the wall line or the wall line and sprite intersect if (w != -1) { vec2_t v = { /*Blrintf(vf.x)*/(int)vf.x, /*Blrintf(vf.y)*/(int)vf.y }; if (walldist <= 2 || ((pos.x - v.x) + (pos.x + v.x)) == (wall[w].x + POINT2(w).x) || ((pos.y - v.y) + (pos.y + v.y)) == (wall[w].y + POINT2(w).y) || polymost_lintersect(pos.x - v.x, pos.y - v.y, pos.x + v.x, pos.y + v.y, wall[w].x, wall[w].y, POINT2(w).x, POINT2(w).y)) { int32_t const ang = getangle(wall[w].x - POINT2(w).x, wall[w].y - POINT2(w).y); float const foffs = TSPR_OFFSET(tspr); vec2f_t const offs = { (float)(sintable[(ang + 1024) & 2047] >> 6) * foffs, (float)(sintable[(ang + 512) & 2047] >> 6) * foffs}; vec0.x -= offs.x; vec0.y -= offs.y; } } vec2f_t p0 = { vec0.y * gcosang - vec0.x * gsinang, vec0.x * gcosang2 + vec0.y * gsinang2 }; vec2f_t const pp = { extent.x * ftsiz.x + vec0.x, extent.y * ftsiz.x + vec0.y }; vec2f_t p1 = { pp.y * gcosang - pp.x * gsinang, pp.x * gcosang2 + pp.y * gsinang2 }; if ((p0.y <= SCISDIST) && (p1.y <= SCISDIST)) return; // Clip to close parallel-screen plane vec2f_t const op0 = p0; float t0 = 0.f, t1 = 1.f; if (p0.y < SCISDIST) { t0 = (SCISDIST - p0.y) / (p1.y - p0.y); p0.x = (p1.x - p0.x) * t0 + p0.x; p0.y = SCISDIST; } if (p1.y < SCISDIST) { t1 = (SCISDIST - op0.y) / (p1.y - op0.y); p1.x = (p1.x - op0.x) * t1 + op0.x; p1.y = SCISDIST; } f = 1.f / p0.y; const float ryp0 = f * gyxscale; float sx0 = ghalfx * p0.x * f + ghalfx; f = 1.f / p1.y; const float ryp1 = f * gyxscale; float sx1 = ghalfx * p1.x * f + ghalfx; tspr->z -= ((off.y * tspr->yrepeat) << 2); if (globalorientation & 128) { tspr->z += ((tsiz.y * tspr->yrepeat) << 1); if (tsiz.y & 1) tspr->z += (tspr->yrepeat << 1); // Odd yspans } xtex.d = (ryp0 - ryp1) * gxyaspect / (sx0 - sx1); ytex.d = 0; otex.d = ryp0 * gxyaspect - xtex.d * sx0; if (globalorientation & 4) { t0 = 1.f - t0; t1 = 1.f - t1; } // sprite panning if (spriteext[spritenum].xpanning) { float const xpan = ((float)(spriteext[spritenum].xpanning) * (1.0f / 255.f)); t0 -= xpan; t1 -= xpan; drawpoly_srepeat = 1; } xtex.u = (t0 * ryp0 - t1 * ryp1) * gxyaspect * ftsiz.x / (sx0 - sx1); ytex.u = 0; otex.u = t0 * ryp0 * gxyaspect * ftsiz.x - xtex.u * sx0; f = ((float) tspr->yrepeat) * ftsiz.y * 4; float sc0 = ((float) (tspr->z - globalposz - f)) * ryp0 + ghoriz; float sc1 = ((float) (tspr->z - globalposz - f)) * ryp1 + ghoriz; float sf0 = ((float) (tspr->z - globalposz)) * ryp0 + ghoriz; float sf1 = ((float) (tspr->z - globalposz)) * ryp1 + ghoriz; // gvx*sx0 + gvy*sc0 + gvo = 0 // gvx*sx1 + gvy*sc1 + gvo = 0 // gvx*sx0 + gvy*sf0 + gvo = tsizy*(gdx*sx0 + gdo) f = ftsiz.y * (xtex.d * sx0 + otex.d) / ((sx0 - sx1) * (sc0 - sf0)); if (!(globalorientation & 8)) { xtex.v = (sc0 - sc1) * f; ytex.v = (sx1 - sx0) * f; otex.v = -xtex.v * sx0 - ytex.v * sc0; } else { xtex.v = (sf1 - sf0) * f; ytex.v = (sx0 - sx1) * f; otex.v = -xtex.v * sx0 - ytex.v * sf0; } // sprite panning if (spriteext[spritenum].ypanning) { float const ypan = ((float)(spriteext[spritenum].ypanning) * (1.0f / 255.f)) * ftsiz.y; xtex.v -= xtex.d * ypan; ytex.v -= ytex.d * ypan; otex.v -= otex.d * ypan; drawpoly_trepeat = 1; } // Clip sprites to ceilings/floors when no parallaxing if (!(sector[tspr->sectnum].ceilingstat & 1)) { if (sector[tspr->sectnum].ceilingz > tspr->z - (float)((tspr->yrepeat * tsiz.y) << 2)) { sc0 = (float)(sector[tspr->sectnum].ceilingz - globalposz) * ryp0 + ghoriz; sc1 = (float)(sector[tspr->sectnum].ceilingz - globalposz) * ryp1 + ghoriz; } } if (!(sector[tspr->sectnum].floorstat & 1)) { if (sector[tspr->sectnum].floorz < tspr->z) { sf0 = (float)(sector[tspr->sectnum].floorz - globalposz) * ryp0 + ghoriz; sf1 = (float)(sector[tspr->sectnum].floorz - globalposz) * ryp1 + ghoriz; } } if (sx0 > sx1) { if (globalorientation & 64) return; // 1-sided sprite swapfloat(&sx0, &sx1); swapfloat(&sc0, &sc1); swapfloat(&sf0, &sf1); } vec2f_t const pxy[4] = { { sx0, sc0 }, { sx1, sc1 }, { sx1, sf1 }, { sx0, sf0 } }; tilesiz[globalpicnum].x = tsiz.x; tilesiz[globalpicnum].y = tsiz.y; pow2xsplit = 0; polymost_drawpoly(pxy, 4, method); drawpoly_srepeat = 0; drawpoly_trepeat = 0; } break; case 2: // Floor sprite if ((globalorientation & 64) != 0 && (globalposz > tspr->z) == (!(globalorientation & 8))) return; else { if ((globalorientation & 4) > 0) off.x = -off.x; if ((globalorientation & 8) > 0) off.y = -off.y; vec2f_t const p0 = { (float)(((tsiz.x + 1) >> 1) - off.x) * tspr->xrepeat, (float)(((tsiz.y + 1) >> 1) - off.y) * tspr->yrepeat }, p1 = { (float)((tsiz.x >> 1) + off.x) * tspr->xrepeat, (float)((tsiz.y >> 1) + off.y) * tspr->yrepeat }; float const c = sintable[(tspr->ang + 512) & 2047] * (1.0f / 65536.f); float const s = sintable[tspr->ang & 2047] * (1.0f / 65536.f); vec2f_t pxy[6]; // Project 3D to 2D for (bssize_t j = 0; j < 4; j++) { vec2f_t s0 = { (float)(tspr->x - globalposx), (float)(tspr->y - globalposy) }; if ((j + 0) & 2) { s0.y -= s * p0.y; s0.x -= c * p0.y; } else { s0.y += s * p1.y; s0.x += c * p1.y; } if ((j + 1) & 2) { s0.x -= s * p0.x; s0.y += c * p0.x; } else { s0.x += s * p1.x; s0.y -= c * p1.x; } pxy[j].x = s0.y * gcosang - s0.x * gsinang; pxy[j].y = s0.x * gcosang2 + s0.y * gsinang2; } if (tspr->z < globalposz) // if floor sprite is above you, reverse order of points { EDUKE32_STATIC_ASSERT(sizeof(uint64_t) == sizeof(vec2f_t)); swap64bit(&pxy[0], &pxy[1]); swap64bit(&pxy[2], &pxy[3]); } // Clip to SCISDIST plane int32_t npoints = 0; vec2f_t p2[6]; for (bssize_t i = 0, j = 1; i < 4; j = ((++i + 1) & 3)) { if (pxy[i].y >= SCISDIST) p2[npoints++] = pxy[i]; if ((pxy[i].y >= SCISDIST) != (pxy[j].y >= SCISDIST)) { float const f = (SCISDIST - pxy[i].y) / (pxy[j].y - pxy[i].y); vec2f_t const t = { (pxy[j].x - pxy[i].x) * f + pxy[i].x, (pxy[j].y - pxy[i].y) * f + pxy[i].y }; p2[npoints++] = t; } } if (npoints < 3) return; // Project rotated 3D points to screen int fadjust = 0; // unfortunately, offsetting by only 1 isn't enough on most Android devices if (tspr->z == sec->ceilingz || tspr->z == sec->ceilingz + 1) tspr->z = sec->ceilingz + 2, fadjust = (tspr->owner & 31); if (tspr->z == sec->floorz || tspr->z == sec->floorz - 1) tspr->z = sec->floorz - 2, fadjust = -((tspr->owner & 31)); float f = (float)(tspr->z - globalposz + fadjust) * gyxscale; for (bssize_t j = 0; j < npoints; j++) { float const ryp0 = 1.f / p2[j].y; pxy[j].x = ghalfx * p2[j].x * ryp0 + ghalfx; pxy[j].y = f * ryp0 + ghoriz; } // gd? Copied from floor rendering code xtex.d = 0; ytex.d = gxyaspect / (double)(tspr->z - globalposz + fadjust); otex.d = -ghoriz * ytex.d; // copied&modified from relative alignment vec2f_t const vv = { (float)tspr->x + s * p1.x + c * p1.y, (float)tspr->y + s * p1.y - c * p1.x }; vec2f_t ff = { -(p0.x + p1.x) * s, (p0.x + p1.x) * c }; f = polymost_invsqrt_approximation(ff.x * ff.x + ff.y * ff.y); ff.x *= f; ff.y *= f; float const ft[4] = { ((float)(globalposy - vv.y)) * ff.y + ((float)(globalposx - vv.x)) * ff.x, ((float)(globalposx - vv.x)) * ff.y - ((float)(globalposy - vv.y)) * ff.x, singlobalang * ff.y + cosglobalang * ff.x, singlobalang * ff.x - cosglobalang * ff.y }; f = fviewingrange * -(1.f / (65536.f * 262144.f)); xtex.u = (float)ft[3] * f; xtex.v = (float)ft[2] * f; ytex.u = ft[0] * ytex.d; ytex.v = ft[1] * ytex.d; otex.u = ft[0] * otex.d; otex.v = ft[1] * otex.d; otex.u += (ft[2] * (1.0f / 262144.f) - xtex.u) * ghalfx; otex.v -= (ft[3] * (1.0f / 262144.f) + xtex.v) * ghalfx; f = 4.f / (float)tspr->xrepeat; xtex.u *= f; ytex.u *= f; otex.u *= f; f = -4.f / (float)tspr->yrepeat; xtex.v *= f; ytex.v *= f; otex.v *= f; if (globalorientation & 4) { xtex.u = ftsiz.x * xtex.d - xtex.u; ytex.u = ftsiz.x * ytex.d - ytex.u; otex.u = ftsiz.x * otex.d - otex.u; } // sprite panning if (spriteext[spritenum].xpanning) { float const f = ((float)(spriteext[spritenum].xpanning) * (1.0f / 255.f)) * ftsiz.x; ytex.u -= ytex.d * f; otex.u -= otex.d * f; drawpoly_srepeat = 1; } if (spriteext[spritenum].ypanning) { float const f = ((float)(spriteext[spritenum].ypanning) * (1.0f / 255.f)) * ftsiz.y; ytex.v -= ytex.d * f; otex.v -= otex.d * f; drawpoly_trepeat = 1; } tilesiz[globalpicnum].x = tsiz.x; tilesiz[globalpicnum].y = tsiz.y; pow2xsplit = 0; polymost_drawpoly(pxy, npoints, method); drawpoly_srepeat = 0; drawpoly_trepeat = 0; } break; case 3: // Voxel sprite break; } tilesiz[globalpicnum] = oldsiz; } EDUKE32_STATIC_ASSERT((int)RS_YFLIP == (int)HUDFLAG_FLIPPED); //sx,sy center of sprite; screen coords*65536 //z zoom*65536. > is zoomed in //a angle (0 is default) //dastat&1 1:translucence //dastat&2 1:auto-scale mode (use 320*200 coordinates) //dastat&4 1:y-flip //dastat&8 1:don't clip to startumost/startdmost //dastat&16 1:force point passed to be top-left corner, 0:Editart center //dastat&32 1:reverse translucence //dastat&64 1:non-masked, 0:masked //dastat&128 1:draw all pages (permanent) //cx1,... clip window (actual screen coords) void polymost_dorotatespritemodel(int32_t sx, int32_t sy, int32_t z, int16_t a, int16_t picnum, int8_t dashade, char dapalnum, int32_t dastat, uint8_t daalpha, uint8_t dablend, int32_t uniqid) { float d, cosang, sinang, cosang2, sinang2; float m[4][4]; const int32_t tilenum = Ptile2tile(picnum, dapalnum); if (tile2model[tilenum].modelid == -1 || tile2model[tilenum].framenum == -1) return; vec3f_t vec1; uspritetype tspr; Bmemset(&tspr, 0, sizeof(spritetype)); hudtyp const * const hud = tile2model[tilenum].hudmem[(dastat&4)>>2]; if (!hud || hud->flags & HUDFLAG_HIDE) return; float const ogchang = gchang; gchang = 1.f; float const ogshang = gshang; gshang = 0.f; d = (float) z*(1.0f/(65536.f*16384.f)); float const ogctang = gctang; gctang = (float) sintable[(a+512)&2047]*d; float const ogstang = gstang; gstang = (float) sintable[a&2047]*d; int const ogshade = globalshade; globalshade = dashade; int const ogpal = globalpal; globalpal = (int32_t) ((uint8_t) dapalnum); float const ogxyaspect = gxyaspect; gxyaspect = 1.f; int const oldviewingrange = viewingrange; viewingrange = 65536; float const oldfviewingrange = fviewingrange; fviewingrange = 65536.f; vec1 = hud->add; #ifdef POLYMER if (pr_overridehud) { vec1.x = pr_hudxadd; vec1.y = pr_hudyadd; vec1.z = pr_hudzadd; } #endif if (!(hud->flags & HUDFLAG_NOBOB)) { vec2f_t f = { (float)sx * (1.f / 65536.f), (float)sy * (1.f / 65536.f) }; if (dastat & RS_TOPLEFT) { vec2s_t siz = tilesiz[picnum]; vec2s_t off = { (int16_t)((siz.x >> 1) + picanm[picnum].xofs), (int16_t)((siz.y >> 1) + picanm[picnum].yofs) }; d = (float)z * (1.0f / (65536.f * 16384.f)); cosang2 = cosang = (float)sintable[(a + 512) & 2047] * d; sinang2 = sinang = (float)sintable[a & 2047] * d; if ((dastat & RS_AUTO) || (!(dastat & RS_NOCLIP))) // Don't aspect unscaled perms { d = (float)xyaspect * (1.0f / 65536.f); cosang2 *= d; sinang2 *= d; } vec2f_t const foff = { (float)off.x, (float)off.y }; f.x += -foff.x * cosang2 + foff.y * sinang2; f.y += -foff.x * sinang - foff.y * cosang; } if (!(dastat & RS_AUTO)) { vec1.x += f.x / ((float)(xdim << 15)) - 1.f; //-1: left of screen, +1: right of screen vec1.y += f.y / ((float)(ydim << 15)) - 1.f; //-1: top of screen, +1: bottom of screen } else { vec1.x += f.x * (1.0f / 160.f) - 1.f; //-1: left of screen, +1: right of screen vec1.y += f.y * (1.0f / 100.f) - 1.f; //-1: top of screen, +1: bottom of screen } } tspr.ang = hud->angadd+globalang; #ifdef POLYMER if (pr_overridehud) { tspr.ang = pr_hudangadd + globalang; } #endif if (dastat & RS_YFLIP) { vec1.x = -vec1.x; vec1.y = -vec1.y; } // In Polymost, we don't care if the model is very big #ifdef POLYMER if (getrendermode() == REND_POLYMER) { vec3f_t const vec2 = { fglobalposx + (gcosang * vec1.z - gsinang * vec1.x) * 2560.f, fglobalposy + (gsinang * vec1.z + gcosang * vec1.x) * 2560.f, fglobalposz + (vec1.y * (2560.f * 0.8f)) }; *(vec3f_t *)&tspr = vec2; tspr.xrepeat = tspr.yrepeat = 5; } else #endif { tspr.xrepeat = tspr.yrepeat = 32; tspr.x = globalposx + Blrintf((gcosang*vec1.z - gsinang*vec1.x)*16384.f); tspr.y = globalposy + Blrintf((gsinang*vec1.z + gcosang*vec1.x)*16384.f); tspr.z = globalposz + Blrintf(vec1.y * (16384.f * 0.8f)); } tspr.picnum = picnum; tspr.shade = dashade; tspr.pal = dapalnum; tspr.owner = uniqid+MAXSPRITES; // 1 -> 1 // 32 -> 32*16 = 512 // 4 -> 8 tspr.cstat = globalorientation = (dastat&RS_TRANS1) | ((dastat&RS_TRANS2)<<4) | ((dastat&RS_YFLIP)<<1); if ((dastat&(RS_AUTO|RS_NOCLIP)) == RS_AUTO) glViewport(windowxy1.x, yres-(windowxy2.y+1), windowxy2.x-windowxy1.x+1, windowxy2.y-windowxy1.y+1); else { glViewport(0, 0, xdim, ydim); glox1 = -1; //Force fullscreen (glox1=-1 forces it to restore) } if (getrendermode() < REND_POLYMER) { glMatrixMode(GL_PROJECTION); Bmemset(m, 0, sizeof(m)); if ((dastat&(RS_AUTO|RS_NOCLIP)) == RS_AUTO) { float f = 1.f; int32_t fov = hud->fov; #ifdef POLYMER if (pr_overridehud) fov = pr_hudfov; #endif if (fov != -1) f = 1.f/tanf(((float)fov * 2.56f) * ((.5f * fPI) * (1.0f/2048.f))); m[0][0] = f*fydimen; m[0][2] = 1.f; m[1][1] = f*fxdimen; m[1][2] = 1.f; m[2][2] = 1.f; m[2][3] = fydimen; m[3][2] =-1.f; } else { m[0][0] = m[2][3] = 1.f; m[1][1] = fxdim/fydim; m[2][2] = 1.0001f; m[3][2] = 1-m[2][2]; } glLoadMatrixf(&m[0][0]); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } if (hud->flags & HUDFLAG_NODEPTH) glDisable(GL_DEPTH_TEST); else { static int32_t onumframes = 0; glEnable(GL_DEPTH_TEST); if (onumframes != numframes) { onumframes = numframes; glClear(GL_DEPTH_BUFFER_BIT); } } spriteext[tspr.owner].alpha = daalpha * (1.0f / 255.0f); tspr.blend = dablend; glDisable(GL_FOG); if (getrendermode() == REND_POLYMOST) polymost_mddraw(&tspr); # ifdef POLYMER else { int32_t fov; tspriteptr[maxspritesonscreen] = &tspr; glEnable(GL_ALPHA_TEST); glEnable(GL_BLEND); spriteext[tspr.owner].roll = a; spriteext[tspr.owner].offset.z = z; fov = hud->fov; if (fov == -1) fov = pr_fov; if (pr_overridehud) fov = pr_hudfov; polymer_setaspect(fov); polymer_drawsprite(maxspritesonscreen); polymer_setaspect(pr_fov); spriteext[tspr.owner].offset.z = 0; spriteext[tspr.owner].roll = 0; glDisable(GL_BLEND); glDisable(GL_ALPHA_TEST); } # endif if (!nofog) glEnable(GL_FOG); viewingrange = oldviewingrange; fviewingrange = oldfviewingrange; gxyaspect = ogxyaspect; globalshade = ogshade; globalpal = ogpal; gchang = ogchang; gshang = ogshang; gctang = ogctang; gstang = ogstang; } void polymost_dorotatesprite(int32_t sx, int32_t sy, int32_t z, int16_t a, int16_t picnum, int8_t dashade, char dapalnum, int32_t dastat, uint8_t daalpha, uint8_t dablend, int32_t cx1, int32_t cy1, int32_t cx2, int32_t cy2, int32_t uniqid) { if (usemodels && tile2model[picnum].hudmem[(dastat&4)>>2]) { polymost_dorotatespritemodel(sx, sy, z, a, picnum, dashade, dapalnum, dastat, daalpha, dablend, uniqid); return; } glViewport(0,0,xdim,ydim); glox1 = -1; //Force fullscreen (glox1=-1 forces it to restore) glMatrixMode(GL_PROJECTION); glPushMatrix(); globvis = 0; int32_t const ogpicnum = globalpicnum; globalpicnum = picnum; int32_t const ogshade = globalshade; globalshade = dashade; int32_t const ogpal = globalpal; globalpal = (int32_t)((uint8_t)dapalnum); float const oghalfx = ghalfx; ghalfx = fxdim * .5f; float const ogrhalfxdown10 = grhalfxdown10; grhalfxdown10 = 1.f / (ghalfx * 1024.f); float const ogrhalfxdown10x = grhalfxdown10x; grhalfxdown10x = grhalfxdown10; float const oghoriz = ghoriz; ghoriz = fydim * .5f; int32_t const ofoffset = frameoffset; frameoffset = frameplace; float const ogchang = gchang; gchang = 1.f; float const ogshang = gshang; gshang = 0.f; float const ogctang = gctang; gctang = 1.f; float const ogstang = gstang; gstang = 0.f; float m[4][4]; Bmemset(m,0,sizeof(m)); m[0][0] = m[2][3] = 1.0f; m[1][1] = fxdim / fydim; m[2][2] = 1.0001f; m[3][2] = 1 - m[2][2]; glLoadMatrixf(&m[0][0]); glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity(); glDisable(GL_DEPTH_TEST); glDisable(GL_ALPHA_TEST); glEnable(GL_TEXTURE_2D); #if defined(POLYMER) # ifdef USE_GLEXT const int32_t olddetailmapping = r_detailmapping, oldglowmapping = r_glowmapping; # endif const int32_t oldnormalmapping = pr_normalmapping; #endif int32_t method = DAMETH_CLAMPED; //Use OpenGL clamping - dorotatesprite never repeats if (!(dastat & RS_NOMASK)) { if (dastat & RS_TRANS1) method |= (dastat & RS_TRANS2) ? DAMETH_TRANS2 : DAMETH_TRANS1; else method |= DAMETH_MASK; } handle_blend(!!(dastat & RS_TRANS1), dablend, !!(dastat & RS_TRANS2)); #ifdef POLYMER if (getrendermode() == REND_POLYMER) { pr_normalmapping = 0; polymer_inb4rotatesprite(picnum, dapalnum, dashade, method); polymost_resetVertexPointers(); # ifdef USE_GLEXT r_detailmapping = 0; r_glowmapping = 0; # endif } #endif drawpoly_alpha = daalpha * (1.0f / 255.0f); drawpoly_blend = dablend; vec2s_t const siz = tilesiz[globalpicnum]; vec2s_t ofs = { 0, 0 }; if (!(dastat & RS_TOPLEFT)) { ofs.x = picanm[globalpicnum].xofs + (siz.x>>1); ofs.y = picanm[globalpicnum].yofs + (siz.y>>1); } if (dastat & RS_YFLIP) ofs.y = siz.y - ofs.y; int32_t ourxyaspect, temp; dorotspr_handle_bit2(&sx, &sy, &z, dastat, cx1 + cx2, cy1 + cy2, &temp, &ourxyaspect); float d = (float)z * (1.0f / (65536.f * 16384.f)); float const cosang = (float)sintable[(a + 512) & 2047] * d; float cosang2 = cosang; float const sinang = (float)sintable[a & 2047] * d; float sinang2 = sinang; if ((dastat & RS_AUTO) || (!(dastat & RS_NOCLIP))) // Don't aspect unscaled perms { d = (float)ourxyaspect * (1.0f / 65536.f); cosang2 *= d; sinang2 *= d; } vec2f_t const fofs = { (float)ofs.x, (float)ofs.y }; float const cx = (float)sx * (1.0f / 65536.f) - fofs.x * cosang2 + fofs.y * sinang2; float const cy = (float)sy * (1.0f / 65536.f) - fofs.x * sinang - fofs.y * cosang; vec2f_t pxy[8] = { { cx, cy }, { cx + (float)siz.x * cosang2, cy + (float)siz.x * sinang }, { 0, 0 }, { cx - (float)siz.y * sinang2, cy + (float)siz.y * cosang } }; pxy[2].x = pxy[1].x + pxy[3].x - pxy[0].x; pxy[2].y = pxy[1].y + pxy[3].y - pxy[0].y; int32_t n = 4; xtex.d = 0; ytex.d = 0; otex.d = 1.f; //px[0]*gux + py[0]*guy + guo = 0 //px[1]*gux + py[1]*guy + guo = xsiz-.0001 //px[3]*gux + py[3]*guy + guo = 0 d = 1.f/(pxy[0].x*(pxy[1].y-pxy[3].y) + pxy[1].x*(pxy[3].y-pxy[0].y) + pxy[3].x*(pxy[0].y-pxy[1].y)); float const sxd = ((float)siz.x-.0001f)*d; xtex.u = (pxy[3].y-pxy[0].y)*sxd; ytex.u = (pxy[0].x-pxy[3].x)*sxd; otex.u = 0 - pxy[0].x*xtex.u - pxy[0].y*ytex.u; float const syd = ((float)siz.y-.0001f)*d; if (!(dastat & RS_YFLIP)) { //px[0]*gvx + py[0]*gvy + gvo = 0 //px[1]*gvx + py[1]*gvy + gvo = 0 //px[3]*gvx + py[3]*gvy + gvo = ysiz-.0001 xtex.v = (pxy[0].y-pxy[1].y)*syd; ytex.v = (pxy[1].x-pxy[0].x)*syd; otex.v = 0 - pxy[0].x*xtex.v - pxy[0].y*ytex.v; } else { //px[0]*gvx + py[0]*gvy + gvo = ysiz-.0001 //px[1]*gvx + py[1]*gvy + gvo = ysiz-.0001 //px[3]*gvx + py[3]*gvy + gvo = 0 xtex.v = (pxy[1].y-pxy[0].y)*syd; ytex.v = (pxy[0].x-pxy[1].x)*syd; otex.v = (float)siz.y-.0001f - pxy[0].x*xtex.v - pxy[0].y*ytex.v; } cx2++; cy2++; //Clippoly4 (converted from int32_t to double) int32_t nn = z = 0; float px2[8], py2[8]; do { int32_t zz = z+1; if (zz == n) zz = 0; float const x1 = pxy[z].x, x2 = pxy[zz].x-x1; if (((float)cx1 <= x1) && (x1 <= (float)cx2)) { px2[nn] = x1; py2[nn] = pxy[z].y; nn++; } float fx = (float)(x2 <= 0 ? cx2 : cx1); d = fx-x1; if ((d < x2) != (d < 0)) { px2[nn] = fx; py2[nn] = (pxy[zz].y-pxy[z].y)*d/x2 + pxy[z].y; nn++; } fx = (float)(x2 <= 0 ? cx1 : cx2); d = fx-x1; if ((d < x2) != (d < 0)) { px2[nn] = fx; py2[nn] = (pxy[zz].y-pxy[z].y)*d/x2 + pxy[z].y; nn++; } z = zz; } while (z); if (nn >= 3) { n = z = 0; do { int32_t zz = z+1; if (zz == nn) zz = 0; float const y1 = py2[z], y2 = py2[zz]-y1; if ((cy1 <= y1) && (y1 <= cy2)) { pxy[n].y = y1; pxy[n].x = px2[z]; n++; } float fy = (float)(y2 <= 0 ? cy2 : cy1); d = fy - y1; if ((d < y2) != (d < 0)) { pxy[n].y = fy; pxy[n].x = (px2[zz]-px2[z])*d/y2 + px2[z]; n++; } fy = (float)(y2 <= 0 ? cy1 : cy2); d = fy - y1; if ((d < y2) != (d < 0)) { pxy[n].y = fy; pxy[n].x = (px2[zz]-px2[z])*d/y2 + px2[z]; n++; } z = zz; } while (z); glDisable(GL_FOG); pow2xsplit = 0; polymost_drawpoly(pxy, n,method); if (!nofog) glEnable(GL_FOG); } #ifdef POLYMER if (getrendermode() == REND_POLYMER) { # ifdef USE_GLEXT r_detailmapping = olddetailmapping; r_glowmapping = oldglowmapping; # endif polymer_postrotatesprite(); pr_normalmapping = oldnormalmapping; } #endif glPopMatrix(); glMatrixMode(GL_PROJECTION); glPopMatrix(); globalpicnum = ogpicnum; globalshade = ogshade; globalpal = ogpal; ghalfx = oghalfx; grhalfxdown10 = ogrhalfxdown10; grhalfxdown10x = ogrhalfxdown10x; ghoriz = oghoriz; frameoffset = ofoffset; gchang = ogchang; gshang = ogshang; gctang = ogctang; gstang = ogstang; } static float trapextx[2]; static void drawtrap(float x0, float x1, float y0, float x2, float x3, float y1) { if (y0 == y1) return; float px[4], py[4]; int32_t n = 3; px[0] = x0; py[0] = y0; py[2] = y1; if (x0 == x1) { px[1] = x3; py[1] = y1; px[2] = x2; } else if (x2 == x3) { px[1] = x1; py[1] = y0; px[2] = x3; } else { px[1] = x1; py[1] = y0; px[2] = x3; px[3] = x2; py[3] = y1; n = 4; } glBegin(GL_TRIANGLE_FAN); for (bssize_t i=0; i allocpoints) //16 for safety { allocpoints = numpoints+16; rst = (raster *)Xrealloc(rst,allocpoints*sizeof(raster)); slist = (int32_t *)Xrealloc(slist,allocpoints*sizeof(int32_t)); npoint2 = (int32_t *)Xrealloc(npoint2,allocpoints*sizeof(int32_t)); } //Remove unnecessary collinear points: for (i=0; i m1) { z |= 2; continue; } npoint2[i] = k; npoint2[j] = -1; npoints--; i--; //collinear } if (!z) return; trapextx[0] = trapextx[1] = px[0]; for (i=j=0; i trapextx[1]) trapextx[1] = px[i]; slist[j++] = i; } if (z != 3) //Simple polygon... early out { glBegin(GL_TRIANGLE_FAN); for (i=0; i>1); gap; gap>>=1) for (i=0; i=0; j-=gap) { if (py[npoint2[slist[j]]] <= py[npoint2[slist[j+gap]]]) break; k = slist[j]; slist[j] = slist[j+gap]; slist[j+gap] = k; } numrst = 0; for (z=0; z0; i--) { if (rst[i-1].xi*(py[i1]-rst[i-1].y) + rst[i-1].x < px[i1]) break; rst[i+1] = rst[i-1]; } numrst += 2; if (i&1) //split inside area { j = i-1; x0 = (py[i1] - rst[j ].y)*rst[j ].xi + rst[j ].x; x1 = (py[i1] - rst[j+1].y)*rst[j+1].xi + rst[j+1].x; drawtrap(rst[j].x,rst[j+1].x,rst[j].y,x0,x1,py[i1]); rst[j ].x = x0; rst[j ].y = py[i1]; rst[j+3].x = x1; rst[j+3].y = py[i1]; } m0 = (px[i0]-px[i1]) / (py[i0]-py[i1]); m1 = (px[i3]-px[i2]) / (py[i3]-py[i2]); j = ((px[i1] > px[i2]) || ((i1 == i2) && (m0 >= m1))) + i; k = (i<<1)+1 - j; rst[j].i = i0; rst[j].xi = m0; rst[j].x = px[i1]; rst[j].y = py[i1]; rst[k].i = i3; rst[k].xi = m1; rst[k].x = px[i2]; rst[k].y = py[i2]; } else { //NOTE:don't count backwards! if (i1 == i2) { for (i=0; i py[i0]) && (py[i2] > py[i3])) //Delete raster { for (; j<=i+1; j+=2) { x0 = (py[i1] - rst[j ].y)*rst[j ].xi + rst[j ].x; if ((i == j) && (i1 == i2)) x1 = x0; else x1 = (py[i1] - rst[j+1].y)*rst[j+1].xi + rst[j+1].x; drawtrap(rst[j].x,rst[j+1].x,rst[j].y,x0,x1,py[i1]); rst[j ].x = x0; rst[j ].y = py[i1]; rst[j+1].x = x1; rst[j+1].y = py[i1]; } numrst -= 2; for (; iglpic : 0); float const f = getshadefactor(globalshade); uint8_t const maskprops = (globalorientation>>7)&DAMETH_MASKPROPS; handle_blend(maskprops > DAMETH_MASK, 0, maskprops == DAMETH_TRANS2); if (maskprops > DAMETH_MASK) { glEnable(GL_BLEND); glColor4f(f, f, f, float_trans(maskprops, 0)); } else { glDisable(GL_BLEND); glColor3f(f, f, f); } tessectrap((float *)rx1,(float *)ry1,xb1,npoints); } int32_t polymost_drawtilescreen(int32_t tilex, int32_t tiley, int32_t wallnum, int32_t dimen, int32_t tilezoom, int32_t usehitile, uint8_t *loadedhitile) { float xdime, ydime, xdimepad, ydimepad, scx, scy, ratio = 1.f; int32_t i; pthtyp *pth; if (getrendermode() < REND_POLYMOST || !in3dmode()) return -1; if (!glinfo.texnpot) { i = (1<<(picsiz[wallnum]&15)); if (i < tilesiz[wallnum].x) i += i; xdimepad = (float)i; i = (1<<(picsiz[wallnum]>>4)); if (i < tilesiz[wallnum].y) i += i; ydimepad = (float)i; } else { xdimepad = (float)tilesiz[wallnum].x; ydimepad = (float)tilesiz[wallnum].y; } xdime = (float)tilesiz[wallnum].x; xdimepad = xdime/xdimepad; ydime = (float)tilesiz[wallnum].y; ydimepad = ydime/ydimepad; if ((xdime <= dimen) && (ydime <= dimen)) { scx = xdime; scy = ydime; } else { scx = (float)dimen; scy = (float)dimen; if (xdime < ydime) scx *= xdime/ydime; else scy *= ydime/xdime; } int32_t const ousehightile = usehightile; usehightile = usehitile && usehightile; pth = texcache_fetch(wallnum, 0, 0, DAMETH_CLAMPED); if (usehightile) loadedhitile[wallnum>>3] |= (1<<(wallnum&7)); usehightile = ousehightile; glBindTexture(GL_TEXTURE_2D, pth ? pth->glpic : 0); glDisable(GL_ALPHA_TEST); if (tilezoom) { if (scx > scy) ratio = dimen/scx; else ratio = dimen/scy; } if (!pth || (pth->flags & PTH_HASALPHA)) { glDisable(GL_TEXTURE_2D); glBegin(GL_TRIANGLE_FAN); if (gammabrightness) glColor3f((float)curpalette[255].r*(1.0f/255.f), (float)curpalette[255].g*(1.0f/255.f), (float)curpalette[255].b*(1.0f/255.f)); else glColor3f((float)britable[curbrightness][ curpalette[255].r ] * (1.0f/255.f), (float)britable[curbrightness][ curpalette[255].g ] * (1.0f/255.f), (float)britable[curbrightness][ curpalette[255].b ] * (1.0f/255.f)); glVertex2f((float)tilex ,(float)tiley); glVertex2f((float)tilex+(scx*ratio),(float)tiley); glVertex2f((float)tilex+(scx*ratio),(float)tiley+(scy*ratio)); glVertex2f((float)tilex ,(float)tiley+(scy*ratio)); glEnd(); } glColor3f(1,1,1); glEnable(GL_TEXTURE_2D); glEnable(GL_BLEND); glBegin(GL_TRIANGLE_FAN); glTexCoord2f(0, 0); glVertex2f((float)tilex ,(float)tiley); glTexCoord2f(xdimepad, 0); glVertex2f((float)tilex+(scx*ratio),(float)tiley); glTexCoord2f(xdimepad,ydimepad); glVertex2f((float)tilex+(scx*ratio),(float)tiley+(scy*ratio)); glTexCoord2f(0, ydimepad); glVertex2f((float)tilex ,(float)tiley+(scy*ratio)); glEnd(); return 0; } static int32_t gen_font_glyph_tex(void) { // construct a 256x128 8-bit alpha-only texture for the font glyph matrix glGenTextures(1,&polymosttext); if (!polymosttext) return -1; char * const tbuf = (char *)Xmalloc(256*128); Bmemset(tbuf, 0, 256*128); char * cptr = (char *)textfont; for (bssize_t h=0; h<256; h++) { char *tptr = tbuf + (h%32)*8 + (h/32)*256*8; for (bssize_t i=0; i<8; i++) { for (bssize_t j=0; j<8; j++) { if (cptr[h*8+i] & pow2char[7-j]) tptr[j] = 255; } tptr += 256; } } cptr = (char *)smalltextfont; for (bssize_t h=0; h<256; h++) { char *tptr = tbuf + 256*64 + (h%32)*8 + (h/32)*256*8; for (bssize_t i=1; i<7; i++) { for (bssize_t j=2; j<6; j++) { if (cptr[h*8+i] & pow2char[7-j]) tptr[j-2] = 255; } tptr += 256; } } glBindTexture(GL_TEXTURE_2D, polymosttext); glTexImage2D(GL_TEXTURE_2D,0,GL_ALPHA,256,128,0,GL_ALPHA,GL_UNSIGNED_BYTE,(GLvoid *)tbuf); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_NEAREST); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEAREST); Bfree(tbuf); return 0; } int32_t polymost_printext256(int32_t xpos, int32_t ypos, int16_t col, int16_t backcol, const char *name, char fontsize) { int const arbackcol = (unsigned)backcol < 256 ? backcol : 0; // FIXME? if (col < 0) col = 0; palette_t p, b; bricolor(&p, col); bricolor(&b, arbackcol); if (getrendermode() < REND_POLYMOST || !in3dmode() || (!polymosttext && gen_font_glyph_tex() < 0)) return -1; else glBindTexture(GL_TEXTURE_2D, polymosttext); setpolymost2dview(); // disables blending, texturing, and depth testing glDisable(GL_ALPHA_TEST); glDepthMask(GL_FALSE); // disable writing to the z-buffer // glPushAttrib(GL_POLYGON_BIT|GL_ENABLE_BIT); // XXX: Don't fogify the OSD text in Mapster32 with r_usenewshading >= 2. glDisable(GL_FOG); // We want to have readable text in wireframe mode, too: glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); if (backcol >= 0) { int const c = Bstrlen(name); glColor4ub(b.r,b.g,b.b,255); glBegin(GL_QUADS); glVertex2i(xpos,ypos); glVertex2i(xpos,ypos+(fontsize?6:8)); glVertex2i(xpos+(c<<(3-fontsize)), ypos+(fontsize ? 6 : 8)); glVertex2i(xpos+(c<<(3-fontsize)), ypos); glEnd(); } glEnable(GL_TEXTURE_2D); glEnable(GL_BLEND); glColor4ub(p.r,p.g,p.b,255); vec2f_t const tc = { fontsize ? (4.f / 256.f) : (8.f / 256.f), fontsize ? (6.f / 128.f) : (8.f / 128.f) }; glBegin(GL_QUADS); for (bssize_t c=0; name[c]; ++c) { if (name[c] == '^' && isdigit(name[c+1])) { char smallbuf[8]; int bi = 0; while (isdigit(name[c+1]) && bi<3) { smallbuf[bi++]=name[c+1]; c++; } smallbuf[bi++] = 0; if (col) { col = Batol(smallbuf); if ((unsigned) col >= 256) col = 0; } bricolor(&p, col); glColor4ub(p.r, p.g, p.b, 255); continue; } vec2f_t const t = { (float)(name[c] % 32) * (1.0f / 32.f), (float)((name[c] / 32) + (fontsize * 8)) * (1.0f / 16.f) }; glTexCoord2f(t.x, t.y); glVertex2i(xpos, ypos); glTexCoord2f(t.x + tc.x, t.y); glVertex2i(xpos + (8 >> fontsize), ypos); glTexCoord2f(t.x + tc.x, t.y + tc.y); glVertex2i(xpos + (8 >> fontsize), ypos + (fontsize ? 6 : 8)); glTexCoord2f(t.x, t.y + tc.y); glVertex2i(xpos, ypos + (fontsize ? 6 : 8)); xpos += (8>>fontsize); } glEnd(); glDepthMask(GL_TRUE); // re-enable writing to the z-buffer // glPopAttrib(); if (!nofog) glEnable(GL_FOG); return 0; } // Console commands by JBF static int32_t gltexturemode(osdfuncparm_t const * const parm) { int32_t m; char *p; if (parm->numparms != 1) { OSD_Printf("Current texturing mode is %s\n", glfiltermodes[gltexfiltermode].name); OSD_Printf(" Vaild modes are:\n"); for (m = 0; m < NUMGLFILTERMODES; m++) OSD_Printf(" %d - %s\n", m, glfiltermodes[m].name); return OSDCMD_OK; } m = Bstrtoul(parm->parms[0], &p, 10); if (p == parm->parms[0]) { // string for (m = 0; m < NUMGLFILTERMODES; m++) { if (!Bstrcasecmp(parm->parms[0], glfiltermodes[m].name)) break; } if (m == NUMGLFILTERMODES) m = gltexfiltermode; // no change } else { m = clamp(m, 0, NUMGLFILTERMODES-1); } gltexfiltermode = m; gltexapplyprops(); OSD_Printf("Texture filtering mode changed to %s\n", glfiltermodes[gltexfiltermode].name); return OSDCMD_OK; } static int32_t osdcmd_cvar_set_polymost(osdfuncparm_t const * const parm) { int32_t r = osdcmd_cvar_set(parm); if (xdim == 0 || ydim == 0 || bpp == 0) // video not set up yet { if (r == OSDCMD_OK) { #ifdef POLYMER if (!Bstrcasecmp(parm->name, "r_pr_maxlightpasses")) pr_maxlightpasses = r_pr_maxlightpasses; #endif } return r; } if (r == OSDCMD_OK) { if (!Bstrcasecmp(parm->name, "r_swapinterval")) vsync = setvsync(vsync); else if (!Bstrcasecmp(parm->name, "r_downsize")) { if (r_downsizevar == -1) r_downsizevar = r_downsize; if (in3dmode() && r_downsize != r_downsizevar) { texcache_invalidate(); resetvideomode(); if (setgamemode(fullscreen,xdim,ydim,bpp)) OSD_Printf("restartvid: Reset failed...\n"); } r_downsizevar = r_downsize; } else if (!Bstrcasecmp(parm->name, "r_anisotropy")) gltexapplyprops(); else if (!Bstrcasecmp(parm->name, "r_texfilter")) gltexturemode(parm); else if (!Bstrcasecmp(parm->name, "r_usenewshading")) glFogi(GL_FOG_MODE, (r_usenewshading < 2) ? GL_EXP2 : GL_LINEAR); #ifdef POLYMER else if (!Bstrcasecmp(parm->name, "r_pr_maxlightpasses")) { if (pr_maxlightpasses != r_pr_maxlightpasses) { polymer_invalidatelights(); pr_maxlightpasses = r_pr_maxlightpasses; } } #endif } return r; } void polymost_initosdfuncs(void) { uint32_t i; static osdcvardata_t cvars_polymost[] = { { "r_enablepolymost2","enable/disable polymost2",(void *) &r_enablepolymost2, CVAR_BOOL, 0, 1 }, { "r_animsmoothing","enable/disable model animation smoothing",(void *) &r_animsmoothing, CVAR_BOOL, 0, 1 }, { "r_downsize","controls downsizing factor (quality) for hires textures",(void *) &r_downsize, CVAR_INT|CVAR_FUNCPTR, 0, 5 }, { "r_fullbrights","enable/disable fullbright textures",(void *) &r_fullbrights, CVAR_BOOL, 0, 1 }, { "r_parallaxskyclamping","enable/disable parallaxed floor/ceiling sky texture clamping", (void *) &r_parallaxskyclamping, CVAR_BOOL, 0, 1 }, { "r_parallaxskypanning","enable/disable parallaxed floor/ceiling panning when drawing a parallaxing sky", (void *) &r_parallaxskypanning, CVAR_BOOL, 0, 1 }, #ifdef USE_GLEXT { "r_detailmapping","enable/disable detail mapping",(void *) &r_detailmapping, CVAR_BOOL, 0, 1 }, { "r_glowmapping","enable/disable glow mapping",(void *) &r_glowmapping, CVAR_BOOL, 0, 1 }, #endif #ifndef EDUKE32_GLES { "r_polygonmode","debugging feature",(void *) &r_polygonmode, CVAR_INT | CVAR_NOSAVE, 0, 3 }, { "r_texcache","enable/disable OpenGL compressed texture cache",(void *) &glusetexcache, CVAR_INT, 0, 2 }, { "r_memcache","enable/disable texture cache memory cache",(void *) &glusememcache, CVAR_BOOL, 0, 1 }, #endif { "r_texcompr","enable/disable OpenGL texture compression: 0: off 1: hightile only 2: ART and hightile",(void *) &glusetexcompr, CVAR_INT, 0, 2 }, { "r_shadescale","multiplier for shading",(void *) &shadescale, CVAR_FLOAT, 0, 10 }, { "r_shadescale_unbounded","enable/disable allowance of complete blackness",(void *) &shadescale_unbounded, CVAR_BOOL, 0, 1 }, { "r_swapinterval","sets the GL swap interval (VSync)",(void *) &vsync, CVAR_INT|CVAR_FUNCPTR, -1, 1 }, { "r_npotwallmode", "enable/disable emulation of walls with non-power-of-two height textures (Polymost, r_hightile 0)", (void *) &r_npotwallmode, CVAR_BOOL, 0, 1 }, { "r_anisotropy", "changes the OpenGL texture anisotropy setting", (void *) &glanisotropy, CVAR_INT|CVAR_FUNCPTR, 0, 16 }, { "r_texturemaxsize","changes the maximum OpenGL texture size limit",(void *) &gltexmaxsize, CVAR_INT | CVAR_NOSAVE, 0, 4096 }, { "r_texturemiplevel","changes the highest OpenGL mipmap level used",(void *) &gltexmiplevel, CVAR_INT, 0, 6 }, { "r_texfilter", "changes the texture filtering settings (may require restart)", (void *) &gltexfiltermode, CVAR_INT|CVAR_FUNCPTR, 0, 5 }, { "r_usenewshading", "visibility/fog code: 0: orig. Polymost 1: 07/2011 2: linear 12/2012 3: no neg. start 03/2014 4: base constant on shade table 11/2017", (void *) &r_usenewshading, CVAR_INT|CVAR_FUNCPTR, 0, 4 }, { "r_usetileshades", "enable/disable Polymost tile shade textures", (void *) &r_usetileshades, CVAR_INT | CVAR_INVALIDATEART, 0, 2 }, #ifdef USE_GLEXT { "r_vbocount","sets the number of Vertex Buffer Objects to use when drawing models",(void *) &r_vbocount, CVAR_INT, 1, 256 }, { "r_persistentStreamBuffer","enable/disable persistent stream buffering (requires renderer restart)",(void *) &r_persistentStreamBuffer, CVAR_BOOL, 0, 1 }, { "r_drawpolyVertsBufferLength","sets the size of the vertex buffer for polymost's streaming VBO rendering (requires renderer restart)",(void *) &r_drawpolyVertsBufferLength, CVAR_INT, MAX_DRAWPOLY_VERTS, 1000000 }, #endif { "r_vertexarrays","enable/disable using vertex arrays when drawing models",(void *) &r_vertexarrays, CVAR_BOOL, 0, 1 }, { "r_projectionhack", "enable/disable projection hack", (void *) &glprojectionhacks, CVAR_INT, 0, 1 }, #ifdef POLYMER // polymer cvars { "r_pr_lighting", "enable/disable dynamic lights - restarts renderer", (void *) &pr_lighting, CVAR_INT | CVAR_RESTARTVID, 0, 2 }, { "r_pr_normalmapping", "enable/disable virtual displacement mapping", (void *) &pr_normalmapping, CVAR_BOOL, 0, 1 }, { "r_pr_specularmapping", "enable/disable specular mapping", (void *) &pr_specularmapping, CVAR_BOOL, 0, 1 }, { "r_pr_shadows", "enable/disable dynamic shadows", (void *) &pr_shadows, CVAR_BOOL, 0, 1 }, { "r_pr_shadowcount", "maximal amount of shadow emitting lights on screen - you need to restart the renderer for it to take effect", (void *) &pr_shadowcount, CVAR_INT, 0, 64 }, { "r_pr_shadowdetail", "sets the shadow map resolution - you need to restart the renderer for it to take effect", (void *) &pr_shadowdetail, CVAR_INT, 0, 5 }, { "r_pr_shadowfiltering", "enable/disable shadow edges filtering - you need to restart the renderer for it to take effect", (void *) &pr_shadowfiltering, CVAR_BOOL, 0, 1 }, { "r_pr_maxlightpasses", "the maximal amount of lights a single object can by affected by", (void *) &r_pr_maxlightpasses, CVAR_INT|CVAR_FUNCPTR, 0, PR_MAXLIGHTS }, { "r_pr_maxlightpriority", "lowering that value removes less meaningful lights from the scene", (void *) &pr_maxlightpriority, CVAR_INT, 0, PR_MAXLIGHTPRIORITY }, { "r_pr_fov", "sets the field of vision in build angle", (void *) &pr_fov, CVAR_INT, 0, 1023}, { "r_pr_customaspect", "if non-zero, forces the 3D view aspect ratio", (void *) &pr_customaspect, CVAR_DOUBLE, 0, 3 }, { "r_pr_billboardingmode", "face sprite display method. 0: classic mode; 1: polymost mode", (void *) &pr_billboardingmode, CVAR_INT, 0, 1 }, { "r_pr_verbosity", "verbosity level of the polymer renderer", (void *) &pr_verbosity, CVAR_INT, 0, 3 }, { "r_pr_wireframe", "toggles wireframe mode", (void *) &pr_wireframe, CVAR_INT | CVAR_NOSAVE, 0, 1 }, { "r_pr_vbos", "contols Vertex Buffer Object usage. 0: no VBOs. 1: VBOs for map data. 2: VBOs for model data.", (void *) &pr_vbos, CVAR_INT | CVAR_RESTARTVID, 0, 2 }, { "r_pr_buckets", "controls batching of primitives. 0: no batching. 1: buckets of materials.", (void *)&pr_buckets, CVAR_BOOL | CVAR_NOSAVE | CVAR_RESTARTVID, 0, 1 }, { "r_pr_gpusmoothing", "toggles model animation interpolation", (void *)&pr_gpusmoothing, CVAR_INT, 0, 1 }, { "r_pr_overrideparallax", "overrides parallax mapping scale and bias values with values from the pr_parallaxscale and pr_parallaxbias cvars; use it to fine-tune DEF tokens", (void *) &pr_overrideparallax, CVAR_BOOL | CVAR_NOSAVE, 0, 1 }, { "r_pr_parallaxscale", "overriden parallax mapping offset scale", (void *) &pr_parallaxscale, CVAR_FLOAT | CVAR_NOSAVE, -10, 10 }, { "r_pr_parallaxbias", "overriden parallax mapping offset bias", (void *) &pr_parallaxbias, CVAR_FLOAT | CVAR_NOSAVE, -10, 10 }, { "r_pr_overridespecular", "overrides specular material power and factor values with values from the pr_specularpower and pr_specularfactor cvars; use it to fine-tune DEF tokens", (void *) &pr_overridespecular, CVAR_BOOL | CVAR_NOSAVE, 0, 1 }, { "r_pr_specularpower", "overriden specular material power", (void *) &pr_specularpower, CVAR_FLOAT | CVAR_NOSAVE, -10, 1000 }, { "r_pr_specularfactor", "overriden specular material factor", (void *) &pr_specularfactor, CVAR_FLOAT | CVAR_NOSAVE, -10, 1000 }, { "r_pr_highpalookups", "enable/disable highpalookups", (void *) &pr_highpalookups, CVAR_BOOL, 0, 1 }, { "r_pr_artmapping", "enable/disable art mapping", (void *) &pr_artmapping, CVAR_BOOL | CVAR_INVALIDATEART, 0, 1 }, { "r_pr_overridehud", "overrides hud model parameters with values from the pr_hud* cvars; use it to fine-tune DEF tokens", (void *) &pr_overridehud, CVAR_BOOL | CVAR_NOSAVE, 0, 1 }, { "r_pr_hudxadd", "overriden HUD xadd; see r_pr_overridehud", (void *) &pr_hudxadd, CVAR_FLOAT | CVAR_NOSAVE, -100, 100 }, { "r_pr_hudyadd", "overriden HUD yadd; see r_pr_overridehud", (void *) &pr_hudyadd, CVAR_FLOAT | CVAR_NOSAVE, -100, 100 }, { "r_pr_hudzadd", "overriden HUD zadd; see r_pr_overridehud", (void *) &pr_hudzadd, CVAR_FLOAT | CVAR_NOSAVE, -100, 100 }, { "r_pr_hudangadd", "overriden HUD angadd; see r_pr_overridehud", (void *) &pr_hudangadd, CVAR_INT | CVAR_NOSAVE, -1024, 1024 }, { "r_pr_hudfov", "overriden HUD fov; see r_pr_overridehud", (void *) &pr_hudfov, CVAR_INT | CVAR_NOSAVE, 0, 1023 }, { "r_pr_overridemodelscale", "overrides model scale if non-zero; use it to fine-tune DEF tokens", (void *) &pr_overridemodelscale, CVAR_FLOAT | CVAR_NOSAVE, 0, 500 }, { "r_pr_ati_fboworkaround", "enable this to workaround an ATI driver bug that causes sprite shadows to be square - you need to restart the renderer for it to take effect", (void *) &pr_ati_fboworkaround, CVAR_BOOL | CVAR_NOSAVE, 0, 1 }, { "r_pr_ati_nodepthoffset", "enable this to workaround an ATI driver bug that causes sprite drawing to freeze the game on Radeon X1x00 hardware - you need to restart the renderer for it to take effect", (void *) &pr_ati_nodepthoffset, CVAR_BOOL | CVAR_NOSAVE, 0, 1 }, { "r_pr_nullrender", "disable all draws when enabled, 2: disables updates too", (void *)&pr_nullrender, CVAR_INT | CVAR_NOSAVE, 0, 3 }, #endif #ifdef __ANDROID__ { "r_models","enable/disable model rendering",(void *) &usemodels, CVAR_BOOL | CVAR_NOSAVE, 0, 1 }, #else { "r_models","enable/disable model rendering",(void *) &usemodels, CVAR_BOOL, 0, 1 }, #endif { "r_nofog", "enable/disable GL fog", (void *)&nofog, CVAR_BOOL, 0, 1}, { "r_hightile","enable/disable hightile texture rendering",(void *) &usehightile, CVAR_BOOL, 0, 1 }, { "r_preview_mouseaim", "toggles mouse aiming preview, use this to calibrate yxaspect in Polymost Mapster32", (void *) &preview_mouseaim, CVAR_BOOL, 0, 1 }, }; for (i=0; imdnum < 2) return; int j = (models[mid]->mdnum == 3) ? ((md3model_t *)models[mid])->head.numsurfs : 0; for (bssize_t i = 0; i <= j; i++) mdloadskin((md2model_t *)models[mid], 0, dapalnum, i); } #else /* if !defined USE_OPENGL */ #include "compat.h" int32_t polymost_drawtilescreen(int32_t tilex, int32_t tiley, int32_t wallnum, int32_t dimen, int32_t usehitile, uint8_t *loadedhitile) { UNREFERENCED_PARAMETER(tilex); UNREFERENCED_PARAMETER(tiley); UNREFERENCED_PARAMETER(wallnum); UNREFERENCED_PARAMETER(dimen); UNREFERENCED_PARAMETER(usehitile); UNREFERENCED_PARAMETER(loadedhitile); return -1; } #endif // vim:ts=4:sw=4: