#version 330 const int RF_ColorOnly = 1; const int RF_UsePalette = 2; const int RF_DetailMapping = 4; const int RF_GlowMapping = 8; const int RF_Brightmapping = 16; const int RF_NPOTEmulation = 32; const int RF_ShadeInterpolate = 64; const int RF_FogDisabled = 128; const int RF_MapFog = 256; const int RF_TINT_Grayscale = 0x1; const int RF_TINT_Invert = 0x2; const int RF_TINT_Colorize = 0x4; const int RF_TINT_BLEND_Screen = 64; const int RF_TINT_BLEND_Overlay = 128; const int RF_TINT_BLEND_Hardlight = 192; const int RF_TINT_BLENDMASK = RF_TINT_BLEND_Screen | RF_TINT_BLEND_Overlay | RF_TINT_BLEND_Hardlight; //s_texture points to an indexed color texture uniform sampler2D s_texture; //s_palswap is the palette swap texture where u is the color index and v is the shade uniform sampler2D s_palswap; //s_palette is the base palette texture where u is the color index uniform sampler2D s_palette; uniform sampler2D s_detail; uniform sampler2D s_glow; uniform sampler2D s_brightmap; uniform float u_shade; uniform float u_numShades; uniform float u_shadeDiv; uniform float u_visFactor; uniform int u_flags; uniform float u_alphaThreshold; uniform vec4 u_tintOverlay, u_tintModulate; uniform int u_tintFlags; uniform vec4 u_fullscreenTint; uniform float u_npotEmulationFactor; uniform float u_npotEmulationXOffset; uniform float u_brightness; uniform vec4 u_fogColor; uniform vec3 u_tintcolor; uniform vec3 u_tintmodulate; in vec4 v_color; in float v_distance; in vec4 v_texCoord; in vec4 v_detailCoord; in float v_fogCoord; in vec4 v_eyeCoordPosition; const float c_basepalScale = 255.0/256.0; const float c_basepalOffset = 0.5/256.0; const float c_zero = 0.0; const float c_one = 1.0; const float c_two = 2.0; const vec4 c_vec4_one = vec4(c_one); const float c_wrapThreshold = 0.9; layout(location=0) out vec4 fragColor; layout(location=1) out vec4 fragFog; layout(location=2) out vec4 fragNormal; //=========================================================================== // // Color to grayscale // //=========================================================================== float grayscale(vec4 color) { return dot(color.rgb, vec3(0.3, 0.56, 0.14)); } //=========================================================================== // // Hightile tinting code. (hictinting[dapalnum]) This can be done inside the shader // to avoid costly texture duplication (but needs a more modern GLSL than 1.10.) // //=========================================================================== vec4 convertColor(vec4 color) { int effect = u_tintFlags; if ((effect & RF_TINT_Grayscale) != 0) { float g = grayscale(color); color = vec4(g, g, g, color.a); } if ((effect & RF_TINT_Invert) != 0) { color = vec4(1.0 - color.r, 1.0 - color.g, 1.0 - color.b, color.a); } vec3 tcol = color.rgb * 255.0; // * 255.0 to make it easier to reuse the integer math. // Much of this looks quite broken by design. Why is this effectively multplied by 4 if the flag is set...? :( if ((effect & RF_TINT_Colorize) != 0) { tcol.r = min(((tcol.b) * u_tintModulate.r)* 4, 255.0); tcol.g = min(((tcol.g) * u_tintModulate.g)* 4, 255.0); tcol.b = min(((tcol.r) * u_tintModulate.b)* 4, 255.0); } else { tcol.r = min(((tcol.b) * u_tintModulate.r), 255.0); tcol.g = min(((tcol.g) * u_tintModulate.g), 255.0); tcol.b = min(((tcol.r) * u_tintModulate.b), 255.0); } vec4 ov = u_tintOverlay * 255.0; switch (effect & RF_TINT_BLENDMASK) { case RF_TINT_BLEND_Screen: tcol.r = 255.0 - (((255.0 - tcol.r) * (255.0 - ov.r)) / 256.0); tcol.g = 255.0 - (((255.0 - tcol.g) * (255.0 - ov.g)) / 256.0); tcol.b = 255.0 - (((255.0 - tcol.b) * (255.0 - ov.b)) / 256.0); break; case RF_TINT_BLEND_Overlay: tcol.r = tcol.b < 128.0? (tcol.r * ov.r) / 128.0 : 255.0 - (((255.0 - tcol.r) * (255.0 - ov.r)) / 128.0); tcol.g = tcol.g < 128.0? (tcol.g * ov.g) / 128.0 : 255.0 - (((255.0 - tcol.g) * (255.0 - ov.g)) / 128.0); tcol.b = tcol.r < 128.0? (tcol.b * ov.b) / 128.0 : 255.0 - (((255.0 - tcol.b) * (255.0 - ov.b)) / 128.0); break; case RF_TINT_BLEND_Hardlight: tcol.r = ov.r < 128.0 ? (tcol.r * ov.r) / 128.0 : 255.0 - (((255.0 - tcol.r) * (255.0 - ov.r)) / 128.0); tcol.g = ov.g < 128.0 ? (tcol.g * ov.g) / 128.0 : 255.0 - (((255.0 - tcol.g) * (255.0 - ov.g)) / 128.0); tcol.b = ov.b < 128.0 ? (tcol.b * ov.b) / 128.0 : 255.0 - (((255.0 - tcol.b) * (255.0 - ov.b)) / 128.0); break; } color.rgb = tcol / 255.0; return color; } //=========================================================================== // // // //=========================================================================== void main() { float fullbright = 0.0; vec4 color; if ((u_flags & RF_ColorOnly) == 0) { float coordX = v_texCoord.x; float coordY = v_texCoord.y; vec2 newCoord; // Coordinate adjustment for NPOT textures (something must have gone very wrong to make this necessary...) if ((u_flags & RF_NPOTEmulation) != 0) { float period = floor(coordY / u_npotEmulationFactor); coordX += u_npotEmulationXOffset * floor(mod(coordY, u_npotEmulationFactor)); coordY = period + mod(coordY, u_npotEmulationFactor); } newCoord = vec2(coordX, coordY); // Paletted textures are stored in column major order rather than row major so coordinates need to be swapped here. color = texture(s_texture, newCoord); // This was further down but it really should be done before applying any kind of depth fading, not afterward. vec4 detailColor = vec4(1.0); if ((u_flags & RF_DetailMapping) != 0) { detailColor = texture(s_detail, v_detailCoord.xy); detailColor = mix(vec4(1.0), 2.0 * detailColor, detailColor.a); // Application of this differs based on render mode because for paletted rendering with palettized shade tables it can only be done after processing the shade table. We only have a palette index before. } float visibility = max(u_visFactor * v_distance - ((u_flags & RF_ShadeInterpolate) != 0.0? 0.5 : 0.0), 0.0); float shade = clamp((u_shade + visibility), 0.0, u_numShades - 1.0); if ((u_flags & RF_UsePalette) != 0) { int palindex = int(color.r * 255.0 + 0.1); // The 0.1 is for roundoff error compensation. int shadeindex = int(floor(shade)); float colorIndexF = texelFetch(s_palswap, ivec2(palindex, shadeindex), 0).r; int colorIndex = int(colorIndexF * 255.0 + 0.1); // The 0.1 is for roundoff error compensation. vec4 palettedColor = texelFetch(s_palette, ivec2(colorIndex, 0), 0); if ((u_flags & RF_ShadeInterpolate) != 0) { // Get the next shaded palette index for interpolation colorIndexF = texelFetch(s_palswap, ivec2(palindex, shadeindex+1), 0).r; colorIndex = int(colorIndexF * 255.0 + 0.1); // The 0.1 is for roundoff error compensation. vec4 palettedColorNext = texelFetch(s_palette, ivec2(colorIndex, 0), 0); float shadeFrac = mod(shade, 1.0); palettedColor.rgb = mix(palettedColor.rgb, palettedColorNext.rgb, shadeFrac); } palettedColor.a = color.r == 0.0? 0.0 : 1.0;// c_one-floor(color.r); color = palettedColor; color.rgb *= detailColor.rgb; // with all this palettizing, this can only be applied afterward, even though it is wrong to do it this way. color.rgb *= v_color.rgb; // Well, this is dead wrong but unavoidable. For colored fog it applies the light to the fog as well... } else { color.rgb *= detailColor.rgb; if (u_tintFlags != -1) color = convertColor(color); if ((u_flags & RF_FogDisabled) == 0) { shade = clamp(shade * u_shadeDiv, 0.0, 1.0); // u_shadeDiv is really 1/shadeDiv. vec3 lightcolor = v_color.rgb * (1.0 - shade); if ((u_flags & RF_Brightmapping) != 0) { lightcolor = clamp(lightcolor + texture(s_brightmap, v_texCoord.xy).rgb, 0.0, 1.0); } color.rgb *= lightcolor; if ((u_flags & RF_MapFog) == 0) color.rgb += u_fogColor.rgb * shade; } else color.rgb *= v_color.rgb; } if ((u_flags & RF_MapFog) != 0) // fog hack for RRRA E2L1. Needs to be done better, this is gross, but still preferable to the broken original implementation. { float fogfactor = 0.55 + 0.3 * exp2 ((-5.0 / 1024.0)*v_distance); color.rgb = vec3(0.6*(1.0-fogfactor)) + color.rgb * fogfactor;// mix(vec3(0.6), color.rgb, fogfactor); } if (color.a < u_alphaThreshold) discard; // it's only here that we have the alpha value available to be able to perform the alpha test. color.a *= v_color.a; } else { // untextured rendering color = v_color; } if ((u_flags & (RF_ColorOnly|RF_GlowMapping)) == RF_GlowMapping) { vec4 glowColor = texture(s_glow, v_texCoord.xy); color.rgb = mix(color.rgb, glowColor.rgb, glowColor.a); } color.rgb = pow(color.rgb, vec3(u_brightness)); color.rgb *= u_fullscreenTint.rgb; // must be the last thing to be done. fragColor = color; fragFog = vec4(0.0, 0.0, 0.0, 1.0); // Does build have colored fog? vec3 normal = normalize(cross(dFdx(v_eyeCoordPosition.xyz), dFdy(v_eyeCoordPosition.xyz))); normal.x = -normal.x; normal.y = -normal.y; fragNormal = vec4(normal * 0.5 + 0.5, 1.0); }