/* ** dobject.h ** **--------------------------------------------------------------------------- ** Copyright 1998-2008 Randy Heit ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **--------------------------------------------------------------------------- ** */ #ifndef __DOBJECT_H__ #define __DOBJECT_H__ #include #include #include "m_alloc.h" #include "vectors.h" #include "name.h" #include "palentry.h" #include "textureid.h" class PClass; class PType; class FSerializer; class FSoundID; class DObject; /* class DConsoleCommand; class DConsoleAlias; class DSeqNode; class DSeqActorNode; class DSeqPolyNode; class DSeqSectorNode; class DThinker; class AActor; class DPolyAction; class DMovePoly; class DPolyDoor; class DRotatePoly; class DPusher; class DScroller; class DSectorEffect; class DLighting; class DFireFlicker; class DFlicker; class DGlow; class DGlow2; class DLightFlash; class DPhased; class DStrobe; class DMover; class DElevator; class DMovingCeiling; class DCeiling; class DDoor; class DMovingFloor; class DFloor; class DFloorWaggle; class DPlat; class DPillar; */ class PClassActor; #define RUNTIME_CLASS_CASTLESS(cls) (cls::RegistrationInfo.MyClass) // Passed a native class name, returns a PClass representing that class #define RUNTIME_CLASS(cls) ((typename cls::MetaClass *)RUNTIME_CLASS_CASTLESS(cls)) // Like above, but returns the true type of the meta object #define NATIVE_TYPE(object) (object->StaticType()) // Passed an object, returns the type of the C++ class representing the object // Enumerations for the meta classes created by ClassReg::RegisterClass() struct ClassReg { PClass *MyClass; const char *Name; ClassReg *ParentType; ClassReg *_VMExport; const size_t *Pointers; void (*ConstructNative)(void *); void(*InitNatives)(); unsigned int SizeOf; PClass *RegisterClass(); void SetupClass(PClass *cls); }; enum EInPlace { EC_InPlace }; #define DECLARE_ABSTRACT_CLASS(cls,parent) \ public: \ PClass *StaticType() const override; \ static ClassReg RegistrationInfo, * const RegistrationInfoPtr; \ typedef parent Super; \ private: \ typedef cls ThisClass; #define DECLARE_ABSTRACT_CLASS_WITH_META(cls,parent,meta) \ DECLARE_ABSTRACT_CLASS(cls,parent) \ public: \ typedef meta MetaClass; \ MetaClass *GetClass() const { return static_cast(DObject::GetClass()); } #define DECLARE_CLASS(cls,parent) \ DECLARE_ABSTRACT_CLASS(cls,parent) \ private: static void InPlaceConstructor (void *mem); #define DECLARE_CLASS_WITH_META(cls,parent,meta) \ DECLARE_ABSTRACT_CLASS_WITH_META(cls,parent,meta) \ private: static void InPlaceConstructor (void *mem); #define HAS_OBJECT_POINTERS \ static const size_t PointerOffsets[]; #if defined(_MSC_VER) # pragma section(".creg$u",read) # define _DECLARE_TI(cls) __declspec(allocate(".creg$u")) ClassReg * const cls::RegistrationInfoPtr = &cls::RegistrationInfo; #else # define _DECLARE_TI(cls) ClassReg * const cls::RegistrationInfoPtr __attribute__((section(SECTION_CREG))) = &cls::RegistrationInfo; #endif #define _IMP_PCLASS(cls, ptrs, create) \ ClassReg cls::RegistrationInfo = {\ nullptr, \ #cls, \ &cls::Super::RegistrationInfo, \ nullptr, \ ptrs, \ create, \ nullptr, \ sizeof(cls) }; \ _DECLARE_TI(cls) \ PClass *cls::StaticType() const { return RegistrationInfo.MyClass; } #define IMPLEMENT_CLASS(cls, isabstract, ptrs) \ _X_CONSTRUCTOR_##isabstract(cls) \ _IMP_PCLASS(cls, _X_POINTERS_##ptrs(cls), _X_ABSTRACT_##isabstract(cls)) // Taking the address of a field in an object at address > 0 instead of // address 0 keeps GCC from complaining about possible misuse of offsetof. // Using 8 to avoid unaligned pointer use. #define IMPLEMENT_POINTERS_START(cls) const size_t cls::PointerOffsets[] = { #define IMPLEMENT_POINTER(field) ((size_t)&((ThisClass*)8)->field) - 8, #define IMPLEMENT_POINTERS_END ~(size_t)0 }; // Possible arguments for the IMPLEMENT_CLASS macro #define _X_POINTERS_true(cls) cls::PointerOffsets #define _X_POINTERS_false(cls) nullptr #define _X_FIELDS_true(cls) nullptr #define _X_FIELDS_false(cls) nullptr #define _X_CONSTRUCTOR_true(cls) #define _X_CONSTRUCTOR_false(cls) void cls::InPlaceConstructor(void *mem) { new((EInPlace *)mem) cls; } #define _X_ABSTRACT_true(cls) nullptr #define _X_ABSTRACT_false(cls) cls::InPlaceConstructor #define _X_VMEXPORT_true(cls) nullptr #define _X_VMEXPORT_false(cls) nullptr #include "dobjgc.h" class AActor; class DObject { public: virtual PClass *StaticType() const { return RegistrationInfo.MyClass; } static ClassReg RegistrationInfo, * const RegistrationInfoPtr; static void InPlaceConstructor (void *mem); typedef PClass MetaClass; private: typedef DObject ThisClass; protected: // Per-instance variables. There are four. #ifndef NDEBUG public: enum { MAGIC_ID = 0x1337cafe }; uint32_t MagicID = MAGIC_ID; // only used by the VM for checking native function parameter types. #endif private: PClass *Class; // This object's type public: DObject *ObjNext; // Keep track of all allocated objects DObject *GCNext; // Next object in this collection list uint32_t ObjectFlags; // Flags for this object void *ScriptVar(FName field, PType *type); protected: public: DObject (); DObject (PClass *inClass); virtual ~DObject (); inline bool IsKindOf (const PClass *base) const; inline bool IsKindOf(FName base) const; inline bool IsA (const PClass *type) const; void SerializeUserVars(FSerializer &arc); virtual void Serialize(FSerializer &arc); // Releases the object from the GC, letting the caller care of any maintenance. void Release(); // For catching Serialize functions in derived classes // that don't call their base class. void CheckIfSerialized () const; virtual void OnDestroy() {} void Destroy(); // Add other types as needed. inline bool &BoolVar(FName field); inline int &IntVar(FName field); inline FTextureID &TextureIDVar(FName field); inline FSoundID &SoundVar(FName field); inline PalEntry &ColorVar(FName field); inline FName &NameVar(FName field); inline double &FloatVar(FName field); inline DAngle &AngleVar(FName field); inline FString &StringVar(FName field); template T*& PointerVar(FName field); // This is only needed for swapping out PlayerPawns and absolutely nothing else! virtual size_t PointerSubstitution (DObject *old, DObject *notOld); PClass *GetClass() const { assert(Class != nullptr); return Class; } void SetClass (PClass *inClass) { Class = inClass; } private: struct nonew { }; void *operator new(size_t len, nonew&) { return M_Calloc(len, 1); } public: void operator delete (void *mem, nonew&) { M_Free(mem); } void operator delete (void *mem) { M_Free(mem); } // GC fiddling // An object is white if either white bit is set. bool IsWhite() const { return !!(ObjectFlags & OF_WhiteBits); } bool IsBlack() const { return !!(ObjectFlags & OF_Black); } // An object is gray if it isn't white or black. bool IsGray() const { return !(ObjectFlags & OF_MarkBits); } // An object is dead if it's the other white. bool IsDead() const { return !!(ObjectFlags & GC::OtherWhite() & OF_WhiteBits); } void ChangeWhite() { ObjectFlags ^= OF_WhiteBits; } void MakeWhite() { ObjectFlags = (ObjectFlags & ~OF_MarkBits) | (GC::CurrentWhite & OF_WhiteBits); } void White2Gray() { ObjectFlags &= ~OF_WhiteBits; } void Black2Gray() { ObjectFlags &= ~OF_Black; } void Gray2Black() { ObjectFlags |= OF_Black; } // Marks all objects pointed to by this one. Returns the (approximate) // amount of memory used by this object. virtual size_t PropagateMark(); protected: // This form of placement new and delete is for use *only* by PClass's // CreateNew() method. Do not use them for some other purpose. void *operator new(size_t, EInPlace *mem) { return (void *)mem; } void operator delete (void *mem, EInPlace *) { M_Free (mem); } template friend T* Create(Args&&... args); friend class JitCompiler; }; // This is the only method aside from calling CreateNew that should be used for creating DObjects // to ensure that the Class pointer is always set. template T* Create(Args&&... args) { DObject::nonew nono; T *object = new(nono) T(std::forward(args)...); if (object != nullptr) { object->SetClass(RUNTIME_CLASS(T)); assert(object->GetClass() != nullptr); // beware of objects that get created before the type system is up. } return object; } // When you write to a pointer to an Object, you must call this for // proper bookkeeping in case the Object holding this pointer has // already been processed by the GC. static inline void GC::WriteBarrier(DObject *pointing, DObject *pointed) { if (pointed != NULL && pointed->IsWhite() && pointing->IsBlack()) { Barrier(pointing, pointed); } } static inline void GC::WriteBarrier(DObject *pointed) { if (pointed != NULL && State == GCS_Propagate && pointed->IsWhite()) { Barrier(NULL, pointed); } } #include "memarena.h" extern FMemArena ClassDataAllocator; #include "symbols.h" #include "dobjtype.h" inline bool DObject::IsKindOf (const PClass *base) const { return base->IsAncestorOf (GetClass ()); } inline bool DObject::IsKindOf(FName base) const { return GetClass()->IsDescendantOf(base); } inline bool DObject::IsA (const PClass *type) const { return (type == GetClass()); } template T *dyn_cast(DObject *p) { if (p != NULL && p->IsKindOf(RUNTIME_CLASS_CASTLESS(T))) { return static_cast(p); } return NULL; } template const T *dyn_cast(const DObject *p) { return dyn_cast(const_cast(p)); } inline bool &DObject::BoolVar(FName field) { return *(bool*)ScriptVar(field, nullptr); } inline int &DObject::IntVar(FName field) { return *(int*)ScriptVar(field, nullptr); } inline FTextureID &DObject::TextureIDVar(FName field) { return *(FTextureID*)ScriptVar(field, nullptr); } inline FSoundID &DObject::SoundVar(FName field) { return *(FSoundID*)ScriptVar(field, nullptr); } inline PalEntry &DObject::ColorVar(FName field) { return *(PalEntry*)ScriptVar(field, nullptr); } inline FName &DObject::NameVar(FName field) { return *(FName*)ScriptVar(field, nullptr); } inline double &DObject::FloatVar(FName field) { return *(double*)ScriptVar(field, nullptr); } inline DAngle &DObject::AngleVar(FName field) { return *(DAngle*)ScriptVar(field, nullptr); } template inline T *&DObject::PointerVar(FName field) { return *(T**)ScriptVar(field, nullptr); // pointer check is more tricky and for the handful of uses in the DECORATE parser not worth the hassle. } #endif //__DOBJECT_H__