// "Build Engine & Tools" Copyright (c) 1993-1997 Ken Silverman // Ken Silverman's official web site: "http://www.advsys.net/ken" // See the included license file "BUILDLIC.TXT" for license info. // // This file has been modified from Ken Silverman's original release // by Jonathon Fowler (jf@jonof.id.au) // by the EDuke32 team (development@voidpoint.com) #define engine_c_ #include "gl_load.h" #include "build.h" #include "automap.h" #include "imagehelpers.h" #include "compat.h" #include "engine_priv.h" #include "palette.h" #include "pragmas.h" #include "scriptfile.h" #include "gamecvars.h" #include "c_console.h" #include "v_2ddrawer.h" #include "v_draw.h" #include "stats.h" #include "razemenu.h" #include "version.h" #include "earcut.hpp" #include "gamestate.h" #include "inputstate.h" #include "printf.h" #include "gamecontrol.h" #ifdef USE_OPENGL # include "mdsprite.h" # include "polymost.h" #include "v_video.h" #include "../../glbackend/glbackend.h" #include "gl_renderer.h" #endif int32_t rendmode=0; int32_t glrendmode = REND_POLYMOST; int32_t r_rortexture = 0; int32_t r_rortexturerange = 0; int32_t r_rorphase = 0; int32_t mdtims, omdtims; float fcosglobalang, fsinglobalang; float fxdim, fydim, fydimen, fviewingrange; uint8_t globalr = 255, globalg = 255, globalb = 255; int16_t pskybits_override = -1; // This was on the cache but is permanently allocated, so put it into something static. This needs some rethinking anyway static TArray> voxelmemory; int16_t tiletovox[MAXTILES]; #ifdef USE_OPENGL char *voxfilenames[MAXVOXELS]; #endif char g_haveVoxels; //#define kloadvoxel loadvoxel int32_t novoxmips = 1; int32_t voxscale[MAXVOXELS]; static int32_t beforedrawrooms = 1; int32_t globalflags; static int8_t tempbuf[MAXWALLS]; // referenced from asm int32_t reciptable[2048]; intptr_t asm1, asm2; int32_t globalx1, globaly2, globalx3, globaly3; static int32_t no_radarang2 = 0; static int16_t radarang[1280]; static int32_t qradarang[10240]; uint16_t ATTRIBUTE((used)) sqrtable[4096], ATTRIBUTE((used)) shlookup[4096+256], ATTRIBUTE((used)) sqrtable_old[2048]; static char kensmessage[128]; const char *engineerrstr = "No error"; int32_t showfirstwall=0; int32_t showheightindicators=1; int32_t circlewall=-1; int16_t editstatus = 0; static fixed_t global100horiz; // (-100..300)-scale horiz (the one passed to drawrooms) static FString printcoords(void) { FString str; str.Format( "pos.x: %d\n" "pos.y: %d\n" "pos.z: %d\n" "ang : %d\n" "horiz: %d\n", globalposx, globalposy, globalposz, globalang, FixedToInt(global100horiz) ); return str; } CCMD(printcoords) { Printf("%s", printcoords().GetChars()); } ADD_STAT(printcoords) { return printcoords(); } int32_t(*getpalookup_replace)(int32_t davis, int32_t dashade) = NULL; // adapted from build.c static void getclosestpointonwall_internal(vec2_t const p, int32_t const dawall, vec2_t *const closest) { vec2_t const w = wall[dawall].pos; vec2_t const w2 = wall[wall[dawall].point2].pos; vec2_t const d = { w2.x - w.x, w2.y - w.y }; int64_t i = d.x * ((int64_t)p.x - w.x) + d.y * ((int64_t)p.y - w.y); if (i <= 0) { *closest = w; return; } int64_t const j = (int64_t)d.x * d.x + (int64_t)d.y * d.y; if (i >= j) { *closest = w2; return; } i = ((i << 15) / j) << 15; *closest = { (int32_t)(w.x + ((d.x * i) >> 30)), (int32_t)(w.y + ((d.y * i) >> 30)) }; } int32_t xb1[MAXWALLSB]; // Polymost uses this as a temp array static int32_t xb2[MAXWALLSB]; int32_t rx1[MAXWALLSB], ry1[MAXWALLSB]; int16_t bunchp2[MAXWALLSB], thesector[MAXWALLSB]; int16_t bunchfirst[MAXWALLSB], bunchlast[MAXWALLSB]; static vec3_t spritesxyz[MAXSPRITESONSCREEN+1]; int32_t xdimen = -1, xdimenrecip, halfxdimen, xdimenscale, xdimscale; float fxdimen = -1.f; int32_t ydimen; int32_t rxi[8], ryi[8]; int32_t globalposx, globalposy, globalposz; fixed_t qglobalhoriz; float fglobalposx, fglobalposy, fglobalposz; int16_t globalang, globalcursectnum; fixed_t qglobalang; int32_t globalpal, globalfloorpal, cosglobalang, singlobalang; int32_t cosviewingrangeglobalang, sinviewingrangeglobalang; int32_t xyaspect; int32_t viewingrangerecip; static char globalxshift, globalyshift; static int32_t globalxpanning, globalypanning; int32_t globalshade, globalorientation; int16_t globalpicnum; static int32_t globaly1, globalx2; int16_t sectorborder[256]; int16_t pointhighlight=-1, linehighlight=-1, highlightcnt=0; int32_t halfxdim16, midydim16; static_assert(MAXWALLSB < INT16_MAX); int16_t numscans, numbunches; static int16_t numhits; int16_t searchit; int32_t searchx = -1, searchy; //search input int16_t searchsector, searchwall, searchstat; //search output // SEARCHBOTTOMWALL: // When aiming at a the bottom part of a 2-sided wall whose bottom part // is swapped (.cstat&2), searchbottomwall equals that wall's .nextwall. In all // other cases (when aiming at a wall), searchbottomwall equals searchwall. // // SEARCHISBOTTOM: // When aiming at a 2-sided wall, 1 if aiming at the bottom part, 0 else int16_t searchbottomwall, searchisbottom; char inpreparemirror = 0; static int32_t mirrorsx1, mirrorsy1, mirrorsx2, mirrorsy2; #define MAXSETVIEW 4 // // Internal Engine Functions // // returns: 0=continue sprite collecting; // 1=break out of sprite collecting; int32_t renderAddTsprite(int16_t z, int16_t sectnum) { auto const spr = (uspriteptr_t)&sprite[z]; if (spritesortcnt >= maxspritesonscreen) return 1; renderAddTSpriteFromSprite(z); return 0; } // // wallfront (internal) // int32_t wallfront(int32_t l1, int32_t l2) { vec2_t const l1vect = wall[thewall[l1]].pos; vec2_t const l1p2vect = wall[wall[thewall[l1]].point2].pos; vec2_t const l2vect = wall[thewall[l2]].pos; vec2_t const l2p2vect = wall[wall[thewall[l2]].point2].pos; vec2_t d = { l1p2vect.x - l1vect.x, l1p2vect.y - l1vect.y }; int32_t t1 = dmulscale2(l2vect.x-l1vect.x, d.y, -d.x, l2vect.y-l1vect.y); //p1(l2) vs. l1 int32_t t2 = dmulscale2(l2p2vect.x-l1vect.x, d.y, -d.x, l2p2vect.y-l1vect.y); //p2(l2) vs. l1 if (t1 == 0) { if (t2 == 0) return -1; t1 = t2; } if (t2 == 0) t2 = t1; if ((t1^t2) >= 0) //pos vs. l1 return (dmulscale2(globalposx-l1vect.x, d.y, -d.x, globalposy-l1vect.y) ^ t1) >= 0; d.x = l2p2vect.x-l2vect.x; d.y = l2p2vect.y-l2vect.y; t1 = dmulscale2(l1vect.x-l2vect.x, d.y, -d.x, l1vect.y-l2vect.y); //p1(l1) vs. l2 t2 = dmulscale2(l1p2vect.x-l2vect.x, d.y, -d.x, l1p2vect.y-l2vect.y); //p2(l1) vs. l2 if (t1 == 0) { if (t2 == 0) return -1; t1 = t2; } if (t2 == 0) t2 = t1; if ((t1^t2) >= 0) //pos vs. l2 return (dmulscale2(globalposx-l2vect.x,d.y,-d.x,globalposy-l2vect.y) ^ t1) < 0; return -2; } // // animateoffs (internal) // int32_t (*animateoffs_replace)(int const tilenum, int fakevar) = NULL; int32_t animateoffs(int const tilenum, int fakevar) { if (animateoffs_replace) { return animateoffs_replace(tilenum, fakevar); } int const animnum = picanm[tilenum].num; if (animnum <= 0) return 0; int const i = (int) I_GetBuildTime() >> (picanm[tilenum].sf & PICANM_ANIMSPEED_MASK); int offs = 0; switch (picanm[tilenum].sf & PICANM_ANIMTYPE_MASK) { case PICANM_ANIMTYPE_OSC: { int k = (i % (animnum << 1)); offs = (k < animnum) ? k : (animnum << 1) - k; } break; case PICANM_ANIMTYPE_FWD: offs = i % (animnum + 1); break; case PICANM_ANIMTYPE_BACK: offs = -(i % (animnum + 1)); break; } return offs; } // globalpicnum --> globalxshift, globalyshift static void calc_globalshifts(void) { globalxshift = (8-widthBits(globalpicnum)); globalyshift = (8-heightBits(globalpicnum)); if (globalorientation&8) { globalxshift++; globalyshift++; } // PK: the following can happen for large (>= 512) tile sizes. // NOTE that global[xy]shift are unsigned chars. if (globalxshift > 31) globalxshift=0; if (globalyshift > 31) globalyshift=0; } static void renderDrawSprite(int32_t snum) { polymost_drawsprite(snum); } // // drawmaskwall (internal) // static void renderDrawMaskedWall(int16_t damaskwallcnt) { if (videoGetRenderMode() == REND_POLYMOST) { polymost_drawmaskwall(damaskwallcnt); return; } } static uint32_t msqrtasm(uint32_t c) { uint32_t a = 0x40000000l, b = 0x20000000l; do { if (c >= a) { c -= a; a += b*4; } a -= b; a >>= 1; b >>= 2; } while (b); if (c >= a) a++; return a >> 1; } // // initksqrt (internal) // static inline void initksqrt(void) { int32_t i, j, k; uint32_t root, num; int32_t temp; j = 1; k = 0; for (i=0; i<4096; i++) { if (i >= j) { j <<= 2; k++; } sqrtable[i] = (uint16_t)(msqrtasm((i<<18)+131072)<<1); shlookup[i] = (k<<1)+((10-k)<<8); if (i < 256) shlookup[i+4096] = ((k+6)<<1)+((10-(k+6))<<8); } for(i=0;i<2048;i++) { root = 128; num = i<<20; do { temp = root; root = (root+num/root)>>1; } while((temp-root+1) > 2); temp = root*root-num; while (klabs(int32_t(temp-2*root+1)) < klabs(temp)) { temp += 1-int(2*root); root--; } while (klabs(int32_t(temp+2*root+1)) < klabs(temp)) { temp += 2*root+1; root++; } sqrtable_old[i] = root; } } static int32_t engineLoadTables(void) { static char tablesloaded = 0; if (tablesloaded == 0) { int32_t i; initksqrt(); for (i=0; i<2048; i++) reciptable[i] = divscale30(2048, i+2048); for (i=0; i<=512; i++) sintable[i] = bsinf(i); for (i=513; i<1024; i++) sintable[i] = sintable[1024-i]; for (i=1024; i<2048; i++) sintable[i] = -sintable[i-1024]; for (i=0; i<640; i++) radarang[i] = atan((639.5 - i) / 160.) * (-64. / BAngRadian); for (i=0; i<640; i++) radarang[1279-i] = -radarang[i]; for (i=0; i<5120; i++) qradarang[i] = FloatToFixed(atan((5119.5 - i) / 1280.) * (-64. / BAngRadian)); for (i=0; i<5120; i++) qradarang[10239-i] = -qradarang[i]; tablesloaded = 1; } return 0; } ////////// SPRITE LIST MANIPULATION FUNCTIONS ////////// #ifdef NETCODE_DISABLE # define LISTFN_STATIC static #else # define LISTFN_STATIC #endif ///// sector lists of sprites ///// // insert sprite at the head of sector list, change .sectnum LISTFN_STATIC void do_insertsprite_at_headofsect(int16_t spritenum, int16_t sectnum) { int16_t const ohead = headspritesect[sectnum]; prevspritesect[spritenum] = -1; nextspritesect[spritenum] = ohead; if (ohead >= 0) prevspritesect[ohead] = spritenum; headspritesect[sectnum] = spritenum; sprite[spritenum].sectnum = sectnum; } // remove sprite 'deleteme' from its sector list LISTFN_STATIC void do_deletespritesect(int16_t deleteme) { int32_t const sectnum = sprite[deleteme].sectnum; int32_t const prev = prevspritesect[deleteme]; int32_t const next = nextspritesect[deleteme]; if (headspritesect[sectnum] == deleteme) headspritesect[sectnum] = next; if (prev >= 0) nextspritesect[prev] = next; if (next >= 0) prevspritesect[next] = prev; } ///// now, status lists ///// // insert sprite at head of status list, change .statnum LISTFN_STATIC void do_insertsprite_at_headofstat(int16_t spritenum, int16_t statnum) { int16_t const ohead = headspritestat[statnum]; prevspritestat[spritenum] = -1; nextspritestat[spritenum] = ohead; if (ohead >= 0) prevspritestat[ohead] = spritenum; headspritestat[statnum] = spritenum; sprite[spritenum].statnum = statnum; } // insertspritestat (internal) LISTFN_STATIC int32_t insertspritestat(int16_t statnum) { if ((statnum >= MAXSTATUS) || (headspritestat[MAXSTATUS] == -1)) return -1; //list full // remove one sprite from the statnum-freelist int16_t const blanktouse = headspritestat[MAXSTATUS]; headspritestat[MAXSTATUS] = nextspritestat[blanktouse]; // make back-link of the new freelist head point to nil if (headspritestat[MAXSTATUS] >= 0) prevspritestat[headspritestat[MAXSTATUS]] = -1; else if (enginecompatibility_mode == ENGINECOMPATIBILITY_NONE) tailspritefree = -1; do_insertsprite_at_headofstat(blanktouse, statnum); return blanktouse; } // remove sprite 'deleteme' from its status list LISTFN_STATIC void do_deletespritestat(int16_t deleteme) { int32_t const sectnum = sprite[deleteme].statnum; int32_t const prev = prevspritestat[deleteme]; int32_t const next = nextspritestat[deleteme]; if (headspritestat[sectnum] == deleteme) headspritestat[sectnum] = next; if (prev >= 0) nextspritestat[prev] = next; if (next >= 0) prevspritestat[next] = prev; } // // insertsprite // int32_t(*insertsprite_replace)(int16_t sectnum, int16_t statnum) = NULL; int32_t insertsprite(int16_t sectnum, int16_t statnum) { if (insertsprite_replace) return insertsprite_replace(sectnum, statnum); // TODO: guard against bad sectnum? int32_t const newspritenum = insertspritestat(statnum); if (newspritenum >= 0) { assert((unsigned)sectnum < MAXSECTORS); do_insertsprite_at_headofsect(newspritenum, sectnum); Numsprites++; } return newspritenum; } // // deletesprite // int32_t (*deletesprite_replace)(int16_t spritenum) = NULL; void polymost_deletesprite(int num); int32_t deletesprite(int16_t spritenum) { polymost_deletesprite(spritenum); if (deletesprite_replace) return deletesprite_replace(spritenum); assert((sprite[spritenum].statnum == MAXSTATUS) == (sprite[spritenum].sectnum == MAXSECTORS)); if (sprite[spritenum].statnum == MAXSTATUS) return -1; // already not in the world do_deletespritestat(spritenum); do_deletespritesect(spritenum); // (dummy) insert at tail of sector freelist, compat // for code that checks .sectnum==MAXSECTOR sprite[spritenum].sectnum = MAXSECTORS; // insert at tail of status freelist if (enginecompatibility_mode != ENGINECOMPATIBILITY_NONE) do_insertsprite_at_headofstat(spritenum, MAXSTATUS); else { prevspritestat[spritenum] = tailspritefree; nextspritestat[spritenum] = -1; if (tailspritefree >= 0) nextspritestat[tailspritefree] = spritenum; else headspritestat[MAXSTATUS] = spritenum; sprite[spritenum].statnum = MAXSTATUS; tailspritefree = spritenum; } Numsprites--; return 0; } // // changespritesect // int32_t (*changespritesect_replace)(int16_t spritenum, int16_t newsectnum) = NULL; int32_t changespritesect(int16_t spritenum, int16_t newsectnum) { if (changespritesect_replace) return changespritesect_replace(spritenum, newsectnum); // XXX: NOTE: MAXSECTORS is allowed if ((newsectnum < 0 || newsectnum > MAXSECTORS) || (sprite[spritenum].sectnum == MAXSECTORS)) return -1; if (sprite[spritenum].sectnum == newsectnum) return 0; do_deletespritesect(spritenum); do_insertsprite_at_headofsect(spritenum, newsectnum); return 0; } // // changespritestat // int32_t (*changespritestat_replace)(int16_t spritenum, int16_t newstatnum) = NULL; int32_t changespritestat(int16_t spritenum, int16_t newstatnum) { if (changespritestat_replace) return changespritestat_replace(spritenum, newstatnum); // XXX: NOTE: MAXSTATUS is allowed if ((newstatnum < 0 || newstatnum > MAXSTATUS) || (sprite[spritenum].statnum == MAXSTATUS)) return -1; // can't set the statnum of a sprite not in the world if (sprite[spritenum].statnum == newstatnum) return 0; // sprite already has desired statnum do_deletespritestat(spritenum); do_insertsprite_at_headofstat(spritenum, newstatnum); return 0; } // // lintersect (internal) // int32_t lintersect(const int32_t originX, const int32_t originY, const int32_t originZ, const int32_t destX, const int32_t destY, const int32_t destZ, const int32_t lineStartX, const int32_t lineStartY, const int32_t lineEndX, const int32_t lineEndY, int32_t *intersectionX, int32_t *intersectionY, int32_t *intersectionZ) { const vec2_t ray = { destX-originX, destY-originY }; const vec2_t lineVec = { lineEndX-lineStartX, lineEndY-lineStartY }; const vec2_t originDiff = { lineStartX-originX, lineStartY-originY }; const int32_t rayCrossLineVec = ray.x*lineVec.y - ray.y*lineVec.x; const int32_t originDiffCrossRay = originDiff.x*ray.y - originDiff.y*ray.x; if (rayCrossLineVec == 0) { if (originDiffCrossRay != 0 || enginecompatibility_mode != ENGINECOMPATIBILITY_NONE) { // line segments are parallel return 0; } // line segments are collinear const int32_t rayLengthSquared = ray.x*ray.x + ray.y*ray.y; const int32_t rayDotOriginDiff = ray.x*originDiff.x + ray.y*originDiff.y; const int32_t rayDotLineEndDiff = rayDotOriginDiff + ray.x*lineVec.x + ray.y*lineVec.y; int64_t t = min(rayDotOriginDiff, rayDotLineEndDiff); if (rayDotOriginDiff < 0) { if (rayDotLineEndDiff < 0) return 0; t = 0; } else if (rayDotOriginDiff > rayLengthSquared) { if (rayDotLineEndDiff > rayLengthSquared) return 0; t = rayDotLineEndDiff; } t = (t << 24) / rayLengthSquared; *intersectionX = originX + mulscale24(ray.x, t); *intersectionY = originY + mulscale24(ray.y, t); *intersectionZ = originZ + mulscale24(destZ-originZ, t); return 1; } const int32_t originDiffCrossLineVec = originDiff.x*lineVec.y - originDiff.y*lineVec.x; static const int32_t signBit = 1u<<31u; // Any point on either line can be expressed as p+t*r and q+u*s // The two line segments intersect when we can find a t & u such that p+t*r = q+u*s // If the point is outside of the bounds of the line segment, we know we don't have an intersection. // t is < 0 if (originDiffCrossLineVec^rayCrossLineVec) & signBit) // u is < 0 if (originDiffCrossRay^rayCrossLineVec) & signBit // t is > 1 if klabs(originDiffCrossLineVec) > klabs(rayCrossLineVec) // u is > 1 if klabs(originDiffCrossRay) > klabs(rayCrossLineVec) // where int32_t u = tabledivide64(((int64_t) originDiffCrossRay) << 24L, rayCrossLineVec); if (((originDiffCrossLineVec^rayCrossLineVec) & signBit) || ((originDiffCrossRay^rayCrossLineVec) & signBit) || klabs(originDiffCrossLineVec) > klabs(rayCrossLineVec) || klabs(originDiffCrossRay) > klabs(rayCrossLineVec)) { // line segments do not overlap return 0; } int64_t t = (int64_t(originDiffCrossLineVec) << 24) / rayCrossLineVec; // For sake of completeness/readability, alternative to the above approach for an early out & avoidance of an extra division: *intersectionX = originX + mulscale24(ray.x, t); *intersectionY = originY + mulscale24(ray.y, t); *intersectionZ = originZ + mulscale24(destZ-originZ, t); return 1; } // // rintersect (internal) // // returns: -1 if didn't intersect, coefficient IntToFixed(x3--x4 fraction) else int32_t rintersect_old(int32_t x1, int32_t y1, int32_t z1, int32_t vx, int32_t vy, int32_t vz, int32_t x3, int32_t y3, int32_t x4, int32_t y4, int32_t *intx, int32_t *inty, int32_t *intz) { //p1 towards p2 is a ray int32_t const x34=x3-x4, y34=y3-y4; int32_t const x31=x3-x1, y31=y3-y1; int32_t const bot = vx*y34 - vy*x34; int32_t const topt = x31*y34 - y31*x34; if (bot == 0) return -1; int32_t const topu = vx*y31 - vy*x31; if (bot > 0 && (topt < 0 || topu < 0 || topu >= bot)) return -1; else if (bot < 0 && (topt > 0 || topu > 0 || topu <= bot)) return -1; int32_t t = divscale16(topt, bot); *intx = x1 + mulscale16(vx, t); *inty = y1 + mulscale16(vy, t); *intz = z1 + mulscale16(vz, t); t = divscale16(topu, bot); return t; } int32_t rintersect(int32_t x1, int32_t y1, int32_t z1, int32_t vx, int32_t vy, int32_t vz, int32_t x3, int32_t y3, int32_t x4, int32_t y4, int32_t *intx, int32_t *inty, int32_t *intz) { //p1 towards p2 is a ray if (enginecompatibility_mode != ENGINECOMPATIBILITY_NONE) return rintersect_old(x1,y1,z1,vx,vy,vz,x3,y3,x4,y4,intx,inty,intz); int64_t const x34=x3-x4, y34=y3-y4; int64_t const x31=x3-x1, y31=y3-y1; int64_t const bot = vx*y34 - vy*x34; int64_t const topt = x31*y34 - y31*x34; if (bot == 0) return -1; int64_t const topu = vx*y31 - vy*x31; if (bot > 0 && (topt < 0 || topu < 0 || topu >= bot)) return -1; else if (bot < 0 && (topt > 0 || topu > 0 || topu <= bot)) return -1; int64_t t = (topt << 16) / bot; *intx = x1 + ((vx*t) >> 16); *inty = y1 + ((vy*t) >> 16); *intz = z1 + ((vz*t) >> 16); t = (topu << 16) / bot; assert((unsigned)t < 65536); return t; } int32_t rayintersect(int32_t x1, int32_t y1, int32_t z1, int32_t vx, int32_t vy, int32_t vz, int32_t x3, int32_t y3, int32_t x4, int32_t y4, int32_t *intx, int32_t *inty, int32_t *intz) { return (rintersect(x1, y1, z1, vx, vy, vz, x3, y3, x4, y4, intx, inty, intz) != -1); } // // multi-pskies // psky_t * tileSetupSky(int32_t const tilenum) { for (auto& sky : multipskies) if (tilenum == sky.tilenum) { sky.combinedtile = -1; // invalidate the old content return &sky; } multipskies.Reserve(1); multipskies.Last() = {}; multipskies.Last().tilenum = tilenum; multipskies.Last().combinedtile = -1; multipskies.Last().yscale = 65536; return &multipskies.Last(); } psky_t * defineSky(int32_t const tilenum, int horiz, int lognumtiles, const uint16_t *tileofs, int yoff) { auto sky = tileSetupSky(tilenum); sky->horizfrac = horiz; sky->lognumtiles = lognumtiles; sky->yoffs = yoff; memcpy(sky->tileofs, tileofs, 2 << lognumtiles); return sky; } // Get properties of parallaxed sky to draw. // Returns: pointer to tile offset array. Sets-by-pointer the other three. const int16_t* getpsky(int32_t picnum, int32_t* dapyscale, int32_t* dapskybits, int32_t* dapyoffs, int32_t* daptileyscale) { psky_t const* const psky = getpskyidx(picnum); if (dapskybits) *dapskybits = (pskybits_override == -1 ? psky->lognumtiles : pskybits_override); if (dapyscale) *dapyscale = (parallaxyscale_override == 0 ? psky->horizfrac : parallaxyscale_override); if (dapyoffs) *dapyoffs = psky->yoffs + parallaxyoffs_override; if (daptileyscale) *daptileyscale = psky->yscale; return psky->tileofs; } // // preinitengine // static int32_t preinitcalled = 0; static spriteext_t spriteext_s[MAXSPRITES+MAXUNIQHUDID]; static spritesmooth_t spritesmooth_s[MAXSPRITES+MAXUNIQHUDID]; static sectortype sector_s[MAXSECTORS]; static walltype wall_s[MAXWALLS]; spritetype sprite_s[MAXSPRITES]; static tspritetype tsprite_s[MAXSPRITESONSCREEN]; int32_t enginePreInit(void) { polymost_initosdfuncs(); sector = sector_s; wall = wall_s; sprite = sprite_s; tsprite = tsprite_s; spriteext = spriteext_s; spritesmooth = spritesmooth_s; preinitcalled = 1; return 0; } // // initengine // int32_t engineInit(void) { int32_t i; if (!preinitcalled) { i = enginePreInit(); if (i) return i; } if (engineLoadTables()) return 1; xyaspect = -1; voxelmemory.Reset(); for (i=0; iloadPalette(); #ifdef USE_OPENGL if (!mdinited) mdinit(); #endif return 0; } // // uninitengine // void engineUnInit(void) { polymost_glreset(); freeallmodels(); # ifdef POLYMER polymer_uninit(); # endif TileFiles.CloseAll(); } // // initspritelists // void (*initspritelists_replace)(void) = NULL; void initspritelists(void) { if (initspritelists_replace) { initspritelists_replace(); return; } int32_t i; // initial list state for statnum lists: // // statnum 0: nil // statnum 1: nil // . . . // statnum MAXSTATUS-1: nil // "statnum MAXSTATUS": nil <- 0 <-> 1 <-> 2 <-> ... <-> MAXSPRITES-1 -> nil // // That is, the dummy MAXSTATUS statnum has all sprites. for (i=0; i>1); globalcursectnum = dacursectnum; memset(gotsector, 0, sizeof(gotsector)); i = xdimen-1; for (int i = 0; i < numwalls; ++i) { if (wall[i].cstat & CSTAT_WALL_ROTATE_90) { auto &w = wall[i]; auto &tile = RotTile(w.picnum+animateoffs(w.picnum,16384)); if (tile.newtile == -1 && tile.owner == -1) { auto owner = w.picnum + animateoffs(w.picnum, 16384); tile.newtile = TileFiles.tileCreateRotated(owner); assert(tile.newtile != -1); RotTile(tile.newtile).owner = w.picnum+animateoffs(w.picnum,16384); } } } // Update starting sector number (common to classic and Polymost). // ADJUST_GLOBALCURSECTNUM. if (globalcursectnum >= MAXSECTORS) globalcursectnum -= MAXSECTORS; else { i = globalcursectnum; updatesector(globalposx,globalposy,&globalcursectnum); if (globalcursectnum < 0) globalcursectnum = i; // PK 20110123: I'm not sure what the line above is supposed to do, but 'i' // *can* be negative, so let's just quit here in that case... if (globalcursectnum<0) return 0; } polymost_drawrooms(); return inpreparemirror; } // UTILITY TYPES AND FUNCTIONS FOR DRAWMASKS OCCLUSION TREE // typedef struct s_maskleaf // { // int32_t index; // _point2d p1, p2; // _equation maskeq, p1eq, p2eq; // struct s_maskleaf* branch[MAXWALLSB]; // int32_t drawing; // } _maskleaf; // // _maskleaf maskleaves[MAXWALLSB]; // returns equation of a line given two points static inline _equation equation(float const x1, float const y1, float const x2, float const y2) { const float f = x2-x1; // vertical if (f == 0.f) return { 1, 0, -x1 }; else { float const ff = (y2 - y1) / f; return { ff, -1, (y1 - (ff * x1)) }; } } int32_t wallvisible(int32_t const x, int32_t const y, int16_t const wallnum) { // 1 if wall is in front of player 0 otherwise auto w1 = (uwallptr_t)&wall[wallnum]; auto w2 = (uwallptr_t)&wall[w1->point2]; int32_t const a1 = getangle(w1->x - x, w1->y - y); int32_t const a2 = getangle(w2->x - x, w2->y - y); return (((a2 + (2048 - a1)) & 2047) <= 1024); } static inline int32_t sameside(const _equation *eq, const vec2f_t *p1, const vec2f_t *p2) { const float sign1 = (eq->a * p1->x) + (eq->b * p1->y) + eq->c; const float sign2 = (eq->a * p2->x) + (eq->b * p2->y) + eq->c; return (sign1 * sign2) > 0.f; } static inline int comparetsprites(int const k, int const l) { #ifdef USE_OPENGL if (videoGetRenderMode() == REND_POLYMOST) { if ((tspriteptr[k]->cstat & 48) != (tspriteptr[l]->cstat & 48)) return (tspriteptr[k]->cstat & 48) - (tspriteptr[l]->cstat & 48); if ((tspriteptr[k]->cstat & 48) == 16 && tspriteptr[k]->ang != tspriteptr[l]->ang) return tspriteptr[k]->ang - tspriteptr[l]->ang; } #endif if (tspriteptr[k]->statnum != tspriteptr[l]->statnum) return tspriteptr[k]->statnum - tspriteptr[l]->statnum; if (tspriteptr[k]->x == tspriteptr[l]->x && tspriteptr[k]->y == tspriteptr[l]->y && tspriteptr[k]->z == tspriteptr[l]->z && (tspriteptr[k]->cstat & 48) == (tspriteptr[l]->cstat & 48) && tspriteptr[k]->owner != tspriteptr[l]->owner) return tspriteptr[k]->owner - tspriteptr[l]->owner; if (klabs(spritesxyz[k].z-globalposz) != klabs(spritesxyz[l].z-globalposz)) return klabs(spritesxyz[k].z-globalposz)-klabs(spritesxyz[l].z-globalposz); return 0; } static void sortsprites(int const start, int const end) { int32_t i, gap, y, ys; if (start >= end) return; gap = 1; while (gap < end - start) gap = (gap<<1)+1; for (gap>>=1; gap>0; gap>>=1) //Sort sprite list for (i=start; i=start; l-=gap) { if (spritesxyz[l].y <= spritesxyz[l+gap].y) break; std::swap(tspriteptr[l],tspriteptr[l+gap]); std::swap(spritesxyz[l].x,spritesxyz[l+gap].x); std::swap(spritesxyz[l].y,spritesxyz[l+gap].y); } ys = spritesxyz[start].y; i = start; for (bssize_t j=start+1; j<=end; j++) { if (j < end) { y = spritesxyz[j].y; if (y == ys) continue; ys = y; } if (j > i+1) { for (bssize_t k=i; kz; if ((s->cstat&48) != 32) { int32_t yoff = tileTopOffset(s->picnum) + s->yoffset; int32_t yspan = (tileHeight(s->picnum) * s->yrepeat << 2); spritesxyz[k].z -= (yoff*s->yrepeat)<<2; if (!(s->cstat&128)) spritesxyz[k].z -= (yspan>>1); if (klabs(spritesxyz[k].z-globalposz) < (yspan>>1)) spritesxyz[k].z = globalposz; } } for (bssize_t k=i+1; k= 0; --i) { if (polymost_spriteHasTranslucency(&tsprite[i])) { tspriteptr[spritesortcnt] = &tsprite[i]; ++spritesortcnt; } else { tspriteptr[back] = &tsprite[i]; --back; } } } else #endif { for (; i >= 0; --i) { tspriteptr[i] = &tsprite[i]; } } for (i=numSprites-1; i>=0; --i) { const int32_t xs = tspriteptr[i]->x-globalposx, ys = tspriteptr[i]->y-globalposy; const int32_t yp = dmulscale6(xs,cosviewingrangeglobalang,ys,sinviewingrangeglobalang); #ifdef USE_OPENGL const int32_t modelp = polymost_spriteIsModelOrVoxel(tspriteptr[i]); #endif if (yp > (4<<8)) { const int32_t xp = dmulscale6(ys,cosglobalang,-xs,singlobalang); if (mulscale24(labs(xp+yp),xdimen) >= yp) goto killsprite; spritesxyz[i].x = scale(xp+yp,xdimen<<7,yp); } else if ((tspriteptr[i]->cstat&48) == 0) { killsprite: #ifdef USE_OPENGL if (!modelp) #endif { //Delete face sprite if on wrong side! if (i >= spritesortcnt) { --numSprites; if (i != numSprites) { tspriteptr[i] = tspriteptr[numSprites]; spritesxyz[i].x = spritesxyz[numSprites].x; spritesxyz[i].y = spritesxyz[numSprites].y; } } else { --numSprites; --spritesortcnt; if (i != numSprites) { tspriteptr[i] = tspriteptr[spritesortcnt]; spritesxyz[i].x = spritesxyz[spritesortcnt].x; spritesxyz[i].y = spritesxyz[spritesortcnt].y; tspriteptr[spritesortcnt] = tspriteptr[numSprites]; spritesxyz[spritesortcnt].x = spritesxyz[numSprites].x; spritesxyz[spritesortcnt].y = spritesxyz[numSprites].y; } } continue; } } spritesxyz[i].y = yp; } sortsprites(0, spritesortcnt); sortsprites(spritesortcnt, numSprites); renderBeginScene(); #ifdef USE_OPENGL if (videoGetRenderMode() == REND_POLYMOST) { GLInterface.EnableBlend(false); GLInterface.EnableAlphaTest(true); GLInterface.SetDepthBias(-2, -256); if (spritesortcnt < numSprites) { i = spritesortcnt; for (bssize_t i = spritesortcnt; i < numSprites;) { int32_t py = spritesxyz[i].y; int32_t pcstat = tspriteptr[i]->cstat & 48; int32_t pangle = tspriteptr[i]->ang; int j = i + 1; if (!polymost_spriteIsModelOrVoxel(tspriteptr[i])) { while (j < numSprites && py == spritesxyz[j].y && pcstat == (tspriteptr[j]->cstat & 48) && (pcstat != 16 || pangle == tspriteptr[j]->ang) && !polymost_spriteIsModelOrVoxel(tspriteptr[j])) { j++; } } if (j - i == 1) { debugmask_add(i | 32768, tspriteptr[i]->owner); renderDrawSprite(i); tspriteptr[i] = NULL; } else { GLInterface.SetDepthMask(false); for (bssize_t k = j-1; k >= i; k--) { debugmask_add(k | 32768, tspriteptr[k]->owner); renderDrawSprite(k); } GLInterface.SetDepthMask(true); GLInterface.SetColorMask(false); for (bssize_t k = j-1; k >= i; k--) { renderDrawSprite(k); tspriteptr[k] = NULL; } GLInterface.SetColorMask(true); } i = j; } } int32_t numMaskWalls = maskwallcnt; maskwallcnt = 0; for (i = 0; i < numMaskWalls; i++) { if (polymost_maskWallHasTranslucency((uwalltype *) &wall[thewall[maskwall[i]]])) { maskwall[maskwallcnt] = maskwall[i]; maskwallcnt++; } else renderDrawMaskedWall(i); } GLInterface.EnableBlend(true); GLInterface.EnableAlphaTest(true); GLInterface.SetDepthMask(false); } #endif vec2f_t pos; pos.x = fglobalposx; pos.y = fglobalposy; // CAUTION: maskwallcnt and spritesortcnt may be zero! // Writing e.g. "while (maskwallcnt--)" is wrong! while (maskwallcnt) { // PLAG: sorting stuff const int32_t w = (videoGetRenderMode()==REND_POLYMER) ? maskwall[maskwallcnt-1] : thewall[maskwall[maskwallcnt-1]]; maskwallcnt--; vec2f_t dot = { (float)wall[w].x, (float)wall[w].y }; vec2f_t dot2 = { (float)wall[wall[w].point2].x, (float)wall[wall[w].point2].y }; vec2f_t middle = { (dot.x + dot2.x) * .5f, (dot.y + dot2.y) * .5f }; _equation maskeq = equation(dot.x, dot.y, dot2.x, dot2.y); _equation p1eq = equation(pos.x, pos.y, dot.x, dot.y); _equation p2eq = equation(pos.x, pos.y, dot2.x, dot2.y); i = spritesortcnt; while (i) { i--; if (tspriteptr[i] != NULL) { vec2f_t spr; auto const tspr = tspriteptr[i]; spr.x = (float)tspr->x; spr.y = (float)tspr->y; if (!sameside(&maskeq, &spr, &pos)) { // Sprite and camera are on different sides of the // masked wall. // Check if the sprite is inside the 'cone' given by // the rays from the camera to the two wall-points. const int32_t inleft = sameside(&p1eq, &middle, &spr); const int32_t inright = sameside(&p2eq, &middle, &spr); int32_t ok = (inleft && inright); if (!ok) { // If not, check if any of the border points are... int32_t xx[4] = { tspr->x }; int32_t yy[4] = { tspr->y }; int32_t numpts, jj; const _equation pineq = inleft ? p1eq : p2eq; if ((tspr->cstat & 48) == 32) { numpts = 4; get_floorspr_points(tspr, 0, 0, &xx[0], &xx[1], &xx[2], &xx[3], &yy[0], &yy[1], &yy[2], &yy[3]); } else { const int32_t oang = tspr->ang; numpts = 2; // Consider face sprites as wall sprites with camera ang. // XXX: factor 4/5 needed? if ((tspr->cstat & 48) != 16) tspriteptr[i]->ang = globalang; get_wallspr_points(tspr, &xx[0], &xx[1], &yy[0], &yy[1]); if ((tspr->cstat & 48) != 16) tspriteptr[i]->ang = oang; } for (jj=0; jjowner); renderDrawSprite(i); tspriteptr[i] = NULL; } } } } debugmask_add(maskwall[maskwallcnt], thewall[maskwall[maskwallcnt]]); renderDrawMaskedWall(maskwallcnt); } while (spritesortcnt) { --spritesortcnt; if (tspriteptr[spritesortcnt] != NULL) { debugmask_add(i | 32768, tspriteptr[i]->owner); renderDrawSprite(spritesortcnt); tspriteptr[spritesortcnt] = NULL; } } renderFinishScene(); GLInterface.SetDepthMask(true); GLInterface.SetDepthBias(0, 0); } //========================================================================== // // // //========================================================================== void FillPolygon(int* rx1, int* ry1, int* xb1, int32_t npoints, int picnum, int palette, int shade, int props, const FVector2& xtex, const FVector2& ytex, const FVector2& otex, int clipx1, int clipy1, int clipx2, int clipy2) { //Convert int32_t to float (in-place) TArray points(npoints, true); using Point = std::pair; std::vector> polygon; std::vector* curPoly; polygon.resize(1); curPoly = &polygon.back(); for (bssize_t i = 0; i < npoints; ++i) { auto X = ((float)rx1[i]) * (1.0f / 4096.f); auto Y = ((float)ry1[i]) * (1.0f / 4096.f); curPoly->push_back(std::make_pair(X, Y)); if (xb1[i] < i && i < npoints - 1) { polygon.resize(polygon.size() + 1); curPoly = &polygon.back(); } } // Now make sure that the outer boundary is the first polygon by picking a point that's as much to the outside as possible. int outer = 0; float minx = FLT_MAX; float miny = FLT_MAX; for (size_t a = 0; a < polygon.size(); a++) { for (auto& pt : polygon[a]) { if (pt.first < minx || (pt.first == minx && pt.second < miny)) { minx = pt.first; miny = pt.second; outer = a; } } } if (outer != 0) std::swap(polygon[0], polygon[outer]); auto indices = mapbox::earcut(polygon); int p = 0; for (size_t a = 0; a < polygon.size(); a++) { for (auto& pt : polygon[a]) { FVector4 point = { pt.first, pt.second, float(pt.first * xtex.X + pt.second * ytex.X + otex.X), float(pt.first * xtex.Y + pt.second * ytex.Y + otex.Y) }; points[p++] = point; } } int maskprops = (props >> 7) & DAMETH_MASKPROPS; FRenderStyle rs = LegacyRenderStyles[STYLE_Translucent]; double alpha = 1.; if (maskprops > DAMETH_MASK) { rs = GetRenderStyle(0, maskprops == DAMETH_TRANS2); alpha = GetAlphaFromBlend(maskprops, 0); } int translation = TRANSLATION(Translation_Remap + curbasepal, palette); int light = clamp(scale((numshades - shade), 255, numshades), 0, 255); PalEntry pe = PalEntry(uint8_t(alpha*255), light, light, light); twod->AddPoly(tileGetTexture(picnum), points.Data(), points.Size(), indices.data(), indices.size(), translation, pe, rs, clipx1, clipy1, clipx2, clipy2); } //========================================================================== // // // //========================================================================== #include "build.h" #include "../src/engine_priv.h" // // fillpolygon (internal) // static void renderFillPolygon(int32_t npoints) { // fix for bad next-point (xb1) values... for (int z = 0; z < npoints; z++) if ((unsigned)xb1[z] >= (unsigned)npoints) xb1[z] = 0; FVector2 xtex, ytex, otex; int x1 = mulscale16(globalx1, xyaspect); int y2 = mulscale16(globaly2, xyaspect); xtex.X = ((float)asm1) * (1.f / 4294967296.f); xtex.Y = ((float)asm2) * (1.f / 4294967296.f); ytex.X = ((float)x1) * (1.f / 4294967296.f); ytex.Y = ((float)y2) * (-1.f / 4294967296.f); otex.X = (fxdim * xtex.X + fydim * ytex.X) * -0.5f + fglobalposx * (1.f / 4294967296.f); otex.Y = (fxdim * xtex.Y + fydim * ytex.Y) * -0.5f - fglobalposy * (1.f / 4294967296.f); FillPolygon(rx1, ry1, xb1, npoints, globalpicnum, globalpal, globalshade, globalorientation, xtex, ytex, otex, windowxy1.x, windowxy1.y, windowxy2.x, windowxy2.y); } // // drawmapview // void renderDrawMapView(int32_t dax, int32_t day, int32_t zoome, int16_t ang) { int32_t i, j, k, l; int32_t x, y; int32_t s, ox, oy; int32_t const oyxaspect = yxaspect, oviewingrange = viewingrange; renderSetAspect(65536, divscale16((320*5)/8, 200)); memset(gotsector, 0, sizeof(gotsector)); vec2_t const c1 = { (windowxy1.x<<12), (windowxy1.y<<12) }; vec2_t const c2 = { ((windowxy2.x+1)<<12)-1, ((windowxy2.y+1)<<12)-1 }; zoome <<= 8; vec2_t const bakgvect = { divscale28(-bcos(ang), zoome), divscale28(-bsin(ang), zoome) }; vec2_t const vect = { mulscale8(-bsin(ang), zoome), mulscale8(-bcos(ang), zoome) }; vec2_t const vect2 = { mulscale16(vect.x, yxaspect), mulscale16(vect.y, yxaspect) }; int32_t sortnum = 0; usectorptr_t sec; for (s=0,sec=(usectorptr_t)§or[s]; swallptr; j = startwall; l = 0; uwallptr_t wal; int32_t w; for (w=sec->wallnum,wal=(uwallptr_t)&wall[startwall]; w>0; w--,wal++,j++) { k = lastwall(j); if ((k > j) && (npoints > 0)) { xb1[npoints-1] = l; l = npoints; } //overwrite point2 //wall[k].x wal->x wall[wal->point2].x //wall[k].y wal->y wall[wal->point2].y if (!dmulscale1(wal->x-wall[k].x,wall[wal->point2].y-wal->y,-(wal->y-wall[k].y),wall[wal->point2].x-wal->x)) continue; ox = wal->x - dax; oy = wal->y - day; x = dmulscale16(ox,vect.x,-oy,vect.y) + (xdim<<11); y = dmulscale16(oy,vect2.x,ox,vect2.y) + (ydim<<11); i |= getclipmask(x-c1.x,c2.x-x,y-c1.y,c2.y-y); rx1[npoints] = x; ry1[npoints] = y; xb1[npoints] = npoints+1; npoints++; } if (npoints > 0) xb1[npoints-1] = l; //overwrite point2 vec2_t bak = { rx1[0], mulscale16(ry1[0]-(ydim<<11),xyaspect)+(ydim<<11) }; //Collect floor sprites to draw SectIterator it(s); while ((i = it.NextIndex()) >= 0) { if (sprite[i].cstat & 32768) continue; if ((sprite[i].cstat & 48) == 32) { if ((sprite[i].cstat & (64 + 8)) == (64 + 8)) continue; tsprite[sortnum++].owner = i; } } gotsector[s>>3] |= pow2char[s&7]; globalorientation = (int32_t)sec->floorstat; if ((globalorientation&1) != 0) continue; globalfloorpal = globalpal = sec->floorpal; globalpicnum = sec->floorpicnum; if ((unsigned)globalpicnum >= (unsigned)MAXTILES) globalpicnum = 0; tileUpdatePicnum(&globalpicnum, s); setgotpic(globalpicnum); if ((tileWidth(globalpicnum) <= 0) || (tileHeight(globalpicnum) <= 0)) continue; globalshade = max(min(sec->floorshade, numshades - 1), 0); if ((globalorientation&64) == 0) { set_globalpos(dax, day, globalposz); globalx1 = bakgvect.x; globaly1 = bakgvect.y; globalx2 = bakgvect.x; globaly2 = bakgvect.y; } else { ox = wall[wall[startwall].point2].x - wall[startwall].x; oy = wall[wall[startwall].point2].y - wall[startwall].y; i = nsqrtasm(uhypsq(ox,oy)); if (i == 0) continue; i = 1048576/i; globalx1 = mulscale10(dmulscale10(ox,bakgvect.x,oy,bakgvect.y),i); globaly1 = mulscale10(dmulscale10(ox,bakgvect.y,-oy,bakgvect.x),i); ox = (bak.x>>4)-(xdim<<7); oy = (bak.y>>4)-(ydim<<7); globalposx = dmulscale28(-oy, globalx1, -ox, globaly1); globalposy = dmulscale28(-ox, globalx1, oy, globaly1); globalx2 = -globalx1; globaly2 = -globaly1; int32_t const daslope = sector[s].floorheinum; i = nsqrtasm(daslope*daslope+16777216); set_globalpos(globalposx, mulscale12(globalposy,i), globalposz); globalx2 = mulscale12(globalx2,i); globaly2 = mulscale12(globaly2,i); } calc_globalshifts(); if ((globalorientation&0x4) > 0) { i = globalposx; globalposx = -globalposy; globalposy = -i; i = globalx2; globalx2 = globaly1; globaly1 = i; i = globalx1; globalx1 = -globaly2; globaly2 = -i; } if ((globalorientation&0x10) > 0) globalx1 = -globalx1, globaly1 = -globaly1, globalposx = -globalposx; if ((globalorientation&0x20) > 0) globalx2 = -globalx2, globaly2 = -globaly2, globalposy = -globalposy; asm1 = (globaly1<floorxpanning)<<24), ((int64_t) globalposy<<(20+globalyshift))-(((uint32_t) sec->floorypanning)<<24), globalposz); renderFillPolygon(npoints); } //Sort sprite list int32_t gap = 1; while (gap < sortnum) gap = (gap << 1) + 1; for (gap>>=1; gap>0; gap>>=1) for (i=0; i=0; j-=gap) { if (sprite[tsprite[j].owner].z <= sprite[tsprite[j+gap].owner].z) break; std::swap(tsprite[j].owner, tsprite[j+gap].owner); } for (s=sortnum-1; s>=0; s--) { auto const spr = (uspritetype * )&sprite[tsprite[s].owner]; if ((spr->cstat&48) == 32) { const int32_t xspan = tilesiz[spr->picnum].x; int32_t npoints = 0; vec2_t v1 = { spr->x, spr->y }, v2, v3, v4; get_floorspr_points(spr, 0, 0, &v1.x, &v2.x, &v3.x, &v4.x, &v1.y, &v2.y, &v3.y, &v4.y); xb1[0] = 1; xb1[1] = 2; xb1[2] = 3; xb1[3] = 0; npoints = 4; i = 0; ox = v1.x - dax; oy = v1.y - day; x = dmulscale16(ox,vect.x,-oy,vect.y) + (xdim<<11); y = dmulscale16(oy,vect2.x,ox,vect2.y) + (ydim<<11); i |= getclipmask(x-c1.x,c2.x-x,y-c1.y,c2.y-y); rx1[0] = x; ry1[0] = y; ox = v2.x - dax; oy = v2.y - day; x = dmulscale16(ox,vect.x,-oy,vect.y) + (xdim<<11); y = dmulscale16(oy,vect2.x,ox,vect2.y) + (ydim<<11); i |= getclipmask(x-c1.x,c2.x-x,y-c1.y,c2.y-y); rx1[1] = x; ry1[1] = y; ox = v3.x - dax; oy = v3.y - day; x = dmulscale16(ox,vect.x,-oy,vect.y) + (xdim<<11); y = dmulscale16(oy,vect2.x,ox,vect2.y) + (ydim<<11); i |= getclipmask(x-c1.x,c2.x-x,y-c1.y,c2.y-y); rx1[2] = x; ry1[2] = y; x = rx1[0]+rx1[2]-rx1[1]; y = ry1[0]+ry1[2]-ry1[1]; i |= getclipmask(x-c1.x,c2.x-x,y-c1.y,c2.y-y); rx1[3] = x; ry1[3] = y; vec2_t bak = { rx1[0], mulscale16(ry1[0] - (ydim << 11), xyaspect) + (ydim << 11) }; globalpicnum = spr->picnum; globalpal = spr->pal; // GL needs this, software doesn't if ((unsigned)globalpicnum >= (unsigned)MAXTILES) globalpicnum = 0; tileUpdatePicnum(&globalpicnum, s); setgotpic(globalpicnum); if ((tileWidth(globalpicnum) <= 0) || (tileHeight(globalpicnum) <= 0)) continue; if ((sector[spr->sectnum].ceilingstat&1) > 0) globalshade = ((int32_t)sector[spr->sectnum].ceilingshade); else globalshade = ((int32_t)sector[spr->sectnum].floorshade); globalshade = max(min(globalshade+spr->shade+6,numshades-1),0); //relative alignment stuff ox = v2.x-v1.x; oy = v2.y-v1.y; i = ox*ox+oy*oy; if (i == 0) continue; i = 65536*16384 / i; globalx1 = mulscale10(dmulscale10(ox,bakgvect.x,oy,bakgvect.y),i); globaly1 = mulscale10(dmulscale10(ox,bakgvect.y,-oy,bakgvect.x),i); ox = v1.y-v4.y; oy = v4.x-v1.x; i = ox*ox+oy*oy; if (i == 0) continue; i = 65536 * 16384 / i; globalx2 = mulscale10(dmulscale10(ox,bakgvect.x,oy,bakgvect.y),i); globaly2 = mulscale10(dmulscale10(ox,bakgvect.y,-oy,bakgvect.x),i); ox = widthBits(globalpicnum); oy = heightBits(globalpicnum); if ((1 << ox) != xspan) { ox++; globalx1 = mulscale(globalx1,xspan,ox); globaly1 = mulscale(globaly1,xspan,ox); } bak.x = (bak.x>>4)-(xdim<<7); bak.y = (bak.y>>4)-(ydim<<7); globalposx = dmulscale28(-bak.y,globalx1,-bak.x,globaly1); globalposy = dmulscale28(bak.x,globalx2,-bak.y,globaly2); if ((spr->cstat&0x4) > 0) globalx1 = -globalx1, globaly1 = -globaly1, globalposx = -globalposx; asm1 = (globaly1<<2); globalx1 <<= 2; globalposx <<= (20+2); asm2 = (globalx2<<2); globaly2 <<= 2; globalposy <<= (20+2); set_globalpos(globalposx, globalposy, globalposz); // so polymost can get the translucency. ignored in software mode: globalorientation = ((spr->cstat&2)<<7) | ((spr->cstat&512)>>2); renderFillPolygon(npoints); } } } // // setgamemode // // JBF: davidoption now functions as a windowed-mode flag (0 == windowed, 1 == fullscreen) int32_t videoSetGameMode(char davidoption, int32_t daupscaledxdim, int32_t daupscaledydim, int32_t dabpp, int32_t daupscalefactor) { int32_t j; if (dabpp != 32) return -1; // block software mode. daupscaledxdim = max(320, daupscaledxdim); daupscaledydim = max(200, daupscaledydim); strcpy(kensmessage,"!!!! BUILD engine&tools programmed by Ken Silverman of E.G. RI." " (c) Copyright 1995 Ken Silverman. Summary: BUILD = Ken. !!!!"); rendmode = REND_POLYMOST; upscalefactor = 1; xdim = daupscaledxdim; ydim = daupscaledydim; V_UpdateModeSize(xdim, ydim); numpages = 1; // We have only one page, no exceptions. #ifdef USE_OPENGL fxdim = (float) xdim; fydim = (float) ydim; #endif j = ydim*4; //Leave room for horizlookup&horizlookup2 videoSetViewableArea(0L,0L,xdim-1,ydim-1); videoClearScreen(0L); if (searchx < 0) { searchx = halfxdimen; searchy = (ydimen>>1); } return 0; } // // qloadkvx // int32_t qloadkvx(int32_t voxindex, const char *filename) { if ((unsigned)voxindex >= MAXVOXELS) return -1; auto fil = fileSystem.OpenFileReader(filename); if (!fil.isOpen()) return -1; int32_t lengcnt = 0; const int32_t lengtot = fil.GetLength(); for (bssize_t i=0; i= lengtot-768) break; } #ifdef USE_OPENGL if (voxmodels[voxindex]) { voxfree(voxmodels[voxindex]); voxmodels[voxindex] = NULL; } Xfree(voxfilenames[voxindex]); voxfilenames[voxindex] = Xstrdup(filename); #endif g_haveVoxels = 1; return 0; } void vox_undefine(int32_t const tile) { ssize_t voxindex = tiletovox[tile]; if (voxindex < 0) return; #ifdef USE_OPENGL if (voxmodels[voxindex]) { voxfree(voxmodels[voxindex]); voxmodels[voxindex] = NULL; } DO_FREE_AND_NULL(voxfilenames[voxindex]); #endif voxscale[voxindex] = 65536; voxrotate[voxindex>>3] &= ~pow2char[voxindex&7]; tiletovox[tile] = -1; // TODO: nextvoxid } void vox_deinit() { for (auto &vox : voxmodels) { voxfree(vox); vox = nullptr; } } // // inside // // See http://fabiensanglard.net/duke3d/build_engine_internals.php, // "Inside details" for the idea behind the algorithm. int32_t inside_ps(int32_t x, int32_t y, int16_t sectnum) { if (sectnum >= 0 && sectnum < numsectors) { int32_t cnt = 0; auto wal = (uwallptr_t)&wall[sector[sectnum].wallptr]; int wallsleft = sector[sectnum].wallnum; do { vec2_t v1 = { wal->x - x, wal->y - y }; auto const &wal2 = *(uwallptr_t)&wall[wal->point2]; vec2_t v2 = { wal2.x - x, wal2.y - y }; if ((v1.y^v2.y) < 0) cnt ^= (((v1.x^v2.x) < 0) ? (v1.x*v2.y= 0)); wal++; } while (--wallsleft); return cnt; } return -1; } int32_t inside_old(int32_t x, int32_t y, int16_t sectnum) { if (sectnum >= 0 && sectnum < numsectors) { uint32_t cnt = 0; auto wal = (uwallptr_t)&wall[sector[sectnum].wallptr]; int wallsleft = sector[sectnum].wallnum; do { // Get the x and y components of the [tested point]-->[wall // point{1,2}] vectors. vec2_t v1 = { wal->x - x, wal->y - y }; auto const &wal2 = *(uwallptr_t)&wall[wal->point2]; vec2_t v2 = { wal2.x - x, wal2.y - y }; // If their signs differ[*], ... // // [*] where '-' corresponds to <0 and '+' corresponds to >=0. // Equivalently, the branch is taken iff // y1 != y2 AND y_m <= y < y_M, // where y_m := min(y1, y2) and y_M := max(y1, y2). if ((v1.y^v2.y) < 0) cnt ^= (((v1.x^v2.x) >= 0) ? v1.x : (v1.x*v2.y-v2.x*v1.y)^v2.y); wal++; } while (--wallsleft); return cnt>>31; } return -1; } int32_t inside(int32_t x, int32_t y, int16_t sectnum) { switch (enginecompatibility_mode) { case ENGINECOMPATIBILITY_NONE: break; case ENGINECOMPATIBILITY_19950829: return inside_ps(x, y, sectnum); default: return inside_old(x, y, sectnum); } if ((unsigned)sectnum < (unsigned)numsectors) { uint32_t cnt1 = 0, cnt2 = 0; auto wal = (uwallptr_t)&wall[sector[sectnum].wallptr]; int wallsleft = sector[sectnum].wallnum; do { // Get the x and y components of the [tested point]-->[wall // point{1,2}] vectors. vec2_t v1 = { wal->x - x, wal->y - y }; auto const &wal2 = *(uwallptr_t)&wall[wal->point2]; vec2_t v2 = { wal2.x - x, wal2.y - y }; // First, test if the point is EXACTLY_ON_WALL_POINT. if ((v1.x|v1.y) == 0 || (v2.x|v2.y)==0) return 1; // If their signs differ[*], ... // // [*] where '-' corresponds to <0 and '+' corresponds to >=0. // Equivalently, the branch is taken iff // y1 != y2 AND y_m <= y < y_M, // where y_m := min(y1, y2) and y_M := max(y1, y2). if ((v1.y^v2.y) < 0) cnt1 ^= (((v1.x^v2.x) >= 0) ? v1.x : (v1.x*v2.y-v2.x*v1.y)^v2.y); v1.y--; v2.y--; // Now, do the same comparisons, but with the interval half-open on // the other side! That is, take the branch iff // y1 != y2 AND y_m < y <= y_M, // For a rectangular sector, without EXACTLY_ON_WALL_POINT, this // would still leave the lower left and upper right points // "outside" the sector. if ((v1.y^v2.y) < 0) { v1.x--; v2.x--; cnt2 ^= (((v1.x^v2.x) >= 0) ? v1.x : (v1.x*v2.y-v2.x*v1.y)^v2.y); } wal++; } while (--wallsleft); return (cnt1|cnt2)>>31; } return -1; } int32_t getangle(int32_t xvect, int32_t yvect) { int32_t rv; if ((xvect | yvect) == 0) rv = 0; else if (xvect == 0) rv = 512 + ((yvect < 0) << 10); else if (yvect == 0) rv = ((xvect < 0) << 10); else if (xvect == yvect) rv = 256 + ((xvect < 0) << 10); else if (xvect == -yvect) rv = 768 + ((xvect > 0) << 10); else if (klabs(xvect) > klabs(yvect)) rv = ((radarang[640 + scale(160, yvect, xvect)] >> 6) + ((xvect < 0) << 10)) & 2047; else rv = ((radarang[640 - scale(160, xvect, yvect)] >> 6) + 512 + ((yvect < 0) << 10)) & 2047; return rv; } fixed_t gethiq16angle(int32_t xvect, int32_t yvect) { fixed_t rv; if ((xvect | yvect) == 0) rv = 0; else if (xvect == 0) rv = IntToFixed(512 + ((yvect < 0) << 10)); else if (yvect == 0) rv = IntToFixed(((xvect < 0) << 10)); else if (xvect == yvect) rv = IntToFixed(256 + ((xvect < 0) << 10)); else if (xvect == -yvect) rv = IntToFixed(768 + ((xvect > 0) << 10)); else if (klabs(xvect) > klabs(yvect)) rv = ((qradarang[5120 + scale(1280, yvect, xvect)] >> 6) + IntToFixed(((xvect < 0) << 10))) & 0x7FFFFFF; else rv = ((qradarang[5120 - scale(1280, xvect, yvect)] >> 6) + IntToFixed(512 + ((yvect < 0) << 10))) & 0x7FFFFFF; return rv; } // // ksqrt // int32_t ksqrt(uint32_t num) { if (enginecompatibility_mode == ENGINECOMPATIBILITY_19950829) return ksqrtasm_old(num); return nsqrtasm(num); } // Gets the BUILD unit height and z offset of a sprite. // Returns the z offset, 'height' may be NULL. int32_t spriteheightofsptr(uspriteptr_t spr, int32_t *height, int32_t alsotileyofs) { int32_t hei, zofs=0; const int32_t picnum=spr->picnum, yrepeat=spr->yrepeat; hei = (tileHeight(picnum)*yrepeat)<<2; if (height != NULL) *height = hei; if (spr->cstat&128) zofs = hei>>1; // NOTE: a positive per-tile yoffset translates the sprite into the // negative world z direction (i.e. upward). if (alsotileyofs) zofs -= tileTopOffset(picnum) *yrepeat<<2; return zofs; } // // setsprite // int32_t setsprite(int16_t spritenum, const vec3_t *newpos) { int16_t tempsectnum = sprite[spritenum].sectnum; if ((void const *) newpos != (void *) &sprite[spritenum]) sprite[spritenum].pos = *newpos; updatesector(newpos->x,newpos->y,&tempsectnum); if (tempsectnum < 0) return -1; if (tempsectnum != sprite[spritenum].sectnum) changespritesect(spritenum,tempsectnum); return 0; } int32_t setspritez(int16_t spritenum, const vec3_t *newpos) { int16_t tempsectnum = sprite[spritenum].sectnum; if ((void const *)newpos != (void *)&sprite[spritenum]) sprite[spritenum].pos = *newpos; updatesectorz(newpos->x,newpos->y,newpos->z,&tempsectnum); if (tempsectnum < 0) return -1; if (tempsectnum != sprite[spritenum].sectnum) changespritesect(spritenum,tempsectnum); return 0; } // // nextsectorneighborz // // -1: ceiling or up // 1: floor or down int32_t nextsectorneighborz(int16_t sectnum, int32_t refz, int16_t topbottom, int16_t direction) { int32_t nextz = (direction==1) ? INT32_MAX : INT32_MIN; int32_t sectortouse = -1; auto wal = (uwallptr_t)&wall[sector[sectnum].wallptr]; int32_t i = sector[sectnum].wallnum; do { const int32_t ns = wal->nextsector; if (ns >= 0) { const int32_t testz = (topbottom == 1) ? sector[ns].floorz : sector[ns].ceilingz; const int32_t update = (direction == 1) ? (nextz > testz && testz > refz) : (nextz < testz && testz < refz); if (update) { nextz = testz; sectortouse = ns; } } wal++; i--; } while (i != 0); return sectortouse; } // // cansee // int32_t cansee_old(int32_t xs, int32_t ys, int32_t zs, int16_t sectnums, int32_t xe, int32_t ye, int32_t ze, int16_t sectnume) { sectortype *sec, *nsec; walltype *wal, *wal2; int32_t intx, inty, intz, i, cnt, nextsector, dasectnum, dacnt, danum; if ((xs == xe) && (ys == ye) && (sectnums == sectnume)) return 1; clipsectorlist[0] = sectnums; danum = 1; for(dacnt=0;dacntwallnum,wal=&wall[sec->wallptr];cnt>0;cnt--,wal++) { wal2 = &wall[wal->point2]; if (lintersect(xs,ys,zs,xe,ye,ze,wal->x,wal->y,wal2->x,wal2->y,&intx,&inty,&intz) != 0) { nextsector = wal->nextsector; if (nextsector < 0) return 0; if (intz <= sec->ceilingz) return 0; if (intz >= sec->floorz) return 0; nsec = §or[nextsector]; if (intz <= nsec->ceilingz) return 0; if (intz >= nsec->floorz) return 0; for(i=danum-1;i>=0;i--) if (clipsectorlist[i] == nextsector) break; if (i < 0) clipsectorlist[danum++] = nextsector; } } if (clipsectorlist[dacnt] == sectnume) return 1; } return 0; } int32_t cansee(int32_t x1, int32_t y1, int32_t z1, int16_t sect1, int32_t x2, int32_t y2, int32_t z2, int16_t sect2) { if (enginecompatibility_mode == ENGINECOMPATIBILITY_19950829) return cansee_old(x1, y1, z1, sect1, x2, y2, z2, sect2); int32_t dacnt, danum; const int32_t x21 = x2-x1, y21 = y2-y1, z21 = z2-z1; static uint8_t sectbitmap[(MAXSECTORS+7)>>3]; memset(sectbitmap, 0, sizeof(sectbitmap)); if (x1 == x2 && y1 == y2) return (sect1 == sect2); sectbitmap[sect1>>3] |= pow2char[sect1&7]; clipsectorlist[0] = sect1; danum = 1; for (dacnt=0; dacntwallnum,wal=(uwallptr_t)&wall[sec->wallptr]; cnt>0; cnt--,wal++) { auto const wal2 = (uwallptr_t)&wall[wal->point2]; const int32_t x31 = wal->x-x1, x34 = wal->x-wal2->x; const int32_t y31 = wal->y-y1, y34 = wal->y-wal2->y; int32_t x, y, z, nexts, t, bot; int32_t cfz[2]; bot = y21*x34-x21*y34; if (bot <= 0) continue; // XXX: OVERFLOW t = y21*x31-x21*y31; if ((unsigned)t >= (unsigned)bot) continue; t = y31*x34-x31*y34; if ((unsigned)t >= (unsigned)bot) { continue; } nexts = wal->nextsector; if (nexts < 0 || wal->cstat&32) return 0; t = divscale24(t,bot); x = x1 + mulscale24(x21,t); y = y1 + mulscale24(y21,t); z = z1 + mulscale24(z21,t); getzsofslope(dasectnum, x,y, &cfz[0],&cfz[1]); if (z <= cfz[0] || z >= cfz[1]) { return 0; } getzsofslope(nexts, x,y, &cfz[0],&cfz[1]); if (z <= cfz[0] || z >= cfz[1]) return 0; if (!(sectbitmap[nexts>>3] & pow2char[nexts&7])) { sectbitmap[nexts>>3] |= pow2char[nexts&7]; clipsectorlist[danum++] = nexts; } } } if (sectbitmap[sect2>>3] & pow2char[sect2&7]) return 1; return 0; } // // neartag // void neartag(int32_t xs, int32_t ys, int32_t zs, int16_t sectnum, int16_t ange, int16_t *neartagsector, int16_t *neartagwall, int16_t *neartagsprite, int32_t *neartaghitdist, /* out */ int32_t neartagrange, uint8_t tagsearch, int32_t (*blacklist_sprite_func)(int32_t)) { int16_t tempshortcnt, tempshortnum; const int32_t vx = mulscale14(bcos(ange), neartagrange); const int32_t vy = mulscale14(bsin(ange), neartagrange); vec3_t hitv = { xs+vx, ys+vy, 0 }; const vec3_t sv = { xs, ys, zs }; *neartagsector = -1; *neartagwall = -1; *neartagsprite = -1; *neartaghitdist = 0; if (sectnum < 0 || (tagsearch & 3) == 0) return; clipsectorlist[0] = sectnum; tempshortcnt = 0; tempshortnum = 1; do { const int32_t dasector = clipsectorlist[tempshortcnt]; const int32_t startwall = sector[dasector].wallptr; const int32_t endwall = startwall + sector[dasector].wallnum - 1; uwallptr_t wal; int32_t z; for (z=startwall,wal=(uwallptr_t)&wall[startwall]; z<=endwall; z++,wal++) { auto const wal2 = (uwallptr_t)&wall[wal->point2]; const int32_t nextsector = wal->nextsector; const int32_t x1=wal->x, y1=wal->y, x2=wal2->x, y2=wal2->y; int32_t intx, inty, intz, good = 0; if (nextsector >= 0) { if ((tagsearch&1) && sector[nextsector].lotag) good |= 1; if ((tagsearch&2) && sector[nextsector].hitag) good |= 1; } if ((tagsearch&1) && wal->lotag) good |= 2; if ((tagsearch&2) && wal->hitag) good |= 2; if ((good == 0) && (nextsector < 0)) continue; if ((coord_t)(x1-xs)*(y2-ys) < (coord_t)(x2-xs)*(y1-ys)) continue; if (lintersect(xs,ys,zs,hitv.x,hitv.y,hitv.z,x1,y1,x2,y2,&intx,&inty,&intz) == 1) { if (good != 0) { if (good&1) *neartagsector = nextsector; if (good&2) *neartagwall = z; *neartaghitdist = dmulscale14(intx-xs, bcos(ange), inty-ys, bsin(ange)); hitv.x = intx; hitv.y = inty; hitv.z = intz; } if (nextsector >= 0) { int32_t zz; for (zz=tempshortnum-1; zz>=0; zz--) if (clipsectorlist[zz] == nextsector) break; if (zz < 0) clipsectorlist[tempshortnum++] = nextsector; } } } tempshortcnt++; if (tagsearch & 4) continue; // skip sprite search SectIterator it(dasector); while ((z = it.NextIndex()) >= 0) { auto const spr = (uspriteptr_t)&sprite[z]; if (blacklist_sprite_func && blacklist_sprite_func(z)) continue; if (((tagsearch&1) && spr->lotag) || ((tagsearch&2) && spr->hitag)) { if (try_facespr_intersect(spr, sv, vx, vy, 0, &hitv, 1)) { *neartagsprite = z; *neartaghitdist = dmulscale14(hitv.x-xs, bcos(ange), hitv.y-ys, bsin(ange)); } } } } while (tempshortcnt < tempshortnum); } // // dragpoint // // flags: // 1: don't reset walbitmap[] (the bitmap of already dragged vertices) // 2: In the editor, do wall[].cstat |= (1<<14) also for the lastwall(). void dragpoint(int16_t pointhighlight, int32_t dax, int32_t day, uint8_t flags) { int32_t i, numyaxwalls=0; static int16_t yaxwalls[MAXWALLS]; uint8_t *const walbitmap = (uint8_t *)tempbuf; if ((flags&1)==0) memset(walbitmap, 0, (numwalls+7)>>3); yaxwalls[numyaxwalls++] = pointhighlight; for (i=0; i>3] |= pow2char[w&7]; if (!clockwise) //search points CCW { if (wall[w].nextwall >= 0) w = wall[wall[w].nextwall].point2; else { w = tmpstartwall; clockwise = 1; } } cnt--; if (cnt==0) { Printf("dragpoint %d: infloop!\n", pointhighlight); i = numyaxwalls; break; } if (clockwise) { int32_t thelastwall = lastwall(w); if (wall[thelastwall].nextwall >= 0) w = wall[thelastwall].nextwall; else break; } if ((walbitmap[w>>3] & pow2char[w&7])) { if (clockwise) break; w = tmpstartwall; clockwise = 1; continue; } } } } // // lastwall // int32_t lastwall(int16_t point) { if (point > 0 && wall[point-1].point2 == point) return point-1; int i = point, cnt = numwalls; do { int const j = wall[i].point2; if (j == point) { point = i; break; } i = j; } while (--cnt); return point; } ////////// UPDATESECTOR* FAMILY OF FUNCTIONS ////////// /* Different "is inside" predicates. * NOTE: The redundant bound checks are expected to be optimized away in the * inlined code. */ static inline int inside_exclude_p(int32_t const x, int32_t const y, int const sectnum, const uint8_t *excludesectbitmap) { return (sectnum>=0 && !bitmap_test(excludesectbitmap, sectnum) && inside_p(x, y, sectnum)); } /* NOTE: no bound check */ static inline int inside_z_p(int32_t const x, int32_t const y, int32_t const z, int const sectnum) { int32_t cz, fz; getzsofslope(sectnum, x, y, &cz, &fz); return (z >= cz && z <= fz && inside_p(x, y, sectnum)); } int32_t getwalldist(vec2_t const in, int const wallnum) { vec2_t closest; getclosestpointonwall_internal(in, wallnum, &closest); return klabs(closest.x - in.x) + klabs(closest.y - in.y); } int32_t getwalldist(vec2_t const in, int const wallnum, vec2_t * const out) { getclosestpointonwall_internal(in, wallnum, out); return klabs(out->x - in.x) + klabs(out->y - in.y); } int32_t getsectordist(vec2_t const in, int const sectnum, vec2_t * const out /*= nullptr*/) { if (inside_p(in.x, in.y, sectnum)) { if (out) *out = in; return 0; } int32_t distance = INT32_MAX; auto const sec = (usectorptr_t)§or[sectnum]; int const startwall = sec->wallptr; int const endwall = sec->wallptr + sec->wallnum; auto uwal = (uwallptr_t)&wall[startwall]; vec2_t closest = {}; for (int j = startwall; j < endwall; j++, uwal++) { vec2_t p; int32_t const walldist = getwalldist(in, j, &p); if (walldist < distance) { distance = walldist; closest = p; } } if (out) *out = closest; return distance; } int findwallbetweensectors(int sect1, int sect2) { if (sector[sect1].wallnum > sector[sect2].wallnum) std::swap(sect1, sect2); auto const sec = (usectorptr_t)§or[sect1]; int const last = sec->wallptr + sec->wallnum; for (int i = sec->wallptr; i < last; i++) if (wall[i].nextsector == sect2) return i; return -1; } // // updatesector[z] // void updatesector(int32_t const x, int32_t const y, int16_t * const sectnum) { #if 0 if (enginecompatibility_mode != ENGINECOMPATIBILITY_NONE) { if (inside_p(x, y, *sectnum)) return; if ((unsigned)*sectnum < (unsigned)numsectors) { const uwalltype *wal = (uwalltype *)&wall[sector[*sectnum].wallptr]; int wallsleft = sector[*sectnum].wallnum; do { int const next = wal->nextsector; if (inside_p(x, y, next)) SET_AND_RETURN(*sectnum, next); wal++; } while (--wallsleft); } } else #endif { int16_t sect = *sectnum; updatesectorneighbor(x, y, §, INITIALUPDATESECTORDIST, MAXUPDATESECTORDIST); if (sect != -1) SET_AND_RETURN(*sectnum, sect); } // we need to support passing in a sectnum of -1, unfortunately for (int i = numsectors - 1; i >= 0; --i) if (inside_p(x, y, i)) SET_AND_RETURN(*sectnum, i); *sectnum = -1; } void updatesectorexclude(int32_t const x, int32_t const y, int16_t * const sectnum, const uint8_t * const excludesectbitmap) { if (inside_exclude_p(x, y, *sectnum, excludesectbitmap)) return; if (*sectnum >= 0 && *sectnum < numsectors) { auto wal = (uwallptr_t)&wall[sector[*sectnum].wallptr]; int wallsleft = sector[*sectnum].wallnum; do { int const next = wal->nextsector; if (inside_exclude_p(x, y, next, excludesectbitmap)) SET_AND_RETURN(*sectnum, next); wal++; } while (--wallsleft); } for (bssize_t i=numsectors-1; i>=0; --i) if (inside_exclude_p(x, y, i, excludesectbitmap)) SET_AND_RETURN(*sectnum, i); *sectnum = -1; } // new: if *sectnum >= MAXSECTORS, *sectnum-=MAXSECTORS is considered instead // as starting sector and the 'initial' z check is skipped // (not initial anymore because it follows the sector updating due to TROR) // NOTE: This comes from Duke, therefore it's GPL! void updatesectorz(int32_t const x, int32_t const y, int32_t const z, int16_t * const sectnum) { if (enginecompatibility_mode != ENGINECOMPATIBILITY_NONE) { if ((uint32_t)(*sectnum) < 2*MAXSECTORS) { int32_t nofirstzcheck = 0; if (*sectnum >= MAXSECTORS) { *sectnum -= MAXSECTORS; nofirstzcheck = 1; } // this block used to be outside the "if" and caused crashes in Polymost Mapster32 int32_t cz, fz; getzsofslope(*sectnum, x, y, &cz, &fz); if (nofirstzcheck || (z >= cz && z <= fz)) if (inside_p(x, y, *sectnum)) return; uwalltype const * wal = (uwalltype *)&wall[sector[*sectnum].wallptr]; int wallsleft = sector[*sectnum].wallnum; do { // YAX: TODO: check neighboring sectors here too? int const next = wal->nextsector; if (next>=0 && inside_z_p(x,y,z, next)) SET_AND_RETURN(*sectnum, next); wal++; } while (--wallsleft); } } else { int16_t sect = *sectnum; updatesectorneighborz(x, y, z, §, INITIALUPDATESECTORDIST, MAXUPDATESECTORDIST); if (sect != -1) SET_AND_RETURN(*sectnum, sect); } // we need to support passing in a sectnum of -1, unfortunately for (int i = numsectors - 1; i >= 0; --i) if (inside_z_p(x, y, z, i)) SET_AND_RETURN(*sectnum, i); *sectnum = -1; } void updatesectorneighbor(int32_t const x, int32_t const y, int16_t * const sectnum, int32_t initialMaxDistance /*= INITIALUPDATESECTORDIST*/, int32_t maxDistance /*= MAXUPDATESECTORDIST*/) { int const initialsectnum = *sectnum; if ((unsigned)initialsectnum < (unsigned)numsectors && getsectordist({x, y}, initialsectnum) <= initialMaxDistance) { if (inside_p(x, y, initialsectnum)) return; static int16_t sectlist[MAXSECTORS]; static uint8_t sectbitmap[(MAXSECTORS+7)>>3]; int16_t nsecs; bfirst_search_init(sectlist, sectbitmap, &nsecs, MAXSECTORS, initialsectnum); for (int sectcnt=0; sectcntwallptr; int const endwall = sec->wallptr + sec->wallnum; auto uwal = (uwallptr_t)&wall[startwall]; for (int j=startwall; jnextsector >= 0 && getsectordist({x, y}, uwal->nextsector) <= maxDistance) bfirst_search_try(sectlist, sectbitmap, &nsecs, uwal->nextsector); } } *sectnum = -1; } void updatesectorneighborz(int32_t const x, int32_t const y, int32_t const z, int16_t * const sectnum, int32_t initialMaxDistance /*= 0*/, int32_t maxDistance /*= 0*/) { bool nofirstzcheck = false; if (*sectnum >= MAXSECTORS && *sectnum - MAXSECTORS < numsectors) { *sectnum -= MAXSECTORS; nofirstzcheck = true; } uint32_t const correctedsectnum = (unsigned)*sectnum; if (correctedsectnum < (unsigned)numsectors && getsectordist({x, y}, correctedsectnum) <= initialMaxDistance) { int32_t cz, fz; getzsofslope(correctedsectnum, x, y, &cz, &fz); if ((nofirstzcheck || (z >= cz && z <= fz)) && inside_p(x, y, *sectnum)) return; static int16_t sectlist[MAXSECTORS]; static uint8_t sectbitmap[(MAXSECTORS+7)>>3]; int16_t nsecs; bfirst_search_init(sectlist, sectbitmap, &nsecs, MAXSECTORS, correctedsectnum); for (int sectcnt=0; sectcntwallptr; int const endwall = sec->wallptr + sec->wallnum; auto uwal = (uwallptr_t)&wall[startwall]; for (int j=startwall; jnextsector >= 0 && getsectordist({x, y}, uwal->nextsector) <= maxDistance) bfirst_search_try(sectlist, sectbitmap, &nsecs, uwal->nextsector); } } *sectnum = -1; } // // rotatepoint // void rotatepoint(vec2_t const pivot, vec2_t p, int16_t const daang, vec2_t * const p2) { int const dacos = bcos(daang); int const dasin = bsin(daang); p.x -= pivot.x; p.y -= pivot.y; p2->x = dmulscale14(p.x, dacos, -p.y, dasin) + pivot.x; p2->y = dmulscale14(p.y, dacos, p.x, dasin) + pivot.y; } void videoSetCorrectedAspect() { // In DOS the game world is displayed with an aspect of 1.28 instead 1.333, // meaning we have to stretch it by a factor of 1.25 instead of 1.2 // to get perfect squares int32_t yx = (65536 * 5) / 4; int32_t vr, y, x; x = xdim; y = ydim; vr = divscale16(x*3, y*4); renderSetAspect(vr, yx); } // // setview // void videoSetViewableArea(int32_t x1, int32_t y1, int32_t x2, int32_t y2) { windowxy1.x = x1; windowxy1.y = y1; windowxy2.x = x2; windowxy2.y = y2; xdimen = (x2-x1)+1; halfxdimen = (xdimen>>1); xdimenrecip = divscale32(1L,xdimen); ydimen = (y2-y1)+1; fxdimen = (float) xdimen; #ifdef USE_OPENGL fydimen = (float) ydimen; #endif videoSetCorrectedAspect(); } // // setaspect // void renderSetAspect(int32_t daxrange, int32_t daaspect) { if (daxrange == 65536) daxrange--; // This doesn't work correctly with 65536. All other values are fine. No idea where this is evaluated wrong. viewingrange = daxrange; viewingrangerecip = divscale32(1,daxrange); #ifdef USE_OPENGL fviewingrange = (float) daxrange; #endif yxaspect = daaspect; xyaspect = divscale32(1,yxaspect); xdimenscale = scale(xdimen,yxaspect,320); xdimscale = scale(320,xyaspect,xdimen); } #include "v_2ddrawer.h" // // clearview // void videoClearViewableArea(int32_t dacol) { GLInterface.ClearScreen(dacol, false); } // // clearallviews // void videoClearScreen(int32_t dacol) { GLInterface.ClearScreen(dacol | PalEntry(255,0,0,0)); } //MUST USE RESTOREFORDRAWROOMS AFTER DRAWING static int32_t setviewcnt = 0; // interface layers use this now static int32_t bakxsiz, bakysiz; static vec2_t bakwindowxy1, bakwindowxy2; // // setviewtotile // FCanvasTexture* renderSetTarget(int16_t tilenume) { auto tex = tileGetTexture(tilenume); if (!tex || !tex->isHardwareCanvas()) return nullptr; auto canvas = static_cast(tex->GetTexture()); if (!canvas) return nullptr; int xsiz = tex->GetTexelWidth(), ysiz = tex->GetTexelHeight(); if (setviewcnt > 0 || xsiz <= 0 || ysiz <= 0) return nullptr; //DRAWROOMS TO TILE BACKUP&SET CODE bakxsiz = xdim; bakysiz = ydim; bakwindowxy1 = windowxy1; bakwindowxy2 = windowxy2; setviewcnt++; xdim = ysiz; ydim = xsiz; videoSetViewableArea(0,0,ysiz-1,xsiz-1); renderSetAspect(65536,65536); return canvas; } // // setviewback // void renderRestoreTarget() { if (setviewcnt <= 0) return; setviewcnt--; xdim = bakxsiz; ydim = bakysiz; videoSetViewableArea(bakwindowxy1.x,bakwindowxy1.y, bakwindowxy2.x,bakwindowxy2.y); } // // preparemirror // void renderPrepareMirror(int32_t dax, int32_t day, int32_t daz, fixed_t daang, fixed_t dahoriz, int16_t dawall, int32_t *tposx, int32_t *tposy, fixed_t *tang) { const int32_t x = wall[dawall].x, dx = wall[wall[dawall].point2].x-x; const int32_t y = wall[dawall].y, dy = wall[wall[dawall].point2].y-y; const int32_t j = dx*dx + dy*dy; if (j == 0) return; int i = ((dax-x)*dx + (day-y)*dy)<<1; *tposx = (x<<1) + scale(dx,i,j) - dax; *tposy = (y<<1) + scale(dy,i,j) - day; *tang = ((gethiq16angle(dx, dy) << 1) - daang) & 0x7FFFFFF; inpreparemirror = 1; polymost_prepareMirror(dax, day, daz, daang, dahoriz, dawall); } // // completemirror // void renderCompleteMirror(void) { polymost_completeMirror(); inpreparemirror = 0; } // // sectorofwall // static int32_t sectorofwall_internal(int16_t wallNum) { native_t gap = numsectors>>1, sectNum = gap; while (gap > 1) { gap >>= 1; native_t const n = !!(sector[sectNum].wallptr < wallNum); sectNum += (n ^ (n - 1)) * gap; } while (sector[sectNum].wallptr > wallNum) sectNum--; while (sector[sectNum].wallptr + sector[sectNum].wallnum <= wallNum) sectNum++; return sectNum; } int32_t sectorofwall(int16_t wallNum) { if ((unsigned)wallNum < (unsigned)numwalls) { native_t const w = wall[wallNum].nextwall; return ((unsigned)w < MAXWALLS) ? wall[w].nextsector : sectorofwall_internal(wallNum); } return -1; } int32_t getceilzofslopeptr(usectorptr_t sec, int32_t dax, int32_t day) { if (!(sec->ceilingstat&2)) return sec->ceilingz; auto const wal = (uwallptr_t)&wall[sec->wallptr]; auto const wal2 = (uwallptr_t)&wall[wal->point2]; vec2_t const w = *(vec2_t const *)wal; vec2_t const d = { wal2->x - w.x, wal2->y - w.y }; int const i = nsqrtasm(uhypsq(d.x,d.y))<<5; if (i == 0) return sec->ceilingz; int const j = dmulscale3(d.x, day-w.y, -d.y, dax-w.x); int const shift = enginecompatibility_mode != ENGINECOMPATIBILITY_NONE ? 0 : 1; return sec->ceilingz + (scale(sec->ceilingheinum,j>>shift,i)<floorstat&2)) return sec->floorz; auto const wal = (uwallptr_t)&wall[sec->wallptr]; auto const wal2 = (uwallptr_t)&wall[wal->point2]; vec2_t const w = *(vec2_t const *)wal; vec2_t const d = { wal2->x - w.x, wal2->y - w.y }; int const i = nsqrtasm(uhypsq(d.x,d.y))<<5; if (i == 0) return sec->floorz; int const j = dmulscale3(d.x, day-w.y, -d.y, dax-w.x); int const shift = enginecompatibility_mode != ENGINECOMPATIBILITY_NONE ? 0 : 1; return sec->floorz + (scale(sec->floorheinum,j>>shift,i)<ceilingz; *florz = sec->floorz; if (((sec->ceilingstat|sec->floorstat)&2) != 2) return; auto const wal = (uwallptr_t)&wall[sec->wallptr]; auto const wal2 = (uwallptr_t)&wall[wal->point2]; vec2_t const d = { wal2->x - wal->x, wal2->y - wal->y }; int const i = nsqrtasm(uhypsq(d.x,d.y))<<5; if (i == 0) return; int const j = dmulscale3(d.x,day-wal->y, -d.y,dax-wal->x); int const shift = enginecompatibility_mode != ENGINECOMPATIBILITY_NONE ? 0 : 1; if (sec->ceilingstat&2) *ceilz += scale(sec->ceilingheinum,j>>shift,i)<floorstat&2) *florz += scale(sec->floorheinum,j>>shift,i)<point2].x-wal->x; const int32_t day = wall[wal->point2].y-wal->y; const int32_t i = (y-wal->y)*dax - (x-wal->x)*day; if (i == 0) return; sector[dasect].ceilingheinum = scale((z-sector[dasect].ceilingz)<<8, nsqrtasm(uhypsq(dax,day)), i); if (sector[dasect].ceilingheinum == 0) sector[dasect].ceilingstat &= ~2; else sector[dasect].ceilingstat |= 2; } // // alignflorslope // void alignflorslope(int16_t dasect, int32_t x, int32_t y, int32_t z) { auto const wal = (uwallptr_t)&wall[sector[dasect].wallptr]; const int32_t dax = wall[wal->point2].x-wal->x; const int32_t day = wall[wal->point2].y-wal->y; const int32_t i = (y-wal->y)*dax - (x-wal->x)*day; if (i == 0) return; sector[dasect].floorheinum = scale((z-sector[dasect].floorz)<<8, nsqrtasm(uhypsq(dax,day)), i); if (sector[dasect].floorheinum == 0) sector[dasect].floorstat &= ~2; else sector[dasect].floorstat |= 2; } // // setrollangle // #ifdef USE_OPENGL void renderSetRollAngle(float rolla) { gtang = rolla * BAngRadian; } #endif