#pragma once #include #include #include #include #include "gl_samplers.h" #include "gl_hwtexture.h" #include "gl_renderstate.h" #include "matrix.h" #include "palentry.h" #include "renderstyle.h" class FSamplerManager; class FShader; class PolymostShader; class SurfaceShader; class FTexture; class GLInstance; class F2DDrawer; struct palette_t; extern int xdim, ydim; struct PaletteData { int32_t crc32; PalEntry colors[256]; bool shadesdone; int whiteindex, blackindex; FHardwareTexture* paltexture; }; struct PalShade { int palindex; float mulshade, addshade; }; struct PalswapData { int32_t crc32; bool isbright; const uint8_t *lookup; // points to the original data. This is static so no need to copy FHardwareTexture* swaptexture; PalEntry fadeColor; uint8_t brightcolors[255]; }; enum { PALSWAP_TEXTURE_SIZE = 2048 }; class PaletteManager { // The current engine limit is 256 palettes and 256 palswaps. uint32_t palettemap[256] = {}; uint32_t palswapmap[256] = {}; float addshade[256] = {}; float mulshade[256] = {}; uint32_t lastindex = ~0u; uint32_t lastsindex = ~0u; int numshades = 1; // All data is being stored in contiguous blocks that can be used as uniform buffers as-is. TArray palettes; TArray palswaps; TMap swappedpalmap; FHardwareTexture* palswapTexture = nullptr; GLInstance* const inst; //OpenGLRenderer::GLDataBuffer* palswapBuffer = nullptr; unsigned FindPalswap(const uint8_t* paldata, palette_t& fadecolor); public: PaletteManager(GLInstance *inst_) : inst(inst_) {} ~PaletteManager(); void DeleteAll(); void DeleteAllTextures(); void SetPalette(int index, const uint8_t *data); void SetPalswapData(int index, const uint8_t* data, int numshades, palette_t &fadecolor); void BindPalette(int index); void BindPalswap(int index); int ActivePalswap() const { return lastsindex; } int LookupPalette(int palette, int palswap, bool brightmap, bool nontransparent255 = false); const PalEntry *GetPaletteData(int palid) const { return palettes[palid].colors; } unsigned FindPalette(const uint8_t* paldata); }; struct glinfo_t { float maxanisotropy; }; struct BaseVertex { float x, y, z; float u, v; void SetVertex(float _x, float _y, float _z = 0) { x = _x; y = _y; z = _z; } void SetTexCoord(float _u = 0, float _v = 0) { u = _u; v = _v; } void Set(float _x, float _y, float _z = 0, float _u = 0, float _v = 0) { x = _x; y = _y; z = _z; u = _u; v = _v; } }; enum EDrawType { DT_TRIANGLES, DT_TRIANGLE_STRIP, DT_TRIANGLE_FAN, DT_LINES }; enum ECull { Cull_None, Cull_Front, Cull_Back }; enum EDepthFunc { Depth_Always, Depth_Less, Depth_Equal, Depth_LessEqual }; enum EWinding { Winding_CCW, Winding_CW }; enum ETexType { TT_INDEXED, TT_TRUECOLOR, TT_HICREPLACE, TT_BRIGHTMAP }; struct ImDrawData; struct palette_t; extern float shadediv[256]; struct GLState { int Flags = STF_COLORMASK | STF_DEPTHMASK; FRenderStyle Style{}; int DepthFunc = -1; int TexId[5] = {}, SamplerId[5] = {}; }; class GLInstance { enum { MAX_TEXTURES = 5, /*15*/ // slot 15 is used internally and not available. - The renderer uses only 5, though. }; std::vector Buffer; // cheap-ass implementation. The primary purpose is to get the GL accesses out of polymost.cpp, not writing something performant right away. int maxTextureSize; PaletteManager palmanager; int lastPalswapIndex = -1; FHardwareTexture* texv; FTexture* currentTexture = nullptr; int TextureType; int MatrixChange = 0; bool g_nontransparent255 = false; // Ugh... This is for movie playback and needs to be maintained as global state. // Cached GL state. GLState lastState; IVertexBuffer* LastVertexBuffer = nullptr; int LastVB_Offset[2] = {}; IIndexBuffer* LastIndexBuffer = nullptr; float mProjectionM5 = 1.0f; // needed by ssao PolymostRenderState renderState; FShader* activeShader; PolymostShader* polymostShader; SurfaceShader* surfaceShader; FShader* vpxShader; public: glinfo_t glinfo; FSamplerManager *mSamplers; void Init(int y); void InitGLState(int fogmode, int multisample); void LoadPolymostShader(); void LoadSurfaceShader(); void LoadVPXShader(); void Draw2D(F2DDrawer* drawer); void DrawImGui(ImDrawData*); void ResetFrame(); void Deinit(); static int GetTexDimension(int value) { //if (value > gl.max_texturesize) return gl.max_texturesize; return value; } GLInstance(); std::pair AllocVertices(size_t num); void Draw(EDrawType type, size_t start, size_t count); FHardwareTexture* NewTexture(); void EnableNonTransparent255(bool on) { g_nontransparent255 = on; } void SetVertexBuffer(IVertexBuffer* vb, int offset1, int offset2) { renderState.VertexBuffer = vb; renderState.VB_Offset[0] = offset1; renderState.VB_Offset[1] = offset2; } void SetIndexBuffer(IIndexBuffer* vb) { renderState.IndexBuffer = vb; } void ClearBufferState() { SetVertexBuffer(nullptr, 0, 0); SetIndexBuffer(nullptr); // Invalidate the pointers as well to make sure that if another buffer with the same address is used it actually gets bound. LastVertexBuffer = (IVertexBuffer*)~intptr_t(0); LastIndexBuffer = (IIndexBuffer*)~intptr_t(0); } float GetProjectionM5() { return mProjectionM5; } void SetMatrix(int num, const VSMatrix *mat ); void SetMatrix(int num, const float *mat) { SetMatrix(num, reinterpret_cast(mat)); } void SetIdentityMatrix(int num) { renderState.matrixIndex[num] = 0; } void SetPolymostShader(); void SetSurfaceShader(); void SetVPXShader(); void SetPalette(int palette); void ReadPixels(int w, int h, uint8_t* buffer); void SetPaletteData(int index, const uint8_t* data) { palmanager.SetPalette(index, data); } void SetPalswapData(int index, const uint8_t* data, int numshades, palette_t& fadecolor) { palmanager.SetPalswapData(index, data, numshades, fadecolor); } void SetPalswap(int index); int GetClamp() { return 0;// int(renderState.Clamp[0] + 2 * renderState.Clamp[1]); } void SetClamp(int clamp) { // This option is totally pointless and should be removed. //renderState.Clamp[0] = clamp & 1; //renderState.Clamp[1] = !!(clamp & 2); } void SetShade(int32_t shade, int numshades) { renderState.Shade = shade; renderState.NumShades = numshades; } void SetVisibility(float visibility, float fviewingrange) { renderState.VisFactor = visibility* fviewingrange* (1.f / (64.f * 65536.f)); } void EnableBlend(bool on) { if (on) renderState.StateFlags |= STF_BLEND; else renderState.StateFlags &= ~STF_BLEND; } void EnableDepthTest(bool on) { if (on) renderState.StateFlags |= STF_DEPTHTEST; else renderState.StateFlags &= ~STF_DEPTHTEST; } void EnableMultisampling(bool on) { if (on) renderState.StateFlags |= STF_MULTISAMPLE; else renderState.StateFlags &= ~STF_MULTISAMPLE; } void EnableStencilWrite(int value) { renderState.StateFlags |= STF_STENCILWRITE; renderState.StateFlags &= ~STF_STENCILTEST; } void EnableStencilTest(int value) { renderState.StateFlags &= ~STF_STENCILWRITE; renderState.StateFlags |= STF_STENCILTEST; } void DisableStencil() { renderState.StateFlags &= ~(STF_STENCILWRITE | STF_STENCILTEST); } void SetCull(int type, int winding = Winding_CW) { renderState.StateFlags &= ~(STF_CULLCCW | STF_CULLCW); if (type != Cull_None) { if (winding == Winding_CW) renderState.StateFlags |= STF_CULLCW; else renderState.StateFlags |= STF_CULLCCW; } } void SetColorMask(bool on) { if (on) renderState.StateFlags |= STF_COLORMASK; else renderState.StateFlags &= ~STF_COLORMASK; } void SetDepthMask(bool on) { if (on) renderState.StateFlags |= STF_DEPTHMASK; else renderState.StateFlags &= ~STF_DEPTHMASK; } void SetWireframe(bool on) { if (on) renderState.StateFlags |= STF_WIREFRAME; else renderState.StateFlags &= ~STF_WIREFRAME; } void ClearScreen(PalEntry pe, bool depth) { renderState.ClearColor = pe; renderState.StateFlags |= STF_CLEARCOLOR; if (depth) renderState.StateFlags |= STF_CLEARDEPTH; } void SetViewport(int x, int y, int w, int h) { renderState.vp_x = (short)x; renderState.vp_y = (short)y; renderState.vp_w = (short)w; renderState.vp_h = (short)h; renderState.StateFlags |= STF_VIEWPORTSET; } void SetScissor(int x1, int y1, int x2, int y2) { renderState.sc_x = (short)x1; renderState.sc_y = (short)y1; renderState.sc_w = (short)x2; renderState.sc_h = (short)y2; renderState.StateFlags |= STF_SCISSORSET; } void DisableScissor() { renderState.sc_x = SHRT_MIN; renderState.StateFlags |= STF_SCISSORSET; } void SetDepthFunc(int func) { renderState.DepthFunc = func; } void ClearScreen(PalEntry pe) { //twod->Clear(); SetViewport(0, 0, xdim, ydim); ClearScreen(pe, false); } void ClearDepth() { renderState.StateFlags |= STF_CLEARDEPTH; } void SetRenderStyle(FRenderStyle style) { renderState.Style = style; } void SetColor(float r, float g, float b, float a = 1.f) { renderState.Color[0] = r; renderState.Color[1] = g; renderState.Color[2] = b; renderState.Color[3] = a; } void SetColorub(uint8_t r, uint8_t g, uint8_t b, uint8_t a = 255) { SetColor(r * (1 / 255.f), g * (1 / 255.f), b * (1 / 255.f), a * (1 / 255.f)); } void BindTexture(int texunit, FHardwareTexture* tex, int sampler = NoSampler) { if (!tex) return; if (texunit == 0) { if (tex->isIndexed()) renderState.Flags |= RF_UsePalette; else renderState.Flags &= ~RF_UsePalette; } renderState.texIds[texunit] = tex->GetTextureHandle(); renderState.samplerIds[texunit] = sampler == NoSampler ? tex->GetSampler() : sampler; } void UnbindTexture(int texunit) { renderState.texIds[texunit] = 0; renderState.samplerIds[texunit] = 0; } void UnbindAllTextures() { for (int texunit = 0; texunit < MAX_TEXTURES; texunit++) { UnbindTexture(texunit); } } void UseColorOnly(bool yes) { if (yes) renderState.Flags |= RF_ColorOnly; else renderState.Flags &= ~RF_ColorOnly; } void UseDetailMapping(bool yes) { if (yes) renderState.Flags |= RF_DetailMapping; else renderState.Flags &= ~RF_DetailMapping; } void UseGlowMapping(bool yes) { if (yes) renderState.Flags |= RF_GlowMapping; else renderState.Flags &= ~RF_GlowMapping; } void UseBrightmaps(bool yes) { if (yes) renderState.Flags |= RF_Brightmapping; else renderState.Flags &= ~RF_Brightmapping; } void SetNpotEmulation(bool yes, float factor, float xOffset) { if (yes) { renderState.Flags |= RF_NPOTEmulation; renderState.NPOTEmulationFactor = factor; renderState.NPOTEmulationXOffset = xOffset; } else renderState.Flags &= ~RF_NPOTEmulation; } void SetShadeInterpolate(int32_t yes) { if (yes) renderState.Flags |= RF_ShadeInterpolate; else renderState.Flags &= ~RF_ShadeInterpolate; } void SetFadeColor(PalEntry color) { renderState.FogColor = color; }; void SetFadeDisable(bool yes) { if (yes) renderState.Flags |= RF_FogDisabled; else renderState.Flags &= ~RF_FogDisabled; } void SetBrightness(int brightness) { renderState.Brightness = 8.f / (brightness + 8.f); } void SetTinting(int flags, PalEntry color, PalEntry modulateColor) { // not yet implemented. } void SetBasepalTint(PalEntry color) { // not yet implemented - only relevant for hires replacements. } int GetPaletteIndex(PalEntry* palette) { return palmanager.FindPalette((uint8_t*)palette); } void EnableAlphaTest(bool on) { renderState.AlphaTest = on; } void SetAlphaThreshold(float al) { renderState.AlphaThreshold = al; } FHardwareTexture* CreateIndexedTexture(FTexture* tex); FHardwareTexture* CreateTrueColorTexture(FTexture* tex, int palid, bool checkfulltransparency = false, bool rgb8bit = false); FHardwareTexture *LoadTexture(FTexture* tex, int texturetype, int palid); bool SetTextureInternal(int globalpicnum, FTexture* tex, int palette, int method, int sampleroverride, float xpanning, float ypanning, FTexture *det, float detscale, FTexture *glow); bool SetNamedTexture(FTexture* tex, int palette, int sampleroverride); bool SetTexture(int globalpicnum, FTexture* tex, int palette, int method, int sampleroverride) { return SetTextureInternal(globalpicnum, tex, palette, method, sampleroverride, 0, 0, nullptr, 1, nullptr); } bool SetModelTexture(FTexture *tex, int palette, float xpanning, float ypanning, FTexture *det, float detscale, FTexture *glow) { return SetTextureInternal(-1, tex, palette, 8/*DAMETH_MODEL*/, -1, xpanning, ypanning, det, detscale, glow); } }; extern GLInstance GLInterface;