/* ** nodebuild_utility.cpp ** ** Miscellaneous node builder utility functions. ** **--------------------------------------------------------------------------- ** Copyright 2002-2006 Randy Heit ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** 4. When not used as part of ZDoom or a ZDoom derivative, this code will be ** covered by the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or (at ** your option) any later version. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **--------------------------------------------------------------------------- ** */ #include <stdlib.h> #ifdef _MSC_VER #include <malloc.h> #endif #include <string.h> #include "nodebuild.h" #include "printf.h" #include "m_fixed.h" #include "m_bbox.h" #if 0 #define D(x) x #else #define D(x) do{}while(0) #endif #if 0 #define P(x) x #else #define P(x) do{}while(0) #endif angle_t FNodeBuilder::PointToAngle (fixed_t x, fixed_t y) { const double rad2bam = double(1<<30) / M_PI; double ang = g_atan2 (double(y), double(x)); // Convert to signed first since negative double to unsigned is undefined. return angle_t(int(ang * rad2bam)) << 1; } void FNodeBuilder::FindUsedVertices (vertex_t *oldverts, int max) { int *map = new int[max]; int i; FPrivVert newvert; memset (&map[0], -1, sizeof(int)*max); for (i = 0; i < Level.NumLines; ++i) { ptrdiff_t v1 = Level.Lines[i].v1 - oldverts; ptrdiff_t v2 = Level.Lines[i].v2 - oldverts; if (map[v1] == -1) { newvert.x = oldverts[v1].fixX(); newvert.y = oldverts[v1].fixY(); map[v1] = VertexMap->SelectVertexExact (newvert); } if (map[v2] == -1) { newvert.x = oldverts[v2].fixX(); newvert.y = oldverts[v2].fixY(); map[v2] = VertexMap->SelectVertexExact (newvert); } Level.Lines[i].v1 = (vertex_t *)(size_t)map[v1]; Level.Lines[i].v2 = (vertex_t *)(size_t)map[v2]; } OldVertexTable = map; } // Retrieves the original vertex -> current vertex table. // Doing so prevents the node builder from freeing it. const int *FNodeBuilder::GetOldVertexTable() { int *table = OldVertexTable; OldVertexTable = NULL; return table; } // For every sidedef in the map, create a corresponding seg. void FNodeBuilder::MakeSegsFromSides () { int i, j; if (Level.NumLines == 0) { I_Error ("Map is empty.\n"); } for (i = 0; i < Level.NumLines; ++i) { if (Level.Lines[i].sidedef[0] != NULL) { CreateSeg (i, 0); } else { Printf ("Linedef %d does not have a front side.\n", i); } if (Level.Lines[i].sidedef[1] != NULL) { j = CreateSeg (i, 1); if (Level.Lines[i].sidedef[0] != NULL) { Segs[j-1].partner = j; Segs[j].partner = j-1; } } } } int FNodeBuilder::CreateSeg (int linenum, int sidenum) { FPrivSeg seg; int segnum; seg.next = UINT_MAX; seg.loopnum = 0; seg.partner = UINT_MAX; seg.hashnext = NULL; seg.planefront = false; seg.planenum = UINT_MAX; seg.storedseg = UINT_MAX; if (sidenum == 0) { // front seg.frontsector = Level.Lines[linenum].frontsector; seg.backsector = Level.Lines[linenum].backsector; seg.v1 = (int)(size_t)Level.Lines[linenum].v1; seg.v2 = (int)(size_t)Level.Lines[linenum].v2; } else { // back seg.frontsector = Level.Lines[linenum].backsector; seg.backsector = Level.Lines[linenum].frontsector; seg.v2 = (int)(size_t)Level.Lines[linenum].v1; seg.v1 = (int)(size_t)Level.Lines[linenum].v2; } seg.linedef = linenum; side_t *sd = Level.Lines[linenum].sidedef[sidenum]; seg.sidedef = sd != NULL? sd->Index() : int(NO_SIDE); seg.nextforvert = Vertices[seg.v1].segs; seg.nextforvert2 = Vertices[seg.v2].segs2; segnum = (int)Segs.Push (seg); Vertices[seg.v1].segs = segnum; Vertices[seg.v2].segs2 = segnum; D(Printf(PRINT_LOG, "Seg %4d: From line %d, side %s (%5d,%5d)-(%5d,%5d) [%08x,%08x]-[%08x,%08x]\n", segnum, linenum, sidenum ? "back " : "front", Vertices[seg.v1].x>>16, Vertices[seg.v1].y>>16, Vertices[seg.v2].x>>16, Vertices[seg.v2].y>>16, Vertices[seg.v1].x, Vertices[seg.v1].y, Vertices[seg.v2].x, Vertices[seg.v2].y)); return segnum; } // For every seg, create FPrivSegs and FPrivVerts. void FNodeBuilder::AddSegs(seg_t *segs, int numsegs) { assert(numsegs > 0); for (int i = 0; i < numsegs; ++i) { FPrivSeg seg; FPrivVert vert; int segnum; seg.next = UINT_MAX; seg.loopnum = 0; seg.partner = UINT_MAX; seg.hashnext = NULL; seg.planefront = false; seg.planenum = UINT_MAX; seg.storedseg = UINT_MAX; seg.frontsector = segs[i].frontsector; seg.backsector = segs[i].backsector; vert.x = segs[i].v1->fixX(); vert.y = segs[i].v1->fixY(); seg.v1 = VertexMap->SelectVertexExact(vert); vert.x = segs[i].v2->fixX(); vert.y = segs[i].v2->fixY(); seg.v2 = VertexMap->SelectVertexExact(vert); seg.linedef = segs[i].linedef->Index(); seg.sidedef = segs[i].sidedef != NULL ? segs[i].sidedef->Index() : int(NO_SIDE); seg.nextforvert = Vertices[seg.v1].segs; seg.nextforvert2 = Vertices[seg.v2].segs2; segnum = (int)Segs.Push(seg); Vertices[seg.v1].segs = segnum; Vertices[seg.v2].segs2 = segnum; } } // Group colinear segs together so that only one seg per line needs to be checked // by SelectSplitter(). void FNodeBuilder::GroupSegPlanes () { const int bucketbits = 12; FPrivSeg *buckets[1<<bucketbits] = { 0 }; int i, planenum; for (i = 0; i < (int)Segs.Size(); ++i) { FPrivSeg *seg = &Segs[i]; seg->next = i+1; seg->hashnext = NULL; } Segs[Segs.Size()-1].next = UINT_MAX; for (i = planenum = 0; i < (int)Segs.Size(); ++i) { FPrivSeg *seg = &Segs[i]; fixed_t x1 = Vertices[seg->v1].x; fixed_t y1 = Vertices[seg->v1].y; fixed_t x2 = Vertices[seg->v2].x; fixed_t y2 = Vertices[seg->v2].y; angle_t ang = PointToAngle (x2 - x1, y2 - y1); if (ang >= 1u<<31) ang += 1u<<31; FPrivSeg *check = buckets[ang >>= 31-bucketbits]; while (check != NULL) { fixed_t cx1 = Vertices[check->v1].x; fixed_t cy1 = Vertices[check->v1].y; fixed_t cdx = Vertices[check->v2].x - cx1; fixed_t cdy = Vertices[check->v2].y - cy1; if (PointOnSide (x1, y1, cx1, cy1, cdx, cdy) == 0 && PointOnSide (x2, y2, cx1, cy1, cdx, cdy) == 0) { break; } check = check->hashnext; } if (check != NULL) { seg->planenum = check->planenum; const FSimpleLine *line = &Planes[seg->planenum]; if (line->dx != 0) { if ((line->dx > 0 && x2 > x1) || (line->dx < 0 && x2 < x1)) { seg->planefront = true; } else { seg->planefront = false; } } else { if ((line->dy > 0 && y2 > y1) || (line->dy < 0 && y2 < y1)) { seg->planefront = true; } else { seg->planefront = false; } } } else { seg->hashnext = buckets[ang]; buckets[ang] = seg; seg->planenum = planenum++; seg->planefront = true; FSimpleLine pline = { Vertices[seg->v1].x, Vertices[seg->v1].y, Vertices[seg->v2].x - Vertices[seg->v1].x, Vertices[seg->v2].y - Vertices[seg->v1].y }; Planes.Push (pline); } } D(Printf ("%d planes from %d segs\n", planenum, Segs.Size())); PlaneChecked.Reserve ((planenum + 7) / 8); } // Just create one plane per seg. Should be good enough for mini BSPs. void FNodeBuilder::GroupSegPlanesSimple() { Planes.Resize(Segs.Size()); for (int i = 0; i < (int)Segs.Size(); ++i) { FPrivSeg *seg = &Segs[i]; FSimpleLine *pline = &Planes[i]; seg->next = i+1; seg->hashnext = NULL; seg->planenum = i; seg->planefront = true; pline->x = Vertices[seg->v1].x; pline->y = Vertices[seg->v1].y; pline->dx = Vertices[seg->v2].x - Vertices[seg->v1].x; pline->dy = Vertices[seg->v2].y - Vertices[seg->v1].y; } Segs.Last().next = UINT_MAX; PlaneChecked.Reserve((Segs.Size() + 7) / 8); } void FNodeBuilder::AddSegToBBox (fixed_t bbox[4], const FPrivSeg *seg) { FPrivVert *v1 = &Vertices[seg->v1]; FPrivVert *v2 = &Vertices[seg->v2]; if (v1->x < bbox[BOXLEFT]) bbox[BOXLEFT] = v1->x; if (v1->x > bbox[BOXRIGHT]) bbox[BOXRIGHT] = v1->x; if (v1->y < bbox[BOXBOTTOM]) bbox[BOXBOTTOM] = v1->y; if (v1->y > bbox[BOXTOP]) bbox[BOXTOP] = v1->y; if (v2->x < bbox[BOXLEFT]) bbox[BOXLEFT] = v2->x; if (v2->x > bbox[BOXRIGHT]) bbox[BOXRIGHT] = v2->x; if (v2->y < bbox[BOXBOTTOM]) bbox[BOXBOTTOM] = v2->y; if (v2->y > bbox[BOXTOP]) bbox[BOXTOP] = v2->y; } void FNodeBuilder::FLevel::FindMapBounds() { double minx, maxx, miny, maxy; minx = maxx = Vertices[0].fX(); miny = maxy = Vertices[0].fY(); for (int i = 1; i < NumLines; ++i) { for (int j = 0; j < 2; j++) { vertex_t *v = (j == 0 ? Lines[i].v1 : Lines[i].v2); if (v->fX() < minx) minx = v->fX(); else if (v->fX() > maxx) maxx = v->fX(); if (v->fY() < miny) miny = v->fY(); else if (v->fY() > maxy) maxy = v->fY(); } } MinX = FLOAT2FIXED(minx); MinY = FLOAT2FIXED(miny); MaxX = FLOAT2FIXED(maxx); MaxY = FLOAT2FIXED(maxy); } FNodeBuilder::IVertexMap::~IVertexMap() { } FNodeBuilder::FVertexMap::FVertexMap (FNodeBuilder &builder, fixed_t minx, fixed_t miny, fixed_t maxx, fixed_t maxy) : MyBuilder(builder) { MinX = minx; MinY = miny; BlocksWide = int(((double(maxx) - minx + 1) + (BLOCK_SIZE - 1)) / BLOCK_SIZE); BlocksTall = int(((double(maxy) - miny + 1) + (BLOCK_SIZE - 1)) / BLOCK_SIZE); MaxX = MinX + fixed64_t(BlocksWide) * BLOCK_SIZE - 1; MaxY = MinY + fixed64_t(BlocksTall) * BLOCK_SIZE - 1; VertexGrid = new TArray<int>[BlocksWide * BlocksTall]; } FNodeBuilder::FVertexMap::~FVertexMap () { delete[] VertexGrid; } int FNodeBuilder::FVertexMap::SelectVertexExact (FNodeBuilder::FPrivVert &vert) { TArray<int> &block = VertexGrid[GetBlock (vert.x, vert.y)]; FPrivVert *vertices = &MyBuilder.Vertices[0]; unsigned int i; for (i = 0; i < block.Size(); ++i) { if (vertices[block[i]].x == vert.x && vertices[block[i]].y == vert.y) { return block[i]; } } // Not present: add it! return InsertVertex (vert); } int FNodeBuilder::FVertexMap::SelectVertexClose (FNodeBuilder::FPrivVert &vert) { TArray<int> &block = VertexGrid[GetBlock (vert.x, vert.y)]; FPrivVert *vertices = &MyBuilder.Vertices[0]; unsigned int i; for (i = 0; i < block.Size(); ++i) { #if VERTEX_EPSILON <= 1 if (vertices[block[i]].x == vert.x && vertices[block[i]].y == vert.y) #else if (abs(vertices[block[i]].x - vert.x) < VERTEX_EPSILON && abs(vertices[block[i]].y - vert.y) < VERTEX_EPSILON) #endif { return block[i]; } } // Not present: add it! return InsertVertex (vert); } int FNodeBuilder::FVertexMap::InsertVertex (FNodeBuilder::FPrivVert &vert) { int vertnum; vert.segs = UINT_MAX; vert.segs2 = UINT_MAX; vertnum = (int)MyBuilder.Vertices.Push (vert); // If a vertex is near a block boundary, then it will be inserted on // both sides of the boundary so that SelectVertexClose can find // it by checking in only one block. fixed64_t minx = MAX (MinX, fixed64_t(vert.x) - VERTEX_EPSILON); fixed64_t maxx = MIN (MaxX, fixed64_t(vert.x) + VERTEX_EPSILON); fixed64_t miny = MAX (MinY, fixed64_t(vert.y) - VERTEX_EPSILON); fixed64_t maxy = MIN (MaxY, fixed64_t(vert.y) + VERTEX_EPSILON); int blk[4] = { GetBlock (minx, miny), GetBlock (maxx, miny), GetBlock (minx, maxy), GetBlock (maxx, maxy) }; unsigned int blkcount[4] = { VertexGrid[blk[0]].Size(), VertexGrid[blk[1]].Size(), VertexGrid[blk[2]].Size(), VertexGrid[blk[3]].Size() }; for (int i = 0; i < 4; ++i) { if (VertexGrid[blk[i]].Size() == blkcount[i]) { VertexGrid[blk[i]].Push (vertnum); } } return vertnum; } FNodeBuilder::FVertexMapSimple::FVertexMapSimple(FNodeBuilder &builder) : MyBuilder(builder) { } int FNodeBuilder::FVertexMapSimple::SelectVertexExact(FNodeBuilder::FPrivVert &vert) { FPrivVert *verts = &MyBuilder.Vertices[0]; unsigned int stop = MyBuilder.Vertices.Size(); for (unsigned int i = 0; i < stop; ++i) { if (verts[i].x == vert.x && verts[i].y == vert.y) { return i; } } // Not present: add it! return InsertVertex(vert); } int FNodeBuilder::FVertexMapSimple::SelectVertexClose(FNodeBuilder::FPrivVert &vert) { FPrivVert *verts = &MyBuilder.Vertices[0]; unsigned int stop = MyBuilder.Vertices.Size(); for (unsigned int i = 0; i < stop; ++i) { #if VERTEX_EPSILON <= 1 if (verts[i].x == vert.x && verts[i].y == y) #else if (abs(verts[i].x - vert.x) < VERTEX_EPSILON && abs(verts[i].y - vert.y) < VERTEX_EPSILON) #endif { return i; } } // Not present: add it! return InsertVertex (vert); } int FNodeBuilder::FVertexMapSimple::InsertVertex (FNodeBuilder::FPrivVert &vert) { vert.segs = UINT_MAX; vert.segs2 = UINT_MAX; return (int)MyBuilder.Vertices.Push (vert); }