// //--------------------------------------------------------------------------- // // Copyright(C) 2004-2016 Christoph Oelckers // All rights reserved. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with this program. If not, see http://www.gnu.org/licenses/ // //-------------------------------------------------------------------------- // /* ** gl_scene.cpp ** manages the rendering of the player's view ** */ #include "gi.h" #include "build.h" #include "v_draw.h" //#include "a_dynlight.h" #include "v_video.h" #include "m_png.h" #include "i_time.h" #include "hw_dynlightdata.h" #include "hw_clock.h" #include "flatvertices.h" #include "hw_renderstate.h" #include "hw_lightbuffer.h" #include "hw_cvars.h" #include "hw_viewpointbuffer.h" #include "hw_clipper.h" //#include "hwrenderer/scene/hw_portal.h" #include "hw_vrmodes.h" #include "hw_drawstructs.h" #include "hw_drawlist.h" #include "hw_drawinfo.h" #include "gamecvars.h" #include "render.h" EXTERN_CVAR(Bool, cl_capfps) PalEntry GlobalMapFog; float GlobalFogDensity; TArray allPortals; #if 0 void CollectLights(FLevelLocals* Level) { IShadowMap* sm = &screen->mShadowMap; int lightindex = 0; // Todo: this should go through the blockmap in a spiral pattern around the player so that closer lights are preferred. for (auto light = Level->lights; light; light = light->next) { IShadowMap::LightsProcessed++; if (light->shadowmapped && light->IsActive() && lightindex < 1024) { IShadowMap::LightsShadowmapped++; light->mShadowmapIndex = lightindex; sm->SetLight(lightindex, (float)light->X(), (float)light->Y(), (float)light->Z(), light->GetRadius()); lightindex++; } else { light->mShadowmapIndex = 1024; } } for (; lightindex < 1024; lightindex++) { sm->SetLight(lightindex, 0, 0, 0, 0); } } #endif //----------------------------------------------------------------------------- // // Renders one viewpoint in a scene // //----------------------------------------------------------------------------- void RenderViewpoint(FRenderViewpoint& mainvp, IntRect* bounds, float fov, float ratio, float fovratio, bool mainview, bool toscreen) { auto& RenderState = *screen->RenderState(); /* if (mainview && toscreen) { screen->SetAABBTree(camera->Level->aabbTree); screen->mShadowMap.SetCollectLights([=] { CollectLights(camera->Level); }); screen->UpdateShadowMap(); } */ // Render (potentially) multiple views for stereo 3d // Fixme. The view offsetting should be done with a static table and not require setup of the entire render state for the mode. auto vrmode = VRMode::GetVRMode(mainview && toscreen); const int eyeCount = vrmode->mEyeCount; screen->FirstEye(); for (int eye_ix = 0; eye_ix < eyeCount; ++eye_ix) { const auto& eye = vrmode->mEyes[eye_ix]; screen->SetViewportRects(bounds); if (mainview) // Bind the scene frame buffer and turn on draw buffers used by ssao { bool useSSAO = (gl_ssao != 0); screen->SetSceneRenderTarget(useSSAO); RenderState.SetPassType(useSSAO ? GBUFFER_PASS : NORMAL_PASS); RenderState.EnableDrawBuffers(RenderState.GetPassDrawBufferCount(), true); } auto di = HWDrawInfo::StartDrawInfo(nullptr, mainvp, nullptr); auto& vp = di->Viewpoint; vp = mainvp; di->Set3DViewport(RenderState); float flash = 1.f; di->Viewpoint.FieldOfView = fov; // Set the real FOV for the current scene (it's not necessarily the same as the global setting in r_viewpoint) // Stereo mode specific perspective projection di->VPUniforms.mProjectionMatrix = eye.GetProjection(fov, ratio, fovratio); // Stereo mode specific viewpoint adjustment vp.Pos += eye.GetViewShift(vp.HWAngles.Yaw.Degrees); di->SetupView(RenderState, vp.Pos.X, vp.Pos.Y, vp.Pos.Z, false, false); di->ProcessScene(toscreen); if (mainview) { PostProcess.Clock(); if (toscreen) di->EndDrawScene(RenderState); // do not call this for camera textures. if (RenderState.GetPassType() == GBUFFER_PASS) // Turn off ssao draw buffers { RenderState.SetPassType(NORMAL_PASS); RenderState.EnableDrawBuffers(1); } screen->PostProcessScene(false, CM_DEFAULT, flash, [&]() { }); PostProcess.Unclock(); } di->EndDrawInfo(); if (eyeCount - eye_ix > 1) screen->NextEye(eyeCount); } } //=========================================================================== // // Set up the view point. // //=========================================================================== FRenderViewpoint SetupViewpoint(spritetype* cam, const vec3_t& position, int sectnum, fixed_t q16angle, fixed_t q16horizon, float rollang) { FRenderViewpoint r_viewpoint{}; r_viewpoint.CameraSprite = cam; r_viewpoint.SectNums = nullptr; r_viewpoint.SectCount = sectnum; r_viewpoint.Pos = { position.x / 16.f, position.y / -16.f, position.z / -256.f }; r_viewpoint.HWAngles.Yaw = -90.f + q16ang(q16angle).asdeg(); r_viewpoint.HWAngles.Pitch = -HorizToPitch(q16horizon); r_viewpoint.HWAngles.Roll = -rollang; r_viewpoint.FieldOfView = (float)r_fov; r_viewpoint.RotAngle = q16ang(q16angle).asbam(); return r_viewpoint; } void DoWriteSavePic(FileWriter* file, uint8_t* scr, int width, int height, bool upsidedown) { int pixelsize = 1; int pitch = width * pixelsize; if (upsidedown) { scr += ((height - 1) * width * pixelsize); pitch *= -1; } M_CreatePNG(file, scr, nullptr, SS_RGB, width, height, pitch, vid_gamma); } //=========================================================================== // // Render the view to a savegame picture // //=========================================================================== #if 0 void WriteSavePic(player_t* player, FileWriter* file, int width, int height) { IntRect bounds; bounds.left = 0; bounds.top = 0; bounds.width = width; bounds.height = height; auto& RenderState = *screen->RenderState(); // we must be sure the GPU finished reading from the buffer before we fill it with new data. screen->WaitForCommands(false); // Switch to render buffers dimensioned for the savepic screen->SetSaveBuffers(true); screen->ImageTransitionScene(true); hw_ClearFakeFlat(); RenderState.SetVertexBuffer(screen->mVertexData); screen->mVertexData->Reset(); screen->mLights->Clear(); screen->mViewpoints->Clear(); // This shouldn't overwrite the global viewpoint even for a short time. FRenderViewpoint savevp; sector_t* viewsector = RenderViewpoint(savevp, players[consoleplayer].camera, &bounds, r_viewpoint.FieldOfView.Degrees, 1.6f, 1.6f, true, false); RenderState.EnableStencil(false); RenderState.SetNoSoftLightLevel(); int numpixels = width * height; uint8_t* scr = (uint8_t*)M_Malloc(numpixels * 3); screen->CopyScreenToBuffer(width, height, scr); DoWriteSavePic(file, SS_RGB, scr, width, height, viewsector, screen->FlipSavePic()); M_Free(scr); // Switch back the screen render buffers screen->SetViewportRects(nullptr); screen->SetSaveBuffers(false); } #endif //=========================================================================== // // Renders the main view // //=========================================================================== static void CheckTimer(FRenderState &state, uint64_t ShaderStartTime) { // if firstFrame is not yet initialized, initialize it to current time // if we're going to overflow a float (after ~4.6 hours, or 24 bits), re-init to regain precision if ((state.firstFrame == 0) || (screen->FrameTime - state.firstFrame >= 1 << 24) || ShaderStartTime >= state.firstFrame) state.firstFrame = screen->FrameTime; } void render_drawrooms(spritetype* playersprite, const vec3_t& position, int sectnum, fixed_t q16angle, fixed_t q16horizon, float rollang) { checkRotatedWalls(); if (gl_fogmode == 1) gl_fogmode = 2; // still needed? int16_t sect = sectnum; updatesector(position.x, position.y, §); if (sect >= 0) sectnum = sect; if (sectnum < 0) return; auto RenderState = screen->RenderState(); RenderState->SetVertexBuffer(screen->mVertexData); screen->mVertexData->Reset(); FRenderViewpoint r_viewpoint = SetupViewpoint(playersprite, position, sectnum, q16angle, q16horizon, rollang); iter_dlightf = iter_dlight = draw_dlight = draw_dlightf = 0; checkBenchActive(); // reset statistics counters ResetProfilingData(); // Get this before everything else if (cl_capfps) r_viewpoint.TicFrac = 1.; else r_viewpoint.TicFrac = I_GetTimeFrac(); screen->mLights->Clear(); screen->mViewpoints->Clear(); // Shader start time does not need to be handled per level. Just use the one from the camera to render from. CheckTimer(*RenderState, 0/*ShaderStartTime*/); // now render the main view float fovratio; float ratio = ActiveRatio(windowxy2.x - windowxy1.x + 1, windowxy2.y - windowxy1.y + 1); if (ratio >= 1.33f) { fovratio = 1.33f; } else { fovratio = ratio; } screen->ImageTransitionScene(true); // Only relevant for Vulkan. RenderViewpoint(r_viewpoint, nullptr, r_viewpoint.FieldOfView.Degrees, ratio, fovratio, false, false); All.Unclock(); } FSerializer& Serialize(FSerializer& arc, const char* key, PortalDesc& obj, PortalDesc* defval) { if (arc.BeginObject(key)) { arc("type", obj.type) ("dx", obj.dx) ("dy", obj.dy) ("dz", obj.dz) ("targets", obj.targets) .EndObject(); } return arc; }