//----------------------------------------------------------------------------- // // Copyright 2002-2016 Randy Heit // Copyright 2005-2014 Simon Howard // Copyright 2017 Christoph Oelckers // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see http://www.gnu.org/licenses/ // //----------------------------------------------------------------------------- // // OPL IO interface. Partly built from the non-MusLib code in the old version // plus some additions from Chocolate Doom. // #include <math.h> #include <assert.h> #include <algorithm> #include <string.h> #include "genmidi.h" #include "oplio.h" #include "opl.h" const double HALF_PI = (3.14159265358979323846 * 0.5); OPLio::~OPLio() { } void OPLio::SetClockRate(double samples_per_tick) { } void OPLio::WriteDelay(int ticks) { } //---------------------------------------------------------------------------- // // Initialize OPL emulator // //---------------------------------------------------------------------------- int OPLio::Init(int core, uint32_t numchips, bool stereo, bool initopl3) { assert(numchips >= 1 && numchips <= OPL_NUM_VOICES); uint32_t i; IsOPL3 = (core == 1 || core == 2 || core == 3); memset(chips, 0, sizeof(chips)); if (IsOPL3) { numchips = (numchips + 1) >> 1; } for (i = 0; i < numchips; ++i) { OPLEmul *chip = IsOPL3 ? (core == 1 ? DBOPLCreate(stereo) : (core == 2 ? JavaOPLCreate(stereo) : NukedOPL3Create(stereo))) : YM3812Create(stereo); if (chip == NULL) { break; } chips[i] = chip; } NumChips = i; NumChannels = i * (IsOPL3 ? OPL3_NUM_VOICES : OPL_NUM_VOICES); WriteInitState(initopl3); return i; } //---------------------------------------------------------------------------- // // // //---------------------------------------------------------------------------- void OPLio::WriteInitState(bool initopl3) { for (uint32_t k = 0; k < NumChips; ++k) { int chip = k << (int)IsOPL3; if (IsOPL3 && initopl3) { WriteRegister(chip, OPL_REG_OPL3_ENABLE, 1); WriteRegister(chip, OPL_REG_4OPMODE_ENABLE, 0); } WriteRegister(chip, OPL_REG_WAVEFORM_ENABLE, WAVEFORM_ENABLED); WriteRegister(chip, OPL_REG_PERCUSSION_MODE, 0); // should be the default, but cannot verify for some of the cores. } // Reset all channels. for (uint32_t k = 0; k < NumChannels; k++) { MuteChannel(k); WriteValue(OPL_REGS_FREQ_2, k, 0); } } //---------------------------------------------------------------------------- // // Deinitialize emulator before shutdown // //---------------------------------------------------------------------------- void OPLio::Reset(void) { for (auto &c : chips) { if (c != nullptr) { delete c; c = nullptr; } } } //---------------------------------------------------------------------------- // // // //---------------------------------------------------------------------------- void OPLio::WriteRegister(int chipnum, uint32_t reg, uint8_t data) { if (IsOPL3) { reg |= (chipnum & 1) << 8; chipnum >>= 1; } if (chips[chipnum] != nullptr) { chips[chipnum]->WriteReg(reg, data); } } //---------------------------------------------------------------------------- // // // //---------------------------------------------------------------------------- void OPLio::WriteValue(uint32_t regbase, uint32_t channel, uint8_t value) { WriteRegister (channel / OPL_NUM_VOICES, regbase + (channel % OPL_NUM_VOICES), value); } //---------------------------------------------------------------------------- // // // //---------------------------------------------------------------------------- static const int voice_operators[OPL_NUM_VOICES] = { 0x00, 0x01, 0x02, 0x08, 0x09, 0x0a, 0x10, 0x11, 0x12 }; void OPLio::WriteOperator(uint32_t regbase, uint32_t channel, int index, uint8_t data2) { WriteRegister(channel / OPL_NUM_VOICES, regbase + voice_operators[channel % OPL_NUM_VOICES] + 3*index, data2); } //---------------------------------------------------------------------------- // // Write frequency/octave/keyon data to a channel // // [RH] This is totally different from the original MUS library code // but matches exactly what DMX does. I haven't a clue why there are 284 // special bytes at the beginning of the table for the first few notes. // That last byte in the table doesn't look right, either, but that's what // it really is. // //---------------------------------------------------------------------------- static const uint16_t frequencies[] = { // (this is the table from Chocolate Doom, which contains the same values as ZDoom's original one but is better formatted. 0x133, 0x133, 0x134, 0x134, 0x135, 0x136, 0x136, 0x137, // -1 0x137, 0x138, 0x138, 0x139, 0x139, 0x13a, 0x13b, 0x13b, 0x13c, 0x13c, 0x13d, 0x13d, 0x13e, 0x13f, 0x13f, 0x140, 0x140, 0x141, 0x142, 0x142, 0x143, 0x143, 0x144, 0x144, 0x145, 0x146, 0x146, 0x147, 0x147, 0x148, 0x149, 0x149, // -2 0x14a, 0x14a, 0x14b, 0x14c, 0x14c, 0x14d, 0x14d, 0x14e, 0x14f, 0x14f, 0x150, 0x150, 0x151, 0x152, 0x152, 0x153, 0x153, 0x154, 0x155, 0x155, 0x156, 0x157, 0x157, 0x158, // These are used for the first seven MIDI note values: 0x158, 0x159, 0x15a, 0x15a, 0x15b, 0x15b, 0x15c, 0x15d, // 0 0x15d, 0x15e, 0x15f, 0x15f, 0x160, 0x161, 0x161, 0x162, 0x162, 0x163, 0x164, 0x164, 0x165, 0x166, 0x166, 0x167, 0x168, 0x168, 0x169, 0x16a, 0x16a, 0x16b, 0x16c, 0x16c, 0x16d, 0x16e, 0x16e, 0x16f, 0x170, 0x170, 0x171, 0x172, // 1 0x172, 0x173, 0x174, 0x174, 0x175, 0x176, 0x176, 0x177, 0x178, 0x178, 0x179, 0x17a, 0x17a, 0x17b, 0x17c, 0x17c, 0x17d, 0x17e, 0x17e, 0x17f, 0x180, 0x181, 0x181, 0x182, 0x183, 0x183, 0x184, 0x185, 0x185, 0x186, 0x187, 0x188, // 2 0x188, 0x189, 0x18a, 0x18a, 0x18b, 0x18c, 0x18d, 0x18d, 0x18e, 0x18f, 0x18f, 0x190, 0x191, 0x192, 0x192, 0x193, 0x194, 0x194, 0x195, 0x196, 0x197, 0x197, 0x198, 0x199, 0x19a, 0x19a, 0x19b, 0x19c, 0x19d, 0x19d, 0x19e, 0x19f, // 3 0x1a0, 0x1a0, 0x1a1, 0x1a2, 0x1a3, 0x1a3, 0x1a4, 0x1a5, 0x1a6, 0x1a6, 0x1a7, 0x1a8, 0x1a9, 0x1a9, 0x1aa, 0x1ab, 0x1ac, 0x1ad, 0x1ad, 0x1ae, 0x1af, 0x1b0, 0x1b0, 0x1b1, 0x1b2, 0x1b3, 0x1b4, 0x1b4, 0x1b5, 0x1b6, 0x1b7, 0x1b8, // 4 0x1b8, 0x1b9, 0x1ba, 0x1bb, 0x1bc, 0x1bc, 0x1bd, 0x1be, 0x1bf, 0x1c0, 0x1c0, 0x1c1, 0x1c2, 0x1c3, 0x1c4, 0x1c4, 0x1c5, 0x1c6, 0x1c7, 0x1c8, 0x1c9, 0x1c9, 0x1ca, 0x1cb, 0x1cc, 0x1cd, 0x1ce, 0x1ce, 0x1cf, 0x1d0, 0x1d1, 0x1d2, // 5 0x1d3, 0x1d3, 0x1d4, 0x1d5, 0x1d6, 0x1d7, 0x1d8, 0x1d8, 0x1d9, 0x1da, 0x1db, 0x1dc, 0x1dd, 0x1de, 0x1de, 0x1df, 0x1e0, 0x1e1, 0x1e2, 0x1e3, 0x1e4, 0x1e5, 0x1e5, 0x1e6, 0x1e7, 0x1e8, 0x1e9, 0x1ea, 0x1eb, 0x1ec, 0x1ed, 0x1ed, // 6 0x1ee, 0x1ef, 0x1f0, 0x1f1, 0x1f2, 0x1f3, 0x1f4, 0x1f5, 0x1f6, 0x1f6, 0x1f7, 0x1f8, 0x1f9, 0x1fa, 0x1fb, 0x1fc, 0x1fd, 0x1fe, 0x1ff, 0x200, 0x201, 0x201, 0x202, 0x203, // First note of looped range used for all octaves: 0x204, 0x205, 0x206, 0x207, 0x208, 0x209, 0x20a, 0x20b, // 7 0x20c, 0x20d, 0x20e, 0x20f, 0x210, 0x210, 0x211, 0x212, 0x213, 0x214, 0x215, 0x216, 0x217, 0x218, 0x219, 0x21a, 0x21b, 0x21c, 0x21d, 0x21e, 0x21f, 0x220, 0x221, 0x222, 0x223, 0x224, 0x225, 0x226, 0x227, 0x228, 0x229, 0x22a, // 8 0x22b, 0x22c, 0x22d, 0x22e, 0x22f, 0x230, 0x231, 0x232, 0x233, 0x234, 0x235, 0x236, 0x237, 0x238, 0x239, 0x23a, 0x23b, 0x23c, 0x23d, 0x23e, 0x23f, 0x240, 0x241, 0x242, 0x244, 0x245, 0x246, 0x247, 0x248, 0x249, 0x24a, 0x24b, // 9 0x24c, 0x24d, 0x24e, 0x24f, 0x250, 0x251, 0x252, 0x253, 0x254, 0x256, 0x257, 0x258, 0x259, 0x25a, 0x25b, 0x25c, 0x25d, 0x25e, 0x25f, 0x260, 0x262, 0x263, 0x264, 0x265, 0x266, 0x267, 0x268, 0x269, 0x26a, 0x26c, 0x26d, 0x26e, // 10 0x26f, 0x270, 0x271, 0x272, 0x273, 0x275, 0x276, 0x277, 0x278, 0x279, 0x27a, 0x27b, 0x27d, 0x27e, 0x27f, 0x280, 0x281, 0x282, 0x284, 0x285, 0x286, 0x287, 0x288, 0x289, 0x28b, 0x28c, 0x28d, 0x28e, 0x28f, 0x290, 0x292, 0x293, // 11 0x294, 0x295, 0x296, 0x298, 0x299, 0x29a, 0x29b, 0x29c, 0x29e, 0x29f, 0x2a0, 0x2a1, 0x2a2, 0x2a4, 0x2a5, 0x2a6, 0x2a7, 0x2a9, 0x2aa, 0x2ab, 0x2ac, 0x2ae, 0x2af, 0x2b0, 0x2b1, 0x2b2, 0x2b4, 0x2b5, 0x2b6, 0x2b7, 0x2b9, 0x2ba, // 12 0x2bb, 0x2bd, 0x2be, 0x2bf, 0x2c0, 0x2c2, 0x2c3, 0x2c4, 0x2c5, 0x2c7, 0x2c8, 0x2c9, 0x2cb, 0x2cc, 0x2cd, 0x2ce, 0x2d0, 0x2d1, 0x2d2, 0x2d4, 0x2d5, 0x2d6, 0x2d8, 0x2d9, 0x2da, 0x2dc, 0x2dd, 0x2de, 0x2e0, 0x2e1, 0x2e2, 0x2e4, // 13 0x2e5, 0x2e6, 0x2e8, 0x2e9, 0x2ea, 0x2ec, 0x2ed, 0x2ee, 0x2f0, 0x2f1, 0x2f2, 0x2f4, 0x2f5, 0x2f6, 0x2f8, 0x2f9, 0x2fb, 0x2fc, 0x2fd, 0x2ff, 0x300, 0x302, 0x303, 0x304, 0x306, 0x307, 0x309, 0x30a, 0x30b, 0x30d, 0x30e, 0x310, // 14 0x311, 0x312, 0x314, 0x315, 0x317, 0x318, 0x31a, 0x31b, 0x31c, 0x31e, 0x31f, 0x321, 0x322, 0x324, 0x325, 0x327, 0x328, 0x329, 0x32b, 0x32c, 0x32e, 0x32f, 0x331, 0x332, 0x334, 0x335, 0x337, 0x338, 0x33a, 0x33b, 0x33d, 0x33e, // 15 0x340, 0x341, 0x343, 0x344, 0x346, 0x347, 0x349, 0x34a, 0x34c, 0x34d, 0x34f, 0x350, 0x352, 0x353, 0x355, 0x357, 0x358, 0x35a, 0x35b, 0x35d, 0x35e, 0x360, 0x361, 0x363, 0x365, 0x366, 0x368, 0x369, 0x36b, 0x36c, 0x36e, 0x370, // 16 0x371, 0x373, 0x374, 0x376, 0x378, 0x379, 0x37b, 0x37c, 0x37e, 0x380, 0x381, 0x383, 0x384, 0x386, 0x388, 0x389, 0x38b, 0x38d, 0x38e, 0x390, 0x392, 0x393, 0x395, 0x397, 0x398, 0x39a, 0x39c, 0x39d, 0x39f, 0x3a1, 0x3a2, 0x3a4, // 17 0x3a6, 0x3a7, 0x3a9, 0x3ab, 0x3ac, 0x3ae, 0x3b0, 0x3b1, 0x3b3, 0x3b5, 0x3b7, 0x3b8, 0x3ba, 0x3bc, 0x3bd, 0x3bf, 0x3c1, 0x3c3, 0x3c4, 0x3c6, 0x3c8, 0x3ca, 0x3cb, 0x3cd, // The last note has an incomplete range, and loops round back to // the start. Note that the last value is actually a buffer overrun // and does not fit with the other values. 0x3cf, 0x3d1, 0x3d2, 0x3d4, 0x3d6, 0x3d8, 0x3da, 0x3db, // 18 0x3dd, 0x3df, 0x3e1, 0x3e3, 0x3e4, 0x3e6, 0x3e8, 0x3ea, 0x3ec, 0x3ed, 0x3ef, 0x3f1, 0x3f3, 0x3f5, 0x3f6, 0x3f8, 0x3fa, 0x3fc, 0x3fe, 0x36c, }; void OPLio::WriteFrequency(uint32_t channel, uint32_t note, uint32_t pitch, uint32_t keyon) { int octave = 0; int j = (note << 5) + pitch; if (j < 0) { j = 0; } else if (j >= 284) { j -= 284; octave = j / (32*12); if (octave > 7) { octave = 7; } j = (j % (32*12)) + 284; } int i = frequencies[j] | (octave << 10); WriteValue (OPL_REGS_FREQ_1, channel, (uint8_t)i); WriteValue (OPL_REGS_FREQ_2, channel, (uint8_t)(i>>8)|(keyon<<5)); } //---------------------------------------------------------------------------- // // // //---------------------------------------------------------------------------- static uint8_t volumetable[128] = { 0, 1, 3, 5, 6, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 36, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 55, 57, 59, 60, 61, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 84, 85, 86, 87, 88, 89, 90, 91, 92, 92, 93, 94, 95, 96, 96, 97, 98, 99, 99, 100, 101, 101, 102, 103, 103, 104, 105, 105, 106, 107, 107, 108, 109, 109, 110, 110, 111, 112, 112, 113, 113, 114, 114, 115, 115, 116, 117, 117, 118, 118, 119, 119, 120, 120, 121, 121, 122, 122, 123, 123, 123, 124, 124, 125, 125, 126, 126, 127, 127}; void OPLio::WriteVolume(uint32_t channel, struct GenMidiVoice *voice, uint32_t vol1, uint32_t vol2, uint32_t vol3) { if (voice != nullptr) { uint32_t full_volume = volumetable[std::min<uint32_t>(127, (uint32_t)((uint64_t)vol1*vol2*vol3) / (127 * 127))]; int reg_volume2 = ((0x3f - voice->carrier.level) * full_volume) / 128; reg_volume2 = (0x3f - reg_volume2) | voice->carrier.scale; WriteOperator(OPL_REGS_LEVEL, channel, 1, reg_volume2); int reg_volume1; if (voice->feedback & 0x01) { // Chocolate Doom says: // If we are using non-modulated feedback mode, we must set the // volume for both voices. // Note that the same register volume value is written for // both voices, always calculated from the carrier's level // value. // But Muslib does it differently than the comment above states. Which one is correct? reg_volume1 = ((0x3f - voice->modulator.level) * full_volume) / 128; reg_volume1 = (0x3f - reg_volume1) | voice->modulator.scale; } else { reg_volume1 = voice->modulator.level | voice->modulator.scale; } WriteOperator(OPL_REGS_LEVEL, channel, 0,reg_volume1); } } //---------------------------------------------------------------------------- // // // //---------------------------------------------------------------------------- void OPLio::WritePan(uint32_t channel, struct GenMidiVoice *voice, int pan) { if (voice != 0) { WriteValue(OPL_REGS_FEEDBACK, channel, voice->feedback | (pan >= 28 ? 0x20 : 0) | (pan <= 100 ? 0x10 : 0)); // Set real panning if we're using emulated chips. int chanper = IsOPL3 ? OPL3_NUM_VOICES : OPL_NUM_VOICES; int which = channel / chanper; if (chips[which] != NULL) { // This is the MIDI-recommended pan formula. 0 and 1 are // both hard left so that 64 can be perfectly center. double level = (pan <= 1) ? 0 : (pan - 1) / 126.0; chips[which]->SetPanning(channel % chanper, (float)cos(HALF_PI * level), (float)sin(HALF_PI * level)); } } } //---------------------------------------------------------------------------- // // // //---------------------------------------------------------------------------- void OPLio::WriteTremolo(uint32_t channel, struct GenMidiVoice *voice, bool vibrato) { int val1 = voice->modulator.tremolo, val2 = voice->carrier.tremolo; if (vibrato) { if (voice->feedback & 1) val1 |= 0x40; val2 |= 0x40; } WriteOperator(OPL_REGS_TREMOLO, channel, 1, val2); WriteOperator(OPL_REGS_TREMOLO, channel, 0, val1); } //---------------------------------------------------------------------------- // // // //---------------------------------------------------------------------------- void OPLio::MuteChannel(uint32_t channel) { WriteOperator(OPL_REGS_LEVEL, channel, 1, NO_VOLUME); WriteOperator(OPL_REGS_ATTACK, channel, 1, MAX_ATTACK_DECAY); WriteOperator(OPL_REGS_SUSTAIN, channel, 1, NO_SUSTAIN_MAX_RELEASE); WriteOperator(OPL_REGS_LEVEL, channel, 0, NO_VOLUME); WriteOperator(OPL_REGS_ATTACK, channel, 0, MAX_ATTACK_DECAY); WriteOperator(OPL_REGS_SUSTAIN, channel, 0, NO_SUSTAIN_MAX_RELEASE); } //---------------------------------------------------------------------------- // // // //---------------------------------------------------------------------------- void OPLio::LoadOperatorData(uint32_t channel, int op_index, genmidi_op_t *data, bool max_level, bool vibrato) { // The scale and level fields must be combined for the level register. // For the carrier wave we always set the maximum level. int level = data->scale; if (max_level) level |= 0x3f; else level |= data->level; int tremolo = data->tremolo; if (vibrato) tremolo |= 0x40; WriteOperator(OPL_REGS_LEVEL, channel, op_index, level); WriteOperator(OPL_REGS_TREMOLO, channel, op_index, tremolo); WriteOperator(OPL_REGS_ATTACK, channel, op_index, data->attack); WriteOperator(OPL_REGS_SUSTAIN, channel, op_index, data->sustain); WriteOperator(OPL_REGS_WAVEFORM, channel, op_index, data->waveform); } //---------------------------------------------------------------------------- // // // //---------------------------------------------------------------------------- void OPLio::WriteInstrument(uint32_t channel, struct GenMidiVoice *voice, bool vibrato) { bool modulating = (voice->feedback & 0x01) == 0; // Doom loads the second operator first, then the first. // The carrier is set to minimum volume until the voice volume // is set later. If we are not using modulating mode, we must set both to minimum volume. LoadOperatorData(channel, 1, &voice->carrier, true, vibrato); LoadOperatorData(channel, 0, &voice->modulator, !modulating, vibrato && modulating); // The feedback register is written by the calling code. }