/* ** binaryangle.h ** ** type safe representations of high precision angle and horizon values. ** Angle uses natural 32 bit overflow to clamp to one rotation. ** **--------------------------------------------------------------------------- ** Copyright 2020 Christoph Oelckers ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **--------------------------------------------------------------------------- ** */ #pragma once #include #include "m_fixed.h" #include "xs_Float.h" // needed for reliably overflowing float->int conversions. #include "serializer.h" #include "build.h" class FSerializer; enum { BAMBITS = 21, BAMUNIT = 1 << BAMBITS, SINSHIFT = 14 }; //--------------------------------------------------------------------------- // // Constants used for Build sine/cosine functions. // //--------------------------------------------------------------------------- constexpr double BAngRadian = pi::pi() * (1. / 1024.); constexpr double BRadAngScale = 1. / BAngRadian; //--------------------------------------------------------------------------- // // Build sine inline functions. // //--------------------------------------------------------------------------- inline int32_t bsin(const int16_t& ang, const int8_t& shift = 0) { return shift < 0 ? sintable[ang & 2047] >> abs(shift) : sintable[ang & 2047] << shift; } inline double bsinf(const double& ang, const int8_t& shift = 0) { return sin(ang * BAngRadian) * (shift >= -SINSHIFT ? uint64_t(1) << (SINSHIFT + shift) : 1. / (uint64_t(1) << abs(SINSHIFT + shift))); } //--------------------------------------------------------------------------- // // Build cosine inline functions. // //--------------------------------------------------------------------------- inline int32_t bcos(const int16_t& ang, const int8_t& shift = 0) { return shift < 0 ? sintable[(ang + 512) & 2047] >> abs(shift) : sintable[(ang + 512) & 2047] << shift; } inline double bcosf(const double& ang, const int8_t& shift = 0) { return cos(ang * BAngRadian) * (shift >= -SINSHIFT ? uint64_t(1) << (SINSHIFT + shift) : 1. / (uint64_t(1) << abs(SINSHIFT + shift))); } //--------------------------------------------------------------------------- // // Shift a Build angle left by 21 bits. // //--------------------------------------------------------------------------- inline constexpr uint32_t BAngToBAM(int ang) { return ang << BAMBITS; } //--------------------------------------------------------------------------- // // // //--------------------------------------------------------------------------- class binangle { uint32_t value; constexpr binangle(uint32_t v) : value(v) {} friend constexpr binangle bamang(uint32_t v); friend constexpr binangle q16ang(uint32_t v); friend constexpr binangle buildang(uint32_t v); friend binangle radang(double v); friend binangle degang(double v); friend FSerializer &Serialize(FSerializer &arc, const char *key, binangle &obj, binangle *defval); public: binangle() = default; binangle(const binangle &other) = default; // This class intentionally makes no allowances for implicit type conversions because those would render it ineffective. constexpr short asbuild() const { return value >> 21; } constexpr fixed_t asq16() const { return value >> 5; } constexpr double asrad() const { return value * (pi::pi() / 0x80000000u); } constexpr double asdeg() const { return AngleToFloat(value); } constexpr uint32_t asbam() const { return value; } double fsin() const { return sin(asrad()); } double fcos() const { return cos(asrad()); } double ftan() const { return tan(asrad()); } int bsin(const int8_t& shift = 0) const { return ::bsin(asbuild(), shift); } int bcos(const int8_t& shift = 0) const { return ::bcos(asbuild(), shift); } constexpr bool operator== (binangle other) const { return value == other.value; } constexpr bool operator!= (binangle other) const { return value != other.value; } constexpr binangle &operator+= (binangle other) { value += other.value; return *this; } constexpr binangle &operator-= (binangle other) { value -= other.value; return *this; } constexpr binangle operator+ (binangle other) const { return binangle(value + other.value); } constexpr binangle operator- (binangle other) const { return binangle(value - other.value); } }; inline constexpr binangle bamang(uint32_t v) { return binangle(v); } inline constexpr binangle q16ang(uint32_t v) { return binangle(v << 5); } inline constexpr binangle buildang(uint32_t v) { return binangle(v << BAMBITS); } inline binangle radang(double v) { return binangle(xs_CRoundToUInt(v * (0x80000000u / pi::pi()))); } inline binangle degang(double v) { return binangle(FloatToAngle(v)); } inline FSerializer &Serialize(FSerializer &arc, const char *key, binangle &obj, binangle *defval) { return Serialize(arc, key, obj.value, defval ? &defval->value : nullptr); } //--------------------------------------------------------------------------- // // // //--------------------------------------------------------------------------- class lookangle { int32_t value; constexpr lookangle(int32_t v) : value(v) {} friend constexpr lookangle bamlook(int32_t v); friend constexpr lookangle q16look(int32_t v); friend constexpr lookangle buildlook(int32_t v); friend lookangle radlook(double v); friend lookangle deglook(double v); friend FSerializer &Serialize(FSerializer &arc, const char *key, lookangle &obj, lookangle *defval); public: lookangle() = default; lookangle(const lookangle &other) = default; // This class intentionally makes no allowances for implicit type conversions because those would render it ineffective. constexpr short asbuild() const { return value >> 21; } constexpr fixed_t asq16() const { return value >> 5; } constexpr double asrad() const { return value * (pi::pi() / 0x80000000u); } constexpr double asdeg() const { return AngleToFloat(value); } constexpr int32_t asbam() const { return value; } double fsin() const { return sin(asrad()); } double fcos() const { return cos(asrad()); } double ftan() const { return tan(asrad()); } int bsin(const int8_t& shift = 0) const { return ::bsin(asbuild(), shift); } int bcos(const int8_t& shift = 0) const { return ::bcos(asbuild(), shift); } constexpr bool operator== (lookangle other) const { return value == other.value; } constexpr bool operator!= (lookangle other) const { return value != other.value; } constexpr lookangle &operator+= (lookangle other) { value += other.value; return *this; } constexpr lookangle &operator-= (lookangle other) { value -= other.value; return *this; } constexpr lookangle operator+ (lookangle other) const { return lookangle(value + other.value); } constexpr lookangle operator- (lookangle other) const { return lookangle(value - other.value); } }; inline constexpr lookangle bamlook(int32_t v) { return lookangle(v); } inline constexpr lookangle q16look(int32_t v) { return lookangle(v << 5); } inline constexpr lookangle buildlook(int32_t v) { return lookangle(v << BAMBITS); } inline lookangle radlook(double v) { return lookangle(xs_CRoundToUInt(v * (0x80000000u / pi::pi()))); } inline lookangle deglook(double v) { return lookangle(FloatToAngle(v)); } inline FSerializer &Serialize(FSerializer &arc, const char *key, lookangle &obj, lookangle *defval) { return Serialize(arc, key, obj.value, defval ? &defval->value : nullptr); } //--------------------------------------------------------------------------- // // Constants and functions for use with fixedhoriz and friendly functions. // //--------------------------------------------------------------------------- // 280039127 is the maximum horizon in Q16.16 the engine will handle before wrapping around. constexpr double horizDiff = 280039127 * 3. / 100.; // Degrees needed to convert horizAngle into pitch degrees. constexpr double horizDegrees = 183.503609961216825; // Ratio to convert inverse tangent to -90/90 degrees of pitch. constexpr double horizRatio = horizDegrees / pi::pi(); // Horizon conversion functions. inline double HorizToPitch(double horiz) { return atan2(horiz, horizDiff / 65536.) * horizRatio; } inline double HorizToPitch(fixed_t q16horiz) { return atan2(q16horiz, horizDiff) * horizRatio; } inline fixed_t PitchToHoriz(double horizAngle) { return xs_CRoundToInt(horizDiff * tan(horizAngle * (pi::pi() / horizDegrees))); } inline int32_t PitchToBAM(double horizAngle) { return xs_CRoundToInt(clamp(horizAngle * (1073741823.5 / 45.), -INT32_MAX, INT32_MAX)); } inline constexpr double BAMToPitch(int32_t bam) { return bam * (45. / 1073741823.5); } //--------------------------------------------------------------------------- // // // //--------------------------------------------------------------------------- class fixedhoriz { fixed_t value; constexpr fixedhoriz(fixed_t v) : value(v) {} friend constexpr fixedhoriz q16horiz(fixed_t v); friend constexpr fixedhoriz buildhoriz(int v); friend fixedhoriz pitchhoriz(double v); friend fixedhoriz bamhoriz(int32_t v); friend FSerializer &Serialize(FSerializer &arc, const char *key, fixedhoriz &obj, fixedhoriz *defval); public: fixedhoriz() = default; fixedhoriz(const fixedhoriz &other) = default; // This class intentionally makes no allowances for implicit type conversions because those would render it ineffective. constexpr short asbuild() const { return FixedToInt(value); } constexpr fixed_t asq16() const { return value; } double aspitch() const { return HorizToPitch(value); } int32_t asbam() const { return PitchToBAM(aspitch()); } bool operator< (fixedhoriz other) const { return value < other.value; } bool operator> (fixedhoriz other) const { return value > other.value; } bool operator<= (fixedhoriz other) const { return value <= other.value; } bool operator>= (fixedhoriz other) const { return value >= other.value; } constexpr bool operator== (fixedhoriz other) const { return value == other.value; } constexpr bool operator!= (fixedhoriz other) const { return value != other.value; } constexpr fixedhoriz &operator+= (fixedhoriz other) { value += other.value; return *this; } constexpr fixedhoriz &operator-= (fixedhoriz other) { value -= other.value; return *this; } constexpr fixedhoriz operator- () const { return fixedhoriz(-value); } constexpr fixedhoriz operator+ (fixedhoriz other) const { return fixedhoriz(value + other.value); } constexpr fixedhoriz operator- (fixedhoriz other) const { return fixedhoriz(value - other.value); } }; inline constexpr fixedhoriz q16horiz(fixed_t v) { return fixedhoriz(v); } inline constexpr fixedhoriz buildhoriz(int v) { return fixedhoriz(IntToFixed(v)); } inline fixedhoriz pitchhoriz(double v) { return fixedhoriz(PitchToHoriz(v)); } inline fixedhoriz bamhoriz(int32_t v) { return pitchhoriz(BAMToPitch(v)); } inline FSerializer &Serialize(FSerializer &arc, const char *key, fixedhoriz &obj, fixedhoriz *defval) { return Serialize(arc, key, obj.value, defval ? &defval->value : nullptr); } //--------------------------------------------------------------------------- // // Double-precision implementation of `getangle()` with associated wrappers and helper functions. // //--------------------------------------------------------------------------- inline double bradarangf(const double& vect) { return atan(vect) * BRadAngScale; } inline double bvectangf(const int32_t& x, const int32_t& y) { if ((x | y) == 0) { return 0; } else if (x == 0) { return 512 + ((y < 0) << 10); } else if (y == 0) { return ((x < 0) << 10); } else if (x == y) { return 256 + ((x < 0) << 10); } else if (x == -y) { return 768 + ((x > 0) << 10); } else if (abs(x) > abs(y)) { return fmod(bradarangf(double(y) / x) + ((x < 0) << 10), 2048.); } else { return fmod(bradarangf(double(x) / -y) + 512 + ((y < 0) << 10), 2048.); } } inline int32_t bvectang(const int32_t& x, const int32_t& y) { return xs_CRoundToInt(bvectangf(x, y)); } inline fixed_t bvectangq16(const int32_t& x, const int32_t& y) { return FloatToFixed(bvectangf(x, y)); } inline binangle bvectangbam(const int32_t& x, const int32_t& y) { return bamang(xs_CRoundToUInt(bvectangf(x, y) * BAMUNIT)); }