const int RF_ColorOnly = 1; const int RF_UsePalette = 2; const int RF_DetailMapping = 4; const int RF_GlowMapping = 8; const int RF_Brightmapping = 16; const int RF_NPOTEmulation = 32; const int RF_ShadeInterpolate = 64; struct Material { vec4 Base; vec4 Bright; vec4 Glow; vec3 Normal; vec3 Specular; float Glossiness; float SpecularLevel; float Metallic; float Roughness; float AO; }; Material material; //s_texture points to an indexed color texture uniform sampler2D s_texture; //s_palswap is the palette swap texture where u is the color index and v is the shade uniform sampler2D s_palswap; //s_palette is the base palette texture where u is the color index uniform sampler2D s_palette; uniform int u_flags; uniform float u_npotEmulationFactor; uniform float u_npotEmulationXOffset; uniform float u_brightness; in vec4 v_color; in float v_distance; in vec4 v_texCoord; in vec4 v_detailCoord; in float v_fogCoord; in vec4 v_eyeCoordPosition; in vec4 v_worldPosition; layout(location=0) out vec4 fragColor; layout(location=1) out vec4 fragFog; layout(location=2) out vec4 fragNormal; //=========================================================================== // // Color to grayscale // //=========================================================================== float grayscale(vec4 color) { return dot(color.rgb, vec3(0.3, 0.56, 0.14)); } //=========================================================================== // // Desaturate a color // //=========================================================================== vec4 dodesaturate(vec4 texel, float factor) { if (factor != 0.0) { float gray = grayscale(texel); return mix (texel, vec4(gray,gray,gray,texel.a), factor); } else { return texel; } } //=========================================================================== // // Texture tinting code originally from JFDuke but with a few more options // //=========================================================================== const int Tex_Blend_Alpha = 1; const int Tex_Blend_Screen = 2; const int Tex_Blend_Overlay = 3; const int Tex_Blend_Hardlight = 4; vec4 ApplyTextureManipulation(vec4 texel, int blendflags) { // Step 1: desaturate according to the material's desaturation factor. texel = dodesaturate(texel, uTextureModulateColor.a); // Step 2: Invert if requested if ((blendflags & 8) != 0) { texel.rgb = vec3(1.0 - texel.r, 1.0 - texel.g, 1.0 - texel.b); } // Step 3: Apply additive color texel.rgb += uTextureAddColor.rgb; // Step 4: Colorization, including gradient if set. texel.rgb *= uTextureModulateColor.rgb; // Before applying the blend the value needs to be clamped to [0..1] range. texel.rgb = clamp(texel.rgb, 0.0, 1.0); // Step 5: Apply a blend. This may just be a translucent overlay or one of the blend modes present in current Build engines. if ((blendflags & 7) != 0) { vec3 tcol = texel.rgb * 255.0; // * 255.0 to make it easier to reuse the integer math. vec4 tint = uTextureBlendColor * 255.0; switch (blendflags & 7) { default: tcol.b = tcol.b * (1.0 - uTextureBlendColor.a) + tint.b * uTextureBlendColor.a; tcol.g = tcol.g * (1.0 - uTextureBlendColor.a) + tint.g * uTextureBlendColor.a; tcol.r = tcol.r * (1.0 - uTextureBlendColor.a) + tint.r * uTextureBlendColor.a; break; // The following 3 are taken 1:1 from the Build engine case Tex_Blend_Screen: tcol.b = 255.0 - (((255.0 - tcol.b) * (255.0 - tint.r)) / 256.0); tcol.g = 255.0 - (((255.0 - tcol.g) * (255.0 - tint.g)) / 256.0); tcol.r = 255.0 - (((255.0 - tcol.r) * (255.0 - tint.b)) / 256.0); break; case Tex_Blend_Overlay: tcol.b = tcol.b < 128.0? (tcol.b * tint.b) / 128.0 : 255.0 - (((255.0 - tcol.b) * (255.0 - tint.b)) / 128.0); tcol.g = tcol.g < 128.0? (tcol.g * tint.g) / 128.0 : 255.0 - (((255.0 - tcol.g) * (255.0 - tint.g)) / 128.0); tcol.r = tcol.r < 128.0? (tcol.r * tint.r) / 128.0 : 255.0 - (((255.0 - tcol.r) * (255.0 - tint.r)) / 128.0); break; case Tex_Blend_Hardlight: tcol.b = tint.b < 128.0 ? (tcol.b * tint.b) / 128.0 : 255.0 - (((255.0 - tcol.b) * (255.0 - tint.b)) / 128.0); tcol.g = tint.g < 128.0 ? (tcol.g * tint.g) / 128.0 : 255.0 - (((255.0 - tcol.g) * (255.0 - tint.g)) / 128.0); tcol.r = tint.r < 128.0 ? (tcol.r * tint.r) / 128.0 : 255.0 - (((255.0 - tcol.r) * (255.0 - tint.r)) / 128.0); break; } texel.rgb = tcol / 255.0; } return texel; } //=========================================================================== // // // //=========================================================================== void main() { float fullbright = 0.0; vec4 color; if ((u_flags & RF_ColorOnly) == 0) { float coordX = v_texCoord.x; float coordY = v_texCoord.y; vec2 newCoord; // Coordinate adjustment for NPOT textures (something must have gone very wrong to make this necessary...) if ((u_flags & RF_NPOTEmulation) != 0) { float period = floor(coordY / u_npotEmulationFactor); coordX += u_npotEmulationXOffset * floor(mod(coordY, u_npotEmulationFactor)); coordY = period + mod(coordY, u_npotEmulationFactor); } newCoord = vec2(coordX, coordY); // Paletted textures are stored in column major order rather than row major so coordinates need to be swapped here. color = texture(s_texture, newCoord); // This was further down but it really should be done before applying any kind of depth fading, not afterward. vec4 detailColor = vec4(1.0); if ((u_flags & RF_DetailMapping) != 0) { detailColor = texture(detailtexture, newCoord * uDetailParms.xy) * uDetailParms.z; detailColor = mix(vec4(1.0), 2.0 * detailColor, detailColor.a); // Application of this differs based on render mode because for paletted rendering with palettized shade tables it can only be done after processing the shade table. We only have a palette index before. } float visibility = max(uGlobVis * uLightFactor * v_distance - ((u_flags & RF_ShadeInterpolate) != 0.0? 0.5 : 0.0), 0.0); float numShades = float(uPalLightLevels & 255); float shade = clamp((uLightLevel + visibility), 0.0, numShades - 1.0); if ((u_flags & RF_UsePalette) != 0) { int palindex = int(color.r * 255.0 + 0.1); // The 0.1 is for roundoff error compensation. int shadeindex = int(floor(shade)); float colorIndexF = texelFetch(s_palswap, ivec2(palindex, shadeindex), 0).r; int colorIndex = int(colorIndexF * 255.0 + 0.1); // The 0.1 is for roundoff error compensation. vec4 palettedColor = texelFetch(s_palette, ivec2(colorIndex, 0), 0); if ((u_flags & RF_ShadeInterpolate) != 0) { // Get the next shaded palette index for interpolation colorIndexF = texelFetch(s_palswap, ivec2(palindex, shadeindex+1), 0).r; colorIndex = int(colorIndexF * 255.0 + 0.1); // The 0.1 is for roundoff error compensation. vec4 palettedColorNext = texelFetch(s_palette, ivec2(colorIndex, 0), 0); float shadeFrac = mod(shade, 1.0); palettedColor.rgb = mix(palettedColor.rgb, palettedColorNext.rgb, shadeFrac); } palettedColor.a = color.r == 0.0? 0.0 : 1.0;// 1.0-floor(color.r); color = palettedColor; color.rgb *= detailColor.rgb; // with all this palettizing, this can only be applied afterward, even though it is wrong to do it this way. color.rgb *= v_color.rgb; // Well, this is dead wrong but unavoidable. For colored fog it applies the light to the fog as well... } else { color.rgb *= detailColor.rgb; // Apply the texture modification colors. int blendflags = int(uTextureAddColor.a); // this alpha is unused otherwise if (blendflags != 0) { // only apply the texture manipulation if it contains something. color = ApplyTextureManipulation(color, blendflags); } if (uFogEnabled != 0) // Right now this code doesn't care about the fog modes yet. { shade = clamp(shade * uLightDist, 0.0, 1.0); // u_shadeDiv is really 1/shadeDiv. vec3 lightcolor = v_color.rgb * (1.0 - shade); if ((u_flags & RF_Brightmapping) != 0) { lightcolor = clamp(lightcolor + texture(brighttexture, v_texCoord.xy).rgb, 0.0, 1.0); } color.rgb *= lightcolor; if (uFogDensity == 0.0) color.rgb += uFogColor.rgb * shade; } else color.rgb *= v_color.rgb; } if (uFogDensity != 0.0) // fog hack for RRRA E2L1. Needs to be done better, this is gross, but still preferable to the broken original implementation. { float fogfactor = 0.55 + 0.3 * exp2 (uFogDensity * v_fogCoord / 1024.0); color.rgb = uFogColor.rgb * (1.0-fogfactor) + color.rgb * fogfactor;// mix(vec3(0.6), color.rgb, fogfactor); } if (color.a < uAlphaThreshold) discard; // it's only here that we have the alpha value available to be able to perform the alpha test. color.a *= v_color.a; } else { // untextured rendering color = v_color; } if ((u_flags & (RF_ColorOnly|RF_GlowMapping)) == RF_GlowMapping) { vec4 glowColor = texture(glowtexture, v_texCoord.xy); color.rgb = mix(color.rgb, glowColor.rgb, glowColor.a); } /* int ix = int (v_worldPosition.x); int iy = int (v_worldPosition.z); int iz = int (v_worldPosition.y); if ((ix & 64) == 1) color.r = 0; if ((iy & 64) == 1) color.g = 0; if ((iz & 64) == 1) color.b = 0; */ color.rgb = pow(color.rgb, vec3(u_brightness)); fragColor = color; fragFog = vec4(0.0, 0.0, 0.0, 1.0); // Does build have colored fog? vec3 normal = normalize(cross(dFdx(v_eyeCoordPosition.xyz), dFdy(v_eyeCoordPosition.xyz))); normal.x = -normal.x; normal.y = -normal.y; fragNormal = vec4(normal * 0.5 + 0.5, 1.0); }