/* ** hw_bunchdrawer.cpp ** **--------------------------------------------------------------------------- ** Copyright 2008-2021 Christoph Oelckers ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **--------------------------------------------------------------------------- ** */ #include "hw_drawinfo.h" #include "hw_bunchdrawer.h" #include "hw_clipper.h" #include "hw_clock.h" #include "hw_drawstructs.h" #include "automap.h" #include "gamefuncs.h" #include "hw_portal.h" #include "gamestruct.h" #include "hw_voxels.h" #include "mapinfo.h" #include "gamecontrol.h" #include "hw_sections.h" extern TArray blockingpairs[MAXWALLS]; //========================================================================== // // // //========================================================================== void BunchDrawer::Init(HWDrawInfo *_di, Clipper* c, vec2_t& view, binangle a1, binangle a2) { ang1 = a1; ang2 = a2; angrange = ang2 - ang1; di = _di; clipper = c; viewx = view.x * (1/ 16.f); viewy = view.y * -(1/ 16.f); iview = view; StartScene(); clipper->SetViewpoint(view); gcosang = bamang(di->Viewpoint.RotAngle).fcos(); gsinang = bamang(di->Viewpoint.RotAngle).fsin(); for (int i = 0; i < numwalls; i++) { // Precalculate the clip angles to avoid doing this repeatedly during level traversal. // Reverse the orientation so that startangle and endangle are properly ordered. wall[i].clipangle = clipper->PointToAngle(wall[i].pos); } memset(sectionstartang, -1, sizeof(sectionstartang)); memset(sectionendang, -1, sizeof(sectionendang)); } //========================================================================== // // // //========================================================================== void BunchDrawer::StartScene() { LastBunch = 0; StartTime = I_msTime(); Bunches.Clear(); CompareData.Clear(); gotsector.Zero(); gotsection2.Zero(); gotwall.Zero(); blockwall.Zero(); } //========================================================================== // // // //========================================================================== bool BunchDrawer::StartBunch(int sectnum, int linenum, binangle startan, binangle endan, bool portal) { FBunch* bunch = &Bunches[LastBunch = Bunches.Reserve(1)]; bunch->sectnum = sectnum; bunch->startline = bunch->endline = linenum; bunch->startangle = startan; bunch->endangle = endan; bunch->portal = portal; assert(bunch->endangle.asbam() > bunch->startangle.asbam()); return bunch->endangle != angrange; } //========================================================================== // // // //========================================================================== bool BunchDrawer::AddLineToBunch(int line, binangle newan) { Bunches[LastBunch].endline++; assert(newan.asbam() > Bunches[LastBunch].endangle.asbam()); Bunches[LastBunch].endangle = newan; assert(Bunches[LastBunch].endangle.asbam() > Bunches[LastBunch].startangle.asbam()); return Bunches[LastBunch].endangle != angrange; } //========================================================================== // // // //========================================================================== void BunchDrawer::DeleteBunch(int index) { Bunches[index] = Bunches.Last(); Bunches.Pop(); } bool BunchDrawer::CheckClip(walltype* wal) { auto pt2 = &wall[wal->point2]; sectortype* backsector = §or[wal->nextsector]; sectortype* frontsector = §or[wall[wal->nextwall].nextsector]; // if one plane is sky on both sides, the line must not clip. if (frontsector->ceilingstat & backsector->ceilingstat & CSTAT_SECTOR_SKY) return false; if (frontsector->floorstat & backsector->floorstat & CSTAT_SECTOR_SKY) return false; float bs_floorheight1; float bs_floorheight2; float bs_ceilingheight1; float bs_ceilingheight2; float fs_floorheight1; float fs_floorheight2; float fs_ceilingheight1; float fs_ceilingheight2; // Mirrors and horizons always block the view //if (linedef->special==Line_Mirror || linedef->special==Line_Horizon) return true; PlanesAtPoint(frontsector, wal->x, wal->y, &fs_ceilingheight1, &fs_floorheight1); PlanesAtPoint(frontsector, pt2->x, pt2->y, &fs_ceilingheight2, &fs_floorheight2); PlanesAtPoint(backsector, wal->x, wal->y, &bs_ceilingheight1, &bs_floorheight1); PlanesAtPoint(backsector, pt2->x, pt2->y, &bs_ceilingheight2, &bs_floorheight2); // now check for closed sectors! No idea if we really need the sky checks. We'll see. if (bs_ceilingheight1 <= fs_floorheight1 && bs_ceilingheight2 <= fs_floorheight2) { // backsector's ceiling is below frontsector's floor. return true; } if (fs_ceilingheight1 <= bs_floorheight1 && fs_ceilingheight2 <= bs_floorheight2) { // backsector's floor is above frontsector's ceiling return true; } if (bs_ceilingheight1 <= bs_floorheight1 && bs_ceilingheight2 <= bs_floorheight2) { // backsector is closed return true; } return false; } //========================================================================== // // ClipLine // Clips the given segment // //========================================================================== int BunchDrawer::ClipLine(int aline, bool portal) { auto cline = §ionLines[aline]; int section = cline->section; int line = cline->wall; auto startAngleBam = ClipAngle(cline->startpoint); auto endAngleBam = ClipAngle(cline->endpoint); // Back side, i.e. backface culling - read: endAngle <= startAngle! if (startAngleBam.asbam() - endAngleBam.asbam() < ANGLE_180) { return CL_Skip; } if (line >= 0 && blockwall[line]) return CL_Draw; // convert to clipper coordinates and clamp to valid range. int startAngle = startAngleBam.asbam(); int endAngle = endAngleBam.asbam(); if (startAngle < 0) startAngle = 0; if (endAngle < 0 || endAngle > (int)angrange.asbam()) endAngle = angrange.asbam(); // since these values are derived from previous calls of this function they cannot be out of range. int sectStartAngle = sectionstartang[section]; auto sectEndAngle = sectionendang[section]; // check against the maximum possible viewing range of the sector. // Todo: check if this is sufficient or if we really have to do a more costly check against the single visible segments. if (sectStartAngle != -1) { if (sectStartAngle > endAngle || sectEndAngle < startAngle) return CL_Skip; // completely outside the valid range for this sector. if (sectStartAngle > startAngle) startAngle = sectStartAngle; if (sectEndAngle < endAngle) endAngle = sectEndAngle; if (endAngle <= startAngle) return CL_Skip; // can this even happen? } if (!portal && !clipper->IsRangeVisible(startAngle, endAngle)) { return CL_Skip; } auto wal = &wall[line]; if (cline->partner == -1 || (wal->cstat & CSTAT_WALL_1WAY) || CheckClip(wal)) { // one-sided if (!portal) clipper->AddClipRange(startAngle, endAngle); return CL_Draw; } else { if (portal) clipper->RemoveClipRange(startAngle, endAngle); // set potentially visible viewing range for this line's back sector. int nsection = cline->partnersection; if (sectionstartang[nsection] == -1) { sectionstartang[nsection] = startAngle; sectionendang[nsection] = endAngle; } else { if (startAngle < sectionstartang[nsection]) sectionstartang[nsection] = startAngle; if (endAngle > sectionendang[nsection]) sectionendang[nsection] = endAngle; } return CL_Draw | CL_Pass; } } //========================================================================== // // // //========================================================================== void BunchDrawer::ProcessBunch(int bnch) { FBunch* bunch = &Bunches[bnch]; int start = bunch->startline; int end = bunch->endline; ClipWall.Clock(); for (int i = start; i <= end; i++) { bunch = &Bunches[bnch]; // re-get the pointer in case of reallocation. int clipped = ClipLine(i, bunch->portal); if (clipped & CL_Draw) { int ww = sectionLines[i].wall; if (ww != -1) { for (auto p : blockingpairs[ww]) blockwall.Set(sectionLines[p].wall); show2dwall.Set(ww); if (!gotwall[i]) { gotwall.Set(i); ClipWall.Unclock(); Bsp.Unclock(); SetupWall.Clock(); HWWall hwwall; hwwall.Process(di, &wall[ww], §or[bunch->sectnum], wall[ww].nextsector < 0 ? nullptr : §or[wall[ww].nextsector]); rendered_lines++; SetupWall.Unclock(); Bsp.Clock(); ClipWall.Clock(); } } } if (clipped & CL_Pass) { ClipWall.Unclock(); ProcessSection(sectionLines[i].partnersection, false); ClipWall.Clock(); } } ClipWall.Unclock(); } //========================================================================== // // // //========================================================================== int BunchDrawer::WallInFront(int line1, int line2) { int wall1s = sectionLines[line1].startpoint; int wall1e = sectionLines[line1].endpoint; int wall2s = sectionLines[line2].startpoint; int wall2e = sectionLines[line2].endpoint; double x1s = WallStartX(wall1s); double y1s = WallStartY(wall1s); double x1e = WallStartX(wall1e); double y1e = WallStartY(wall1e); double x2s = WallStartX(wall2s); double y2s = WallStartY(wall2s); double x2e = WallStartX(wall2e); double y2e = WallStartY(wall2e); double dx = x1e - x1s; double dy = y1e - y1s; double t1 = PointOnLineSide(x2s, y2s, x1s, y1s, dx, dy); double t2 = PointOnLineSide(x2e, y2e, x1s, y1s, dx, dy); if (t1 == 0) { if (t2 == 0) return(-1); t1 = t2; } if (t2 == 0) t2 = t1; if ((t1 * t2) >= 0) { t2 = PointOnLineSide(viewx, viewy, x1s, y1s, dx, dy); return((t2 * t1) <= 0); } dx = x2e - x2s; dy = y2e - y2s; t1 = PointOnLineSide(x1s, y1s, x2s, y2s, dx, dy); t2 = PointOnLineSide(x1e, y1e, x2s, y2s, dx, dy); if (t1 == 0) { if (t2 == 0) return(-1); t1 = t2; } if (t2 == 0) t2 = t1; if ((t1 * t2) >= 0) { t2 = PointOnLineSide(viewx, viewy, x2s, y2s, dx, dy); return((t2 * t1) > 0); } return(-2); } //========================================================================== // // Rules: // 1. Any bunch can span at most 180°. // 2. 2 bunches can never overlap at both ends // 3. if there is an overlap one of the 2 starting points must be in the // overlapping area. // //========================================================================== int BunchDrawer::BunchInFront(FBunch* b1, FBunch* b2) { binangle anglecheck, endang; if (b2->startangle.asbam() >= b1->startangle.asbam() && b2->startangle.asbam() < b1->endangle.asbam()) { // we have an overlap at b2->startangle anglecheck = b2->startangle; // Find the wall in b1 that overlaps b2->startangle for (int i = b1->startline; i <= b1->endline; i++) { endang = ClipAngle(wall[i].point2); if (endang.asbam() > anglecheck.asbam()) { // found a line int ret = WallInFront(b2->startline, i); return ret; } } } else if (b1->startangle.asbam() >= b2->startangle.asbam() && b1->startangle.asbam() < b2->endangle.asbam()) { // we have an overlap at b1->startangle anglecheck = b1->startangle; // Find the wall in b2 that overlaps b1->startangle for (int i = b2->startline; i <= b2->endline; i++) { endang = ClipAngle(wall[i].point2); if (endang.asbam() > anglecheck.asbam()) { // found a line int ret = WallInFront(i, b1->startline); return ret; } } } // we have no overlap return -1; } //========================================================================== // // // //========================================================================== int BunchDrawer::FindClosestBunch() { int closest = 0; //Almost works, but not quite :( CompareData.Clear(); for (unsigned i = 1; i < Bunches.Size(); i++) { switch (BunchInFront(&Bunches[i], &Bunches[closest])) { case 0: // i is in front closest = i; continue; case 1: // i is behind continue; default: // can't determine CompareData.Push(i); // mark for later comparison continue; } } // we need to do a second pass to see how the marked bunches relate to the currently closest one. for (unsigned i = 0; i < CompareData.Size(); i++) { switch (BunchInFront(&Bunches[CompareData[i]], &Bunches[closest])) { case 0: // is in front closest = CompareData[i]; CompareData[i] = CompareData.Last(); CompareData.Pop(); i = -1; // we need to recheck everything that's still marked. -1 because this will get incremented before being used. continue; case 1: // is behind CompareData[i] = CompareData.Last(); CompareData.Pop(); i--; continue; default: continue; } } //Printf("picked bunch starting at %d\n", Bunches[closest].startline); return closest; } //========================================================================== // // // //========================================================================== void BunchDrawer::ProcessSection(int sectionnum, bool portal) { if (gotsection2[sectionnum]) return; gotsection2.Set(sectionnum); bool inbunch; SetupSprite.Clock(); int z; int sectnum = sections[sectionnum].sector; if (!gotsector[sectnum]) { gotsector.Set(sectnum); SectIterator it(sectnum); while ((z = it.NextIndex()) >= 0) { auto const spr = (uspriteptr_t)&sprite[z]; if ((spr->cstat & CSTAT_SPRITE_INVISIBLE) || spr->xrepeat == 0 || spr->yrepeat == 0) // skip invisible sprites continue; int sx = spr->x - iview.x, sy = spr->y - int(iview.y); // this checks if the sprite is it behind the camera, which will not work if the pitch is high enough to necessitate a FOV of more than 180°. //if ((spr->cstat & CSTAT_SPRITE_ALIGNMENT_MASK) || (hw_models && tile2model[spr->picnum].modelid >= 0) || ((sx * gcosang) + (sy * gsinang) > 0)) { if ((spr->cstat & (CSTAT_SPRITE_ONE_SIDED | CSTAT_SPRITE_ALIGNMENT_MASK)) != (CSTAT_SPRITE_ONE_SIDED | CSTAT_SPRITE_ALIGNMENT_WALL) || (r_voxels && tiletovox[spr->picnum] >= 0 && voxmodels[tiletovox[spr->picnum]]) || (r_voxels && gi->Voxelize(spr->picnum) > -1) || DMulScale(bcos(spr->ang), -sx, bsin(spr->ang), -sy, 6) > 0) if (renderAddTsprite(di->tsprite, di->spritesortcnt, z, sectnum)) break; } } SetupSprite.Unclock(); } if (automapping) show2dsector.Set(sectnum); SetupFlat.Clock(); HWFlat flat; flat.ProcessSector(di, §or[sectnum], sectionnum); SetupFlat.Unclock(); //Todo: process subsectors inbunch = false; auto section = §ions[sectionnum]; for (unsigned i = 0; i < section->lines.Size(); i++) { auto thisline = §ionLines[section->lines[i]]; binangle walang1 = ClipAngle(thisline->startpoint); binangle walang2 = ClipAngle(thisline->endpoint); // outside the visible area or seen from the backside. if ((walang1.asbam() > angrange.asbam() && walang2.asbam() > angrange.asbam() && walang1.asbam() < walang2.asbam()) || (walang1.asbam() - walang2.asbam() < ANGLE_180)) { inbunch = false; } else { if (walang1.asbam() >= angrange.asbam()) { walang1 = bamang(0); inbunch = false; } if (walang2.asbam() >= angrange.asbam()) walang2 = angrange; if (!inbunch) { //Printf("Starting bunch:\n\tWall %d\n", section->lines[i]); inbunch = StartBunch(sectnum, section->lines[i], walang1, walang2, portal); } else { //Printf("\tWall %d\n", section->lines[i]); inbunch = AddLineToBunch(section->lines[i], walang2); } } if (thisline->endpoint != section->lines[i] + 1) inbunch = false; } } //========================================================================== // // // //========================================================================== void BunchDrawer::RenderScene(const int* viewsectors, unsigned sectcount, bool portal) { //Printf("----------------------------------------- \nstart at sector %d\n", viewsectors[0]); auto process = [&]() { clipper->Clear(ang1); for (unsigned i = 0; i < sectcount; i++) { for (auto j : sectionspersector[viewsectors[i]]) { sectionstartang[j] = 0; sectionendang[j] = int(angrange.asbam()); } } for (unsigned i = 0; i < sectcount; i++) { for (auto j : sectionspersector[viewsectors[i]]) { ProcessSection(j, portal); } } while (Bunches.Size() > 0) { int closest = FindClosestBunch(); ProcessBunch(closest); DeleteBunch(closest); } }; Bsp.Clock(); if (ang1.asbam() != 0 || ang2.asbam() != 0) { process(); } else { // with a 360° field of view we need to split the scene into two halves. // The BunchInFront check can fail with angles that may wrap around. auto rotang = di->Viewpoint.RotAngle; ang1 = bamang(rotang - ANGLE_90); ang2 = bamang(rotang + ANGLE_90 - 1); angrange = ang2 - ang1; process(); gotsection2.Zero(); ang1 = bamang(rotang + ANGLE_90); ang2 = bamang(rotang - ANGLE_90 - 1); angrange = ang2 - ang1; process(); } Bsp.Unclock(); }