#include "jitintern.h" #include <map> #include <memory> void JitCompiler::EmitPARAM() { ParamOpcodes.Push(pc); } void JitCompiler::EmitPARAMI() { ParamOpcodes.Push(pc); } void JitCompiler::EmitRESULT() { // This instruction is just a placeholder to indicate where a return // value should be stored. It does nothing on its own and should not // be executed. } void JitCompiler::EmitVTBL() { // This instruction is handled in the CALL/CALL_K instruction following it } void JitCompiler::EmitVtbl(const VMOP *op) { int a = op->a; int b = op->b; int c = op->c; auto label = EmitThrowExceptionLabel(X_READ_NIL); cc.test(regA[b], regA[b]); cc.jz(label); cc.mov(regA[a], asmjit::x86::qword_ptr(regA[b], myoffsetof(DObject, Class))); cc.mov(regA[a], asmjit::x86::qword_ptr(regA[a], myoffsetof(PClass, Virtuals) + myoffsetof(FArray, Array))); cc.mov(regA[a], asmjit::x86::qword_ptr(regA[a], c * (int)sizeof(void*))); } void JitCompiler::EmitCALL() { EmitVMCall(regA[A], nullptr); pc += C; // Skip RESULTs } void JitCompiler::EmitCALL_K() { VMFunction *target = static_cast<VMFunction*>(konsta[A].v); VMNativeFunction *ntarget = nullptr; if (target && (target->VarFlags & VARF_Native)) ntarget = static_cast<VMNativeFunction *>(target); if (ntarget && ntarget->DirectNativeCall) { EmitNativeCall(ntarget); } else { auto ptr = newTempIntPtr(); cc.mov(ptr, asmjit::imm_ptr(target)); EmitVMCall(ptr, target); } pc += C; // Skip RESULTs } void JitCompiler::EmitVMCall(asmjit::X86Gp vmfunc, VMFunction *target) { using namespace asmjit; CheckVMFrame(); int numparams = StoreCallParams(); if (numparams != B) I_Error("OP_CALL parameter count does not match the number of preceding OP_PARAM instructions"); if (pc > sfunc->Code && (pc - 1)->op == OP_VTBL) EmitVtbl(pc - 1); FillReturns(pc + 1, C); X86Gp paramsptr = newTempIntPtr(); cc.lea(paramsptr, x86::ptr(vmframe, offsetParams)); auto scriptcall = newTempIntPtr(); cc.mov(scriptcall, x86::ptr(vmfunc, myoffsetof(VMScriptFunction, ScriptCall))); auto result = newResultInt32(); auto call = cc.call(scriptcall, FuncSignature5<int, VMFunction *, VMValue*, int, VMReturn*, int>()); call->setRet(0, result); call->setArg(0, vmfunc); call->setArg(1, paramsptr); call->setArg(2, Imm(B)); call->setArg(3, GetCallReturns()); call->setArg(4, Imm(C)); call->setInlineComment(target ? target->PrintableName.GetChars() : "VMCall"); LoadInOuts(); LoadReturns(pc + 1, C); ParamOpcodes.Clear(); } int JitCompiler::StoreCallParams() { using namespace asmjit; X86Gp stackPtr = newTempIntPtr(); X86Gp tmp = newTempIntPtr(); X86Xmm tmp2 = newTempXmmSd(); int numparams = 0; for (unsigned int i = 0; i < ParamOpcodes.Size(); i++) { int slot = numparams++; if (ParamOpcodes[i]->op == OP_PARAMI) { int abcs = ParamOpcodes[i]->i24; cc.mov(asmjit::x86::dword_ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, i)), abcs); continue; } int bc = ParamOpcodes[i]->i16u; switch (ParamOpcodes[i]->a) { case REGT_NIL: cc.mov(x86::ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, a)), (int64_t)0); break; case REGT_INT: cc.mov(x86::dword_ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, i)), regD[bc]); break; case REGT_INT | REGT_ADDROF: cc.lea(stackPtr, x86::ptr(vmframe, offsetD + (int)(bc * sizeof(int32_t)))); cc.mov(x86::dword_ptr(stackPtr), regD[bc]); cc.mov(x86::ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, a)), stackPtr); break; case REGT_INT | REGT_KONST: cc.mov(x86::dword_ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, i)), konstd[bc]); break; case REGT_STRING: cc.mov(x86::ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, sp)), regS[bc]); break; case REGT_STRING | REGT_ADDROF: cc.mov(x86::ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, a)), regS[bc]); break; case REGT_STRING | REGT_KONST: cc.mov(tmp, asmjit::imm_ptr(&konsts[bc])); cc.mov(x86::ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, sp)), tmp); break; case REGT_POINTER: cc.mov(x86::ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, a)), regA[bc]); break; case REGT_POINTER | REGT_ADDROF: cc.lea(stackPtr, x86::ptr(vmframe, offsetA + (int)(bc * sizeof(void*)))); cc.mov(x86::ptr(stackPtr), regA[bc]); cc.mov(x86::ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, a)), stackPtr); break; case REGT_POINTER | REGT_KONST: cc.mov(tmp, asmjit::imm_ptr(konsta[bc].v)); cc.mov(x86::ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, a)), tmp); break; case REGT_FLOAT: cc.movsd(x86::qword_ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, f)), regF[bc]); break; case REGT_FLOAT | REGT_MULTIREG2: for (int j = 0; j < 2; j++) { cc.movsd(x86::qword_ptr(vmframe, offsetParams + (slot + j) * sizeof(VMValue) + myoffsetof(VMValue, f)), regF[bc + j]); } numparams++; break; case REGT_FLOAT | REGT_MULTIREG3: for (int j = 0; j < 3; j++) { cc.movsd(x86::qword_ptr(vmframe, offsetParams + (slot + j) * sizeof(VMValue) + myoffsetof(VMValue, f)), regF[bc + j]); } numparams += 2; break; case REGT_FLOAT | REGT_ADDROF: cc.lea(stackPtr, x86::ptr(vmframe, offsetF + (int)(bc * sizeof(double)))); // When passing the address to a float we don't know if the receiving function will treat it as float, vec2 or vec3. for (int j = 0; j < 3; j++) { if ((unsigned int)(bc + j) < regF.Size()) cc.movsd(x86::qword_ptr(stackPtr, j * sizeof(double)), regF[bc + j]); } cc.mov(x86::ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, a)), stackPtr); break; case REGT_FLOAT | REGT_KONST: cc.mov(tmp, asmjit::imm_ptr(konstf + bc)); cc.movsd(tmp2, asmjit::x86::qword_ptr(tmp)); cc.movsd(x86::qword_ptr(vmframe, offsetParams + slot * sizeof(VMValue) + myoffsetof(VMValue, f)), tmp2); break; default: I_Error("Unknown REGT value passed to EmitPARAM\n"); break; } } return numparams; } void JitCompiler::LoadInOuts() { for (unsigned int i = 0; i < ParamOpcodes.Size(); i++) { const VMOP ¶m = *ParamOpcodes[i]; if (param.op == OP_PARAM && (param.a & REGT_ADDROF)) { LoadCallResult(param.a, param.i16u, true); } } } void JitCompiler::LoadReturns(const VMOP *retval, int numret) { for (int i = 0; i < numret; ++i) { if (retval[i].op != OP_RESULT) I_Error("Expected OP_RESULT to follow OP_CALL\n"); LoadCallResult(retval[i].b, retval[i].c, false); } } void JitCompiler::LoadCallResult(int type, int regnum, bool addrof) { switch (type & REGT_TYPE) { case REGT_INT: cc.mov(regD[regnum], asmjit::x86::dword_ptr(vmframe, offsetD + regnum * sizeof(int32_t))); break; case REGT_FLOAT: cc.movsd(regF[regnum], asmjit::x86::qword_ptr(vmframe, offsetF + regnum * sizeof(double))); if (addrof) { // When passing the address to a float we don't know if the receiving function will treat it as float, vec2 or vec3. if ((unsigned int)regnum + 1 < regF.Size()) cc.movsd(regF[regnum + 1], asmjit::x86::qword_ptr(vmframe, offsetF + (regnum + 1) * sizeof(double))); if ((unsigned int)regnum + 2 < regF.Size()) cc.movsd(regF[regnum + 2], asmjit::x86::qword_ptr(vmframe, offsetF + (regnum + 2) * sizeof(double))); } else if (type & REGT_MULTIREG2) { cc.movsd(regF[regnum + 1], asmjit::x86::qword_ptr(vmframe, offsetF + (regnum + 1) * sizeof(double))); } else if (type & REGT_MULTIREG3) { cc.movsd(regF[regnum + 1], asmjit::x86::qword_ptr(vmframe, offsetF + (regnum + 1) * sizeof(double))); cc.movsd(regF[regnum + 2], asmjit::x86::qword_ptr(vmframe, offsetF + (regnum + 2) * sizeof(double))); } break; case REGT_STRING: // We don't have to do anything in this case. String values are never moved to virtual registers. break; case REGT_POINTER: cc.mov(regA[regnum], asmjit::x86::ptr(vmframe, offsetA + regnum * sizeof(void*))); break; default: I_Error("Unknown OP_RESULT/OP_PARAM type encountered in LoadCallResult\n"); break; } } void JitCompiler::FillReturns(const VMOP *retval, int numret) { using namespace asmjit; for (int i = 0; i < numret; ++i) { if (retval[i].op != OP_RESULT) { I_Error("Expected OP_RESULT to follow OP_CALL\n"); } int type = retval[i].b; int regnum = retval[i].c; if (type & REGT_KONST) { I_Error("OP_RESULT with REGT_KONST is not allowed\n"); } auto regPtr = newTempIntPtr(); switch (type & REGT_TYPE) { case REGT_INT: cc.lea(regPtr, x86::ptr(vmframe, offsetD + (int)(regnum * sizeof(int32_t)))); break; case REGT_FLOAT: cc.lea(regPtr, x86::ptr(vmframe, offsetF + (int)(regnum * sizeof(double)))); break; case REGT_STRING: cc.lea(regPtr, x86::ptr(vmframe, offsetS + (int)(regnum * sizeof(FString)))); break; case REGT_POINTER: cc.lea(regPtr, x86::ptr(vmframe, offsetA + (int)(regnum * sizeof(void*)))); break; default: I_Error("Unknown OP_RESULT type encountered in FillReturns\n"); break; } cc.mov(x86::ptr(GetCallReturns(), i * sizeof(VMReturn) + myoffsetof(VMReturn, Location)), regPtr); cc.mov(x86::byte_ptr(GetCallReturns(), i * sizeof(VMReturn) + myoffsetof(VMReturn, RegType)), type); } } void JitCompiler::EmitNativeCall(VMNativeFunction *target) { using namespace asmjit; if (pc > sfunc->Code && (pc - 1)->op == OP_VTBL) { I_Error("Native direct member function calls not implemented\n"); } if (target->ImplicitArgs > 0) { auto label = EmitThrowExceptionLabel(X_READ_NIL); assert(ParamOpcodes.Size() > 0); const VMOP *param = ParamOpcodes[0]; const int bc = param->i16u; asmjit::X86Gp *reg = nullptr; switch (param->a & REGT_TYPE) { case REGT_STRING: reg = ®S[bc]; break; case REGT_POINTER: reg = ®A[bc]; break; default: I_Error("Unexpected register type for self pointer\n"); break; } cc.test(*reg, *reg); cc.jz(label); } asmjit::CBNode *cursorBefore = cc.getCursor(); auto call = cc.call(imm_ptr(target->DirectNativeCall), CreateFuncSignature()); call->setInlineComment(target->PrintableName.GetChars()); asmjit::CBNode *cursorAfter = cc.getCursor(); cc.setCursor(cursorBefore); X86Gp tmp; X86Xmm tmp2; int numparams = 0; for (unsigned int i = 0; i < ParamOpcodes.Size(); i++) { int slot = numparams++; if (ParamOpcodes[i]->op == OP_PARAMI) { int abcs = ParamOpcodes[i]->i24; call->setArg(slot, imm(abcs)); } else // OP_PARAM { int bc = ParamOpcodes[i]->i16u; switch (ParamOpcodes[i]->a) { case REGT_NIL: call->setArg(slot, imm(0)); break; case REGT_INT: call->setArg(slot, regD[bc]); break; case REGT_INT | REGT_KONST: call->setArg(slot, imm(konstd[bc])); break; case REGT_STRING | REGT_ADDROF: // AddrOf string is essentially the same - a reference to the register, just not constant on the receiving side. case REGT_STRING: call->setArg(slot, regS[bc]); break; case REGT_STRING | REGT_KONST: tmp = newTempIntPtr(); cc.mov(tmp, imm_ptr(&konsts[bc])); call->setArg(slot, tmp); break; case REGT_POINTER: call->setArg(slot, regA[bc]); break; case REGT_POINTER | REGT_KONST: tmp = newTempIntPtr(); cc.mov(tmp, imm_ptr(konsta[bc].v)); call->setArg(slot, tmp); break; case REGT_FLOAT: call->setArg(slot, regF[bc]); break; case REGT_FLOAT | REGT_MULTIREG2: for (int j = 0; j < 2; j++) call->setArg(slot + j, regF[bc + j]); numparams++; break; case REGT_FLOAT | REGT_MULTIREG3: for (int j = 0; j < 3; j++) call->setArg(slot + j, regF[bc + j]); numparams += 2; break; case REGT_FLOAT | REGT_KONST: tmp = newTempIntPtr(); tmp2 = newTempXmmSd(); cc.mov(tmp, asmjit::imm_ptr(konstf + bc)); cc.movsd(tmp2, asmjit::x86::qword_ptr(tmp)); call->setArg(slot, tmp2); break; case REGT_INT | REGT_ADDROF: case REGT_POINTER | REGT_ADDROF: case REGT_FLOAT | REGT_ADDROF: I_Error("REGT_ADDROF not implemented for native direct calls\n"); break; default: I_Error("Unknown REGT value passed to EmitPARAM\n"); break; } } } if (numparams != B) I_Error("OP_CALL parameter count does not match the number of preceding OP_PARAM instructions\n"); // Note: the usage of newResultXX is intentional. Asmjit has a register allocation bug // if the return virtual register is already allocated in an argument slot. const VMOP *retval = pc + 1; int numret = C; // Check if first return value was placed in the function's real return value slot int startret = 1; if (numret > 0) { int type = retval[0].b; switch (type) { case REGT_INT: case REGT_FLOAT: case REGT_POINTER: break; default: startret = 0; break; } } // Pass return pointers as arguments for (int i = startret; i < numret; ++i) { int type = retval[i].b; int regnum = retval[i].c; if (type & REGT_KONST) { I_Error("OP_RESULT with REGT_KONST is not allowed\n"); } CheckVMFrame(); if ((type & REGT_TYPE) == REGT_STRING) { // For strings we already have them on the stack and got named registers for them. call->setArg(numparams + i - startret, regS[regnum]); } else { auto regPtr = newTempIntPtr(); switch (type & REGT_TYPE) { case REGT_INT: cc.lea(regPtr, x86::ptr(vmframe, offsetD + (int)(regnum * sizeof(int32_t)))); break; case REGT_FLOAT: cc.lea(regPtr, x86::ptr(vmframe, offsetF + (int)(regnum * sizeof(double)))); break; case REGT_STRING: cc.lea(regPtr, x86::ptr(vmframe, offsetS + (int)(regnum * sizeof(FString)))); break; case REGT_POINTER: cc.lea(regPtr, x86::ptr(vmframe, offsetA + (int)(regnum * sizeof(void*)))); break; default: I_Error("Unknown OP_RESULT type encountered\n"); break; } call->setArg(numparams + i - startret, regPtr); } } cc.setCursor(cursorAfter); if (startret == 1 && numret > 0) { int type = retval[0].b; int regnum = retval[0].c; switch (type) { case REGT_INT: tmp = newResultInt32(); call->setRet(0, tmp); cc.mov(regD[regnum], tmp); break; case REGT_FLOAT: tmp2 = newResultXmmSd(); call->setRet(0, tmp2); cc.movsd(regF[regnum], tmp2); break; case REGT_POINTER: tmp = newResultIntPtr(); call->setRet(0, tmp); cc.mov(regA[regnum], tmp); break; } } // Move the result into virtual registers for (int i = startret; i < numret; ++i) { int type = retval[i].b; int regnum = retval[i].c; switch (type) { case REGT_INT: cc.mov(regD[regnum], asmjit::x86::dword_ptr(vmframe, offsetD + regnum * sizeof(int32_t))); break; case REGT_FLOAT: cc.movsd(regF[regnum], asmjit::x86::qword_ptr(vmframe, offsetF + regnum * sizeof(double))); break; case REGT_FLOAT | REGT_MULTIREG2: cc.movsd(regF[regnum], asmjit::x86::qword_ptr(vmframe, offsetF + regnum * sizeof(double))); cc.movsd(regF[regnum + 1], asmjit::x86::qword_ptr(vmframe, offsetF + (regnum + 1) * sizeof(double))); break; case REGT_FLOAT | REGT_MULTIREG3: cc.movsd(regF[regnum], asmjit::x86::qword_ptr(vmframe, offsetF + regnum * sizeof(double))); cc.movsd(regF[regnum + 1], asmjit::x86::qword_ptr(vmframe, offsetF + (regnum + 1) * sizeof(double))); cc.movsd(regF[regnum + 2], asmjit::x86::qword_ptr(vmframe, offsetF + (regnum + 2) * sizeof(double))); break; case REGT_STRING: // We don't have to do anything in this case. String values are never moved to virtual registers. break; case REGT_POINTER: cc.mov(regA[regnum], asmjit::x86::ptr(vmframe, offsetA + regnum * sizeof(void*))); break; default: I_Error("Unknown OP_RESULT type encountered\n"); break; } } ParamOpcodes.Clear(); } static std::map<FString, std::unique_ptr<TArray<uint8_t>>> argsCache; asmjit::FuncSignature JitCompiler::CreateFuncSignature() { using namespace asmjit; TArray<uint8_t> args; FString key; // First add parameters as args to the signature for (unsigned int i = 0; i < ParamOpcodes.Size(); i++) { if (ParamOpcodes[i]->op == OP_PARAMI) { args.Push(TypeIdOf<int>::kTypeId); key += "i"; } else // OP_PARAM { int bc = ParamOpcodes[i]->i16u; switch (ParamOpcodes[i]->a) { case REGT_NIL: case REGT_POINTER: case REGT_POINTER | REGT_KONST: case REGT_STRING | REGT_ADDROF: case REGT_INT | REGT_ADDROF: case REGT_POINTER | REGT_ADDROF: case REGT_FLOAT | REGT_ADDROF: args.Push(TypeIdOf<void*>::kTypeId); key += "v"; break; case REGT_INT: case REGT_INT | REGT_KONST: args.Push(TypeIdOf<int>::kTypeId); key += "i"; break; case REGT_STRING: case REGT_STRING | REGT_KONST: args.Push(TypeIdOf<void*>::kTypeId); key += "s"; break; case REGT_FLOAT: case REGT_FLOAT | REGT_KONST: args.Push(TypeIdOf<double>::kTypeId); key += "f"; break; case REGT_FLOAT | REGT_MULTIREG2: args.Push(TypeIdOf<double>::kTypeId); args.Push(TypeIdOf<double>::kTypeId); key += "ff"; break; case REGT_FLOAT | REGT_MULTIREG3: args.Push(TypeIdOf<double>::kTypeId); args.Push(TypeIdOf<double>::kTypeId); args.Push(TypeIdOf<double>::kTypeId); key += "fff"; break; default: I_Error("Unknown REGT value passed to EmitPARAM\n"); break; } } } const VMOP *retval = pc + 1; int numret = C; uint32_t rettype = TypeIdOf<void>::kTypeId; // Check if first return value can be placed in the function's real return value slot int startret = 1; if (numret > 0) { if (retval[0].op != OP_RESULT) { I_Error("Expected OP_RESULT to follow OP_CALL\n"); } int type = retval[0].b; switch (type) { case REGT_INT: rettype = TypeIdOf<int>::kTypeId; key += "ri"; break; case REGT_FLOAT: rettype = TypeIdOf<double>::kTypeId; key += "rf"; break; case REGT_POINTER: rettype = TypeIdOf<void*>::kTypeId; key += "rv"; break; case REGT_STRING: default: startret = 0; break; } } // Add any additional return values as function arguments for (int i = startret; i < numret; ++i) { if (retval[i].op != OP_RESULT) { I_Error("Expected OP_RESULT to follow OP_CALL\n"); } args.Push(TypeIdOf<void*>::kTypeId); key += "v"; } // FuncSignature only keeps a pointer to its args array. Store a copy of each args array variant. std::unique_ptr<TArray<uint8_t>> &cachedArgs = argsCache[key]; if (!cachedArgs) cachedArgs.reset(new TArray<uint8_t>(args)); FuncSignature signature; signature.init(CallConv::kIdHost, rettype, cachedArgs->Data(), cachedArgs->Size()); return signature; }