#version 330 const int RF_ColorOnly = 1; const int RF_UsePalette = 2; const int RF_DetailMapping = 4; const int RF_GlowMapping = 8; const int RF_Brightmapping = 16; const int RF_NPOTEmulation = 32; const int RF_ShadeInterpolate = 64; const int RF_FogDisabled = 128; const int RF_HICTINT_Grayscale = 0x10000; const int RF_HICTINT_Invert = 0x20000; const int RF_HICTINT_Colorize = 0x40000; const int RF_HICTINT_BLEND_Screen = 0x80000; const int RF_HICTINT_BLEND_Overlay = 0x100000; const int RF_HICTINT_BLEND_Hardlight = 0x200000; const int RF_HICTINT_BLENDMASK = RF_HICTINT_BLEND_Screen | RF_HICTINT_BLEND_Overlay | RF_HICTINT_BLEND_Hardlight; //s_texture points to an indexed color texture uniform sampler2D s_texture; //s_palswap is the palette swap texture where u is the color index and v is the shade uniform sampler2D s_palswap; //s_palette is the base palette texture where u is the color index uniform sampler2D s_palette; uniform sampler2D s_detail; uniform sampler2D s_glow; uniform sampler2D s_brightmap; uniform float u_shade; uniform float u_numShades; uniform float u_shadeDiv; uniform float u_visFactor; uniform int u_flags; uniform float u_alphaThreshold; uniform float u_npotEmulationFactor; uniform float u_npotEmulationXOffset; uniform float u_brightness; uniform vec4 u_fogColor; uniform vec3 u_tintcolor; uniform vec3 u_tintmodulate; in vec4 v_color; in float v_distance; in vec4 v_texCoord; in vec4 v_detailCoord; in float v_fogCoord; const float c_basepalScale = 255.0/256.0; const float c_basepalOffset = 0.5/256.0; const float c_zero = 0.0; const float c_one = 1.0; const float c_two = 2.0; const vec4 c_vec4_one = vec4(c_one); const float c_wrapThreshold = 0.9; layout(location=0) out vec4 fragColor; //=========================================================================== // // Color to grayscale // //=========================================================================== float grayscale(vec4 color) { return dot(color.rgb, vec3(0.3, 0.56, 0.14)); } //=========================================================================== // // Hightile tinting code. (hictinting[dapalnum]) This can be done inside the shader // to avoid costly texture duplication (but needs a more modern GLSL than 1.10.) // //=========================================================================== vec4 convertColor(vec4 color, int effect, vec3 tint) { #if 0 if (effect & RF_HICTINT_Grayscale) { float g = grayscale(color); color = vec4(g, g, g, color.a); } if (effect & RF_HICTINT_Invert) { color = vec4(1.0 - color.r, 1.0 - color.g, 1.0 - color.b); } vec3 tcol = color.rgb * 255.0; // * 255.0 to make it easier to reuse the integer math. tint *= 255.0; if (effect & RF_HICTINT_Colorize) { tcol.b = min(((tcol.b) * tint.r) / 64.0, 255.0); tcol.g = min(((tcol.g) * tint.g) / 64.0, 255.0); tcol.r = min(((tcol.r) * tint.b) / 64.0, 255.0); } switch (effect & RF_HICTINT_BLENDMASK) { case RF_HICTINT_BLEND_Screen: tcol.b = 255.0 - (((255.0 - tcol.b) * (255.0 - tint.r)) / 256.0); tcol.g = 255.0 - (((255.0 - tcol.g) * (255.0 - tint.g)) / 256.0); tcol.r = 255.0 - (((255.0 - tcol.r) * (255.0 - tint.b)) / 256.0); break; case RF_HICTINT_BLEND_Overlay: tcol.b = tcol.b < 128.0? (tcol.b * tint.r) / 128.0 : 255.0 - (((255.0 - tcol.b) * (255.0 - tint.r)) / 128.0); tcol.g = tcol.g < 128.0? (tcol.g * tint.g) / 128.0 : 255.0 - (((255.0 - tcol.g) * (255.0 - tint.g)) / 128.0); tcol.r = tcol.r < 128.0? (tcol.r * tint.b) / 128.0 : 255.0 - (((255.0 - tcol.r) * (255.0 - tint.b)) / 128.0); break; case RF_HICTINT_BLEND_Hardlight: tcol.b = tint.r < 128.0 ? (tcol.b * tint.r) / 128.0 : 255.0 - (((255.0 - tcol.b) * (255.0 - r)) / 128.0); tcol.g = tint.g < 128.0 ? (tcol.g * tint.g) / 128.0 : 255.0 - (((255.0 - tcol.g) * (255.0 - g)) / 128.0); tcol.r = tint.b < 128.0 ? (tcol.r * tint.b) / 128.0 : 255.0 - (((255.0 - tcol.r) * (255.0 - b)) / 128.0); break; } color.rgb = tcol / 255.0; #endif return color; } //=========================================================================== // // // //=========================================================================== void main() { float fullbright = 0.0; vec4 color; if ((u_flags & RF_ColorOnly) == 0) { float coordX = v_texCoord.x; float coordY = v_texCoord.y; vec2 newCoord; // Coordinate adjustment for NPOT textures (something must have gone very wrong to make this necessary...) if ((u_flags & RF_NPOTEmulation) != 0) { float period = floor(coordY / u_npotEmulationFactor); coordX += u_npotEmulationXOffset * floor(mod(coordY, u_npotEmulationFactor)); coordY = period + mod(coordY, u_npotEmulationFactor); } newCoord = vec2(coordX, coordY); // Paletted textures are stored in column major order rather than row major so coordinates need to be swapped here. color = texture2D(s_texture, newCoord); // This was further down but it really should be done before applying any kind of depth fading, not afterward. vec4 detailColor = vec4(1.0); if ((u_flags & RF_DetailMapping) != 0) { detailColor = texture2D(s_detail, v_detailCoord.xy); detailColor = mix(vec4(1.0), 2.0 * detailColor, detailColor.a); // Application of this differs based on render mode because for paletted rendering with palettized shade tables it can only be done after processing the shade table. We only have a palette index before. } float visibility = max(u_visFactor * v_distance - ((u_flags & RF_ShadeInterpolate) != 0.0? 0.5 : 0.0), 0.0); float shade = clamp((u_shade + visibility), 0.0, u_numShades - 1.0); if ((u_flags & RF_UsePalette) != 0) { int palindex = int(color.r * 255.0 + 0.1); // The 0.1 is for roundoff error compensation. int shadeindex = int(floor(shade)); float colorIndexF = texelFetch(s_palswap, ivec2(palindex, shadeindex), 0).r; int colorIndex = int(colorIndexF * 255.0 + 0.1); // The 0.1 is for roundoff error compensation. vec4 palettedColor = texelFetch(s_palette, ivec2(colorIndex, 0), 0); if ((u_flags & RF_ShadeInterpolate) != 0) { // Get the next shaded palette index for interpolation colorIndexF = texelFetch(s_palswap, ivec2(palindex, shadeindex+1), 0).r; colorIndex = int(colorIndexF * 255.0 + 0.1); // The 0.1 is for roundoff error compensation. vec4 palettedColorNext = texelFetch(s_palette, ivec2(colorIndex, 0), 0); float shadeFrac = mod(shade, 1.0); palettedColor.rgb = mix(palettedColor.rgb, palettedColorNext.rgb, shadeFrac); } fullbright = palettedColor.a; // This only gets set for paletted rendering. palettedColor.a = c_one-floor(color.r); color = palettedColor; color.rgb *= detailColor.rgb; // with all this palettizing, this can only be applied afterward, even though it is wrong to do it this way. if (fullbright == 0.0) color.rgb *= v_color.rgb; // Well, this is dead wrong but unavoidable. For colored fog it applies the light to the fog as well... } else { color.rgb *= detailColor.rgb; vec3 lightcolor = v_color.rgb; // The lighting model here does not really allow more than a simple on/off brightmap because anything more complex inteferes with the shade ramp... :( if ((u_flags & RF_Brightmapping) != 0) { vec4 brightcolor = texture2D(s_brightmap, v_texCoord.xy); color.rgb *= clamp(brightcolor.rgb + v_color.rgb, 0.0, 1.0); } else if ((u_flags & RF_FogDisabled) == 0) { color.rgb *= lightcolor; shade = clamp(shade * u_shadeDiv, 0.0, 1.0); // u_shadeDiv is really 1/shadeDiv. // Apply the shade as a linear depth fade ramp. color.rgb = mix(color.rgb, u_fogColor.rgb, shade); } } if (color.a < u_alphaThreshold) discard; // it's only here that we have the alpha value available to be able to perform the alpha test. color.a *= v_color.a; } else { // untextured rendering color = v_color; } if ((u_flags & (RF_ColorOnly|RF_GlowMapping)) == RF_GlowMapping) { vec4 glowColor = texture2D(s_glow, v_texCoord.xy); color.rgb = mix(color.rgb, glowColor.rgb, glowColor.a); } color.rgb = pow(color.rgb, vec3(u_brightness)); fragColor = color; }