//------------------------------------------------------------------------- /* Copyright (C) 2010-2019 EDuke32 developers and contributors Copyright (C) 2019 Nuke.YKT This file is part of NBlood. NBlood is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ //------------------------------------------------------------------------- #include "ns.h" // Must come before everything else! #include #include #include #include #include "build.h" #include "common_game.h" #include "actor.h" #include "db.h" #include "gameutil.h" #include "globals.h" #include "tile.h" #include "trig.h" BEGIN_BLD_NS POINT2D baseWall[kMaxWalls]; POINT3D baseSprite[kMaxSprites]; int baseFloor[kMaxSectors]; int baseCeil[kMaxSectors]; int velFloor[kMaxSectors]; int velCeil[kMaxSectors]; short gUpperLink[kMaxSectors]; short gLowerLink[kMaxSectors]; HITINFO gHitInfo; bool AreSectorsNeighbors(int sect1, int sect2) { dassert(sect1 >= 0 && sect1 < kMaxSectors); dassert(sect2 >= 0 && sect2 < kMaxSectors); if (sector[sect1].wallnum < sector[sect2].wallnum) { for (int i = 0; i < sector[sect1].wallnum; i++) { if (wall[sector[sect1].wallptr+i].nextsector == sect2) { return 1; } } } else { for (int i = 0; i < sector[sect2].wallnum; i++) { if (wall[sector[sect2].wallptr+i].nextsector == sect1) { return 1; } } } return 0; } bool FindSector(int nX, int nY, int nZ, int *nSector) { int32_t nZFloor, nZCeil; dassert(*nSector >= 0 && *nSector < kMaxSectors); if (inside(nX, nY, *nSector)) { getzsofslope(*nSector, nX, nY, &nZCeil, &nZFloor); if (nZ >= nZCeil && nZ <= nZFloor) { return 1; } } walltype *pWall = &wall[sector[*nSector].wallptr]; for (int i = sector[*nSector].wallnum; i > 0; i--, pWall++) { int nOSector = pWall->nextsector; if (nOSector >= 0 && inside(nX, nY, nOSector)) { getzsofslope(nOSector, nX, nY, &nZCeil, &nZFloor); if (nZ >= nZCeil && nZ <= nZFloor) { *nSector = nOSector; return 1; } } } for (int i = 0; i < numsectors; i++) { if (inside(nX, nY, i)) { getzsofslope(i, nX, nY, &nZCeil, &nZFloor); if (nZ >= nZCeil && nZ <= nZFloor) { *nSector = i; return 1; } } } return 0; } bool FindSector(int nX, int nY, int *nSector) { dassert(*nSector >= 0 && *nSector < kMaxSectors); if (inside(nX, nY, *nSector)) { return 1; } walltype *pWall = &wall[sector[*nSector].wallptr]; for (int i = sector[*nSector].wallnum; i > 0; i--, pWall++) { int nOSector = pWall->nextsector; if (nOSector >= 0 && inside(nX, nY, nOSector)) { *nSector = nOSector; return 1; } } for (int i = 0; i < numsectors; i++) { if (inside(nX, nY, i)) { *nSector = i; return 1; } } return 0; } void CalcFrameRate(void) { static int ticks[64]; static int index; if (ticks[index] != gFrameClock) { gFrameRate = (120*64)/((int)gFrameClock-ticks[index]); ticks[index] = (int)gFrameClock; } index = (index+1) & 63; } bool CheckProximity(spritetype *pSprite, int nX, int nY, int nZ, int nSector, int nDist) { dassert(pSprite != NULL); int oX = klabs(nX-pSprite->x)>>4; if (oX >= nDist) return 0; int oY = klabs(nY-pSprite->y)>>4; if (oY >= nDist) return 0; int oZ = klabs(nZ-pSprite->z)>>8; if (oZ >= nDist) return 0; if (approxDist(oX, oY) >= nDist) return 0; int bottom, top; GetSpriteExtents(pSprite, &top, &bottom); if (cansee(pSprite->x, pSprite->y, pSprite->z, pSprite->sectnum, nX, nY, nZ, nSector)) return 1; if (cansee(pSprite->x, pSprite->y, bottom, pSprite->sectnum, nX, nY, nZ, nSector)) return 1; if (cansee(pSprite->x, pSprite->y, top, pSprite->sectnum, nX, nY, nZ, nSector)) return 1; return 0; } bool CheckProximityPoint(int nX1, int nY1, int nZ1, int nX2, int nY2, int nZ2, int nDist) { int oX = klabs(nX2-nX1)>>4; if (oX >= nDist) return 0; int oY = klabs(nY2-nY1)>>4; if (oY >= nDist) return 0; int oZ = klabs(nZ2-nZ1)>>4; if (oZ >= nDist) return 0; if (approxDist(oX, oY) >= nDist) return 0; return 1; } bool CheckProximityWall(int nWall, int x, int y, int nDist) { int x1 = wall[nWall].x; int y1 = wall[nWall].y; int x2 = wall[wall[nWall].point2].x; int y2 = wall[wall[nWall].point2].y; nDist <<= 4; if (x1 < x2) { if (x <= x1 - nDist || x >= x2 + nDist) { return 0; } } else { if (x <= x2 - nDist || x >= x1 + nDist) { return 0; } if (x1 == x2) { int px1 = x - x1; int py1 = y - y1; int px2 = x - x2; int py2 = y - y2; int dist1 = px1 * px1 + py1 * py1; int dist2 = px2 * px2 + py2 * py2; if (y1 < y2) { if (y <= y1 - nDist || y >= y2 + nDist) { return 0; } if (y < y1) { return dist1 < nDist * nDist; } if (y > y2) { return dist2 < nDist * nDist; } } else { if (y <= y2 - nDist || y >= y1 + nDist) { return 0; } if (y < y2) { return dist2 < nDist * nDist; } if (y > y1) { return dist1 < nDist * nDist; } } return 1; } } if (y1 < y2) { if (y <= y1 - nDist || y >= y2 + nDist) { return 0; } } else { if (y <= y2 - nDist || y >= y1 + nDist) { return 0; } if (y1 == y2) { int px1 = x - x1; int py1 = y - y1; int px2 = x - x2; int py2 = y - y2; int check1 = px1 * px1 + py1 * py1; int check2 = px2 * px2 + py2 * py2; if (x1 < x2) { if (x <= x1 - nDist || x >= x2 + nDist) { return 0; } if (x < x1) { return check1 < nDist * nDist; } if (x > x2) { return check2 < nDist * nDist; } } else { if (x <= x2 - nDist || x >= x1 + nDist) { return 0; } if (x < x2) { return check2 < nDist * nDist; } if (x > x1) { return check1 < nDist * nDist; } } } } int dx = x2 - x1; int dy = y2 - y1; int px = x - x2; int py = y - y2; int side = px * dx + dy * py; if (side >= 0) { return px * px + py * py < nDist * nDist; } px = x - x1; py = y - y1; side = px * dx + dy * py; if (side <= 0) { return px * px + py * py < nDist * nDist; } int check1 = px * dy - dx * py; int check2 = dy * dy + dx * dx; return check1 * check1 < check2 * nDist * nDist; } int GetWallAngle(int nWall) { int nWall2 = wall[nWall].point2; return getangle(wall[nWall2].x - wall[nWall].x, wall[nWall2].y - wall[nWall].y); } void GetWallNormal(int nWall, int *pX, int *pY) { dassert(nWall >= 0 && nWall < kMaxWalls); int nWall2 = wall[nWall].point2; int dX = -(wall[nWall2].y - wall[nWall].y); dX >>= 4; int dY = wall[nWall2].x - wall[nWall].x; dY >>= 4; int nLength = ksqrt(dX*dX+dY*dY); if (nLength <= 0) nLength = 1; *pX = divscale16(dX, nLength); *pY = divscale16(dY, nLength); } bool IntersectRay(int wx, int wy, int wdx, int wdy, int x1, int y1, int z1, int x2, int y2, int z2, int *ix, int *iy, int *iz) { int dX = x1 - x2; int dY = y1 - y2; int dZ = z1 - z2; int side = wdx * dY - wdy * dX; int dX2 = x1 - wx; int dY2 = y1 - wy; int check1 = dX2 * dY - dY2 * dX; int check2 = wdx * dY2 - wdy * dX2; if (side >= 0) { if (!side) return 0; if (check1 < 0) return 0; if (check2 < 0 || check2 >= side) return 0; } else { if (check1 > 0) return 0; if (check2 > 0 || check2 <= side) return 0; } int nScale = divscale16(check2, side); *ix = x1 + mulscale16(dX, nScale); *iy = y1 + mulscale16(dY, nScale); *iz = z1 + mulscale16(dZ, nScale); return 1; } int HitScan(spritetype *pSprite, int z, int dx, int dy, int dz, unsigned int nMask, int nRange) { dassert(pSprite != NULL); dassert(dx != 0 || dy != 0); gHitInfo.hitsect = -1; gHitInfo.hitwall = -1; gHitInfo.hitsprite = -1; int x = pSprite->x; int y = pSprite->y; int nSector = pSprite->sectnum; int bakCstat = pSprite->cstat; pSprite->cstat &= ~256; if (nRange) { hitscangoal.x = x + mulscale30(nRange << 4, Cos(pSprite->ang)); hitscangoal.y = y + mulscale30(nRange << 4, Sin(pSprite->ang)); } else { hitscangoal.x = hitscangoal.y = 0x1ffffff; } vec3_t pos = { x, y, z }; hitdata_t hitData; hitData.pos.z = gHitInfo.hitz; hitscan(&pos, nSector, dx, dy, dz << 4, &hitData, nMask); gHitInfo.hitsect = hitData.sect; gHitInfo.hitwall = hitData.wall; gHitInfo.hitsprite = hitData.sprite; gHitInfo.hitx = hitData.pos.x; gHitInfo.hity = hitData.pos.y; gHitInfo.hitz = hitData.pos.z; hitscangoal.x = hitscangoal.y = 0x1ffffff; pSprite->cstat = bakCstat; if (gHitInfo.hitsprite >= kMaxSprites || gHitInfo.hitwall >= kMaxWalls || gHitInfo.hitsect >= kMaxSectors) return -1; if (gHitInfo.hitsprite >= 0) return 3; if (gHitInfo.hitwall >= 0) { if (wall[gHitInfo.hitwall].nextsector == -1) return 0; int nZCeil, nZFloor; getzsofslope(wall[gHitInfo.hitwall].nextsector, gHitInfo.hitx, gHitInfo.hity, &nZCeil, &nZFloor); if (gHitInfo.hitz <= nZCeil || gHitInfo.hitz >= nZFloor) return 0; return 4; } if (gHitInfo.hitsect >= 0) return 1 + (z < gHitInfo.hitz); return -1; } int VectorScan(spritetype *pSprite, int nOffset, int nZOffset, int dx, int dy, int dz, int nRange, int ac) { int nNum = 256; dassert(pSprite != NULL); gHitInfo.hitsect = -1; gHitInfo.hitwall = -1; gHitInfo.hitsprite = -1; int x1 = pSprite->x+mulscale30(nOffset, Cos(pSprite->ang+512)); int y1 = pSprite->y+mulscale30(nOffset, Sin(pSprite->ang+512)); int z1 = pSprite->z+nZOffset; int bakCstat = pSprite->cstat; pSprite->cstat &= ~256; int nSector = pSprite->sectnum; if (nRange) { hitscangoal.x = x1+mulscale30(nRange<<4, Cos(pSprite->ang)); hitscangoal.y = y1+mulscale30(nRange<<4, Sin(pSprite->ang)); } else { hitscangoal.x = hitscangoal.y = 0x1fffffff; } vec3_t pos = { x1, y1, z1 }; hitdata_t hitData; hitData.pos.z = gHitInfo.hitz; hitscan(&pos, nSector, dx, dy, dz << 4, &hitData, CLIPMASK1); gHitInfo.hitsect = hitData.sect; gHitInfo.hitwall = hitData.wall; gHitInfo.hitsprite = hitData.sprite; gHitInfo.hitx = hitData.pos.x; gHitInfo.hity = hitData.pos.y; gHitInfo.hitz = hitData.pos.z; hitscangoal.x = hitscangoal.y = 0x1ffffff; pSprite->cstat = bakCstat; while (nNum--) { if (gHitInfo.hitsprite >= kMaxSprites || gHitInfo.hitwall >= kMaxWalls || gHitInfo.hitsect >= kMaxSectors) return -1; if (nRange && approxDist(gHitInfo.hitx - pSprite->x, gHitInfo.hity - pSprite->y) > nRange) return -1; if (gHitInfo.hitsprite >= 0) { spritetype *pOther = &sprite[gHitInfo.hitsprite]; if ((pOther->flags & 8) && !(ac & 1)) return 3; if ((pOther->cstat & 0x30) != 0) return 3; int nPicnum = pOther->picnum; if (tilesiz[nPicnum].x == 0 || tilesiz[nPicnum].y == 0) return 3; int height = (tilesiz[nPicnum].y*pOther->yrepeat)<<2; int otherZ = pOther->z; if (pOther->cstat & 0x80) otherZ += height / 2; int nOffset = picanm[nPicnum].yofs; if (nOffset) otherZ -= (nOffset*pOther->yrepeat)<<2; dassert(height > 0); int height2 = scale(otherZ-gHitInfo.hitz, tilesiz[nPicnum].y, height); if (!(pOther->cstat & 8)) height2 = tilesiz[nPicnum].y-height2; if (height2 >= 0 && height2 < tilesiz[nPicnum].y) { int width = (tilesiz[nPicnum].x*pOther->xrepeat)>>2; width = (width*3)/4; int check1 = ((y1 - pOther->y)*dx - (x1 - pOther->x)*dy) / ksqrt(dx*dx+dy*dy); dassert(width > 0); int width2 = scale(check1, tilesiz[nPicnum].x, width); int nOffset = picanm[nPicnum].xofs; width2 += nOffset + tilesiz[nPicnum].x / 2; if (width2 >= 0 && width2 < tilesiz[nPicnum].x) { auto pData = tileLoadTile(nPicnum); if (pData[width2*tilesiz[nPicnum].y+height2] != (char)255) return 3; } } int bakCstat = pOther->cstat; pOther->cstat &= ~256; gHitInfo.hitsect = -1; gHitInfo.hitwall = -1; gHitInfo.hitsprite = -1; x1 = gHitInfo.hitx; y1 = gHitInfo.hity; z1 = gHitInfo.hitz; pos = { x1, y1, z1 }; hitData.pos.z = gHitInfo.hitz; hitscan(&pos, pOther->sectnum, dx, dy, dz << 4, &hitData, CLIPMASK1); gHitInfo.hitsect = hitData.sect; gHitInfo.hitwall = hitData.wall; gHitInfo.hitsprite = hitData.sprite; gHitInfo.hitx = hitData.pos.x; gHitInfo.hity = hitData.pos.y; gHitInfo.hitz = hitData.pos.z; pOther->cstat = bakCstat; continue; } if (gHitInfo.hitwall >= 0) { walltype *pWall = &wall[gHitInfo.hitwall]; if (pWall->nextsector == -1) return 0; sectortype *pSector = §or[gHitInfo.hitsect]; sectortype *pSectorNext = §or[pWall->nextsector]; int nZCeil, nZFloor; getzsofslope(pWall->nextsector, gHitInfo.hitx, gHitInfo.hity, &nZCeil, &nZFloor); if (gHitInfo.hitz <= nZCeil) return 0; if (gHitInfo.hitz >= nZFloor) { if (!(pSector->floorstat&1) || !(pSectorNext->floorstat&1)) return 0; return 2; } if (!(pWall->cstat & 0x30)) return 0; int nOffset; if (pWall->cstat & 4) nOffset = ClipHigh(pSector->floorz, pSectorNext->floorz); else nOffset = ClipLow(pSector->ceilingz, pSectorNext->ceilingz); nOffset = (gHitInfo.hitz - nOffset) >> 8; if (pWall->cstat & 256) nOffset = -nOffset; int nPicnum = pWall->overpicnum; int nSizX = tilesiz[nPicnum].x; int nSizY = tilesiz[nPicnum].y; if (!nSizX || !nSizY) return 0; int potX = nSizX == (1<<(picsiz[nPicnum]&15)); int potY = nSizY == (1<<(picsiz[nPicnum]>>4)); nOffset = (nOffset*pWall->yrepeat) / 8; nOffset += (nSizY*pWall->ypanning) / 256; int nLength = approxDist(pWall->x - wall[pWall->point2].x, pWall->y - wall[pWall->point2].y); int nHOffset; if (pWall->cstat & 8) nHOffset = approxDist(gHitInfo.hitx - wall[pWall->point2].x, gHitInfo.hity - wall[pWall->point2].y); else nHOffset = approxDist(gHitInfo.hitx - pWall->x, gHitInfo.hity - pWall->y); nHOffset = pWall->xpanning + ((nHOffset*pWall->xrepeat) << 3) / nLength; if (potX) nHOffset &= nSizX - 1; else nHOffset %= nSizX; if (potY) nOffset &= nSizY - 1; else nOffset %= nSizY; auto pData = tileLoadTile(nPicnum); int nPixel; if (potY) nPixel = (nHOffset<<(picsiz[nPicnum]>>4)) + nOffset; else nPixel = nHOffset*nSizY + nOffset; if (pData[nPixel] == (char)255) { int bakCstat = pWall->cstat; pWall->cstat &= ~64; int bakCstat2 = wall[pWall->nextwall].cstat; wall[pWall->nextwall].cstat &= ~64; gHitInfo.hitsect = -1; gHitInfo.hitwall = -1; gHitInfo.hitsprite = -1; x1 = gHitInfo.hitx; y1 = gHitInfo.hity; z1 = gHitInfo.hitz; pos = { x1, y1, z1 }; hitData.pos.z = gHitInfo.hitz; hitscan(&pos, pWall->nextsector, dx, dy, dz << 4, &hitData, CLIPMASK1); gHitInfo.hitsect = hitData.sect; gHitInfo.hitwall = hitData.wall; gHitInfo.hitsprite = hitData.sprite; gHitInfo.hitx = hitData.pos.x; gHitInfo.hity = hitData.pos.y; gHitInfo.hitz = hitData.pos.z; pWall->cstat = bakCstat; wall[pWall->nextwall].cstat = bakCstat2; continue; } return 4; } if (gHitInfo.hitsect >= 0) { if (dz > 0) { if (gUpperLink[gHitInfo.hitsect] < 0) return 2; int nSprite = gUpperLink[gHitInfo.hitsect]; int nLink = sprite[nSprite].owner & 0xfff; gHitInfo.hitsect = -1; gHitInfo.hitwall = -1; gHitInfo.hitsprite = -1; x1 = gHitInfo.hitx + sprite[nLink].x - sprite[nSprite].x; y1 = gHitInfo.hity + sprite[nLink].y - sprite[nSprite].y; z1 = gHitInfo.hitz + sprite[nLink].z - sprite[nSprite].z; pos = { x1, y1, z1 }; hitData.pos.z = gHitInfo.hitz; hitscan(&pos, sprite[nLink].sectnum, dx, dy, dz<<4, &hitData, CLIPMASK1); gHitInfo.hitsect = hitData.sect; gHitInfo.hitwall = hitData.wall; gHitInfo.hitsprite = hitData.sprite; gHitInfo.hitx = hitData.pos.x; gHitInfo.hity = hitData.pos.y; gHitInfo.hitz = hitData.pos.z; continue; } else { if (gLowerLink[gHitInfo.hitsect] < 0) return 1; int nSprite = gLowerLink[gHitInfo.hitsect]; int nLink = sprite[nSprite].owner & 0xfff; gHitInfo.hitsect = -1; gHitInfo.hitwall = -1; gHitInfo.hitsprite = -1; x1 = gHitInfo.hitx + sprite[nLink].x - sprite[nSprite].x; y1 = gHitInfo.hity + sprite[nLink].y - sprite[nSprite].y; z1 = gHitInfo.hitz + sprite[nLink].z - sprite[nSprite].z; pos = { x1, y1, z1 }; hitData.pos.z = gHitInfo.hitz; hitscan(&pos, sprite[nLink].sectnum, dx, dy, dz<<4, &hitData, CLIPMASK1); gHitInfo.hitsect = hitData.sect; gHitInfo.hitwall = hitData.wall; gHitInfo.hitsprite = hitData.sprite; gHitInfo.hitx = hitData.pos.x; gHitInfo.hity = hitData.pos.y; gHitInfo.hitz = hitData.pos.z; continue; } } return -1; } return -1; } void GetZRange(spritetype *pSprite, int *ceilZ, int *ceilHit, int *floorZ, int *floorHit, int nDist, unsigned int nMask, unsigned int nClipParallax) { dassert(pSprite != NULL); int bakCstat = pSprite->cstat; int32_t nTemp1, nTemp2; pSprite->cstat &= ~257; getzrange_old(pSprite->x, pSprite->y, pSprite->z, pSprite->sectnum, (int32_t*)ceilZ, (int32_t*)ceilHit, (int32_t*)floorZ, (int32_t*)floorHit, nDist, nMask); if (((*floorHit) & 0xc000) == 0x4000) { int nSector = (*floorHit) & 0x3fff; if ((nClipParallax & PARALLAXCLIP_FLOOR) == 0 && (sector[nSector].floorstat & 1)) *floorZ = 0x7fffffff; if (sector[nSector].extra > 0) { XSECTOR *pXSector = &xsector[sector[nSector].extra]; *floorZ += pXSector->Depth << 10; } if (gUpperLink[nSector] >= 0) { int nSprite = gUpperLink[nSector]; int nLink = sprite[nSprite].owner & 0xfff; getzrange_old(pSprite->x+sprite[nLink].x-sprite[nSprite].x, pSprite->y+sprite[nLink].y-sprite[nSprite].y, pSprite->z+sprite[nLink].z-sprite[nSprite].z, sprite[nLink].sectnum, &nTemp1, &nTemp2, (int32_t*)floorZ, (int32_t*)floorHit, nDist, nMask); *floorZ -= sprite[nLink].z - sprite[nSprite].z; } } if (((*ceilHit) & 0xc000) == 0x4000) { int nSector = (*ceilHit) & 0x3fff; if ((nClipParallax & PARALLAXCLIP_CEILING) == 0 && (sector[nSector].ceilingstat & 1)) *ceilZ = 0x80000000; if (gLowerLink[nSector] >= 0) { int nSprite = gLowerLink[nSector]; int nLink = sprite[nSprite].owner & 0xfff; getzrange_old(pSprite->x+sprite[nLink].x-sprite[nSprite].x, pSprite->y+sprite[nLink].y-sprite[nSprite].y, pSprite->z+sprite[nLink].z-sprite[nSprite].z, sprite[nLink].sectnum, (int32_t*)ceilZ, (int32_t*)ceilHit, &nTemp1, &nTemp2, nDist, nMask); *ceilZ -= sprite[nLink].z - sprite[nSprite].z; } } pSprite->cstat = bakCstat; } void GetZRangeAtXYZ(int x, int y, int z, int nSector, int *ceilZ, int *ceilHit, int *floorZ, int *floorHit, int nDist, unsigned int nMask, unsigned int nClipParallax) { int32_t nTemp1, nTemp2; getzrange_old(x, y, z, nSector, (int32_t*)ceilZ, (int32_t*)ceilHit, (int32_t*)floorZ, (int32_t*)floorHit, nDist, nMask); if (((*floorHit) & 0xc000) == 0x4000) { int nSector = (*floorHit) & 0x3fff; if ((nClipParallax & PARALLAXCLIP_FLOOR) == 0 && (sector[nSector].floorstat & 1)) *floorZ = 0x7fffffff; if (sector[nSector].extra > 0) { XSECTOR *pXSector = &xsector[sector[nSector].extra]; *floorZ += pXSector->Depth << 10; } if (gUpperLink[nSector] >= 0) { int nSprite = gUpperLink[nSector]; int nLink = sprite[nSprite].owner & 0xfff; getzrange_old(x+sprite[nLink].x-sprite[nSprite].x, y+sprite[nLink].y-sprite[nSprite].y, z+sprite[nLink].z-sprite[nSprite].z, sprite[nLink].sectnum, &nTemp1, &nTemp2, (int32_t*)floorZ, (int32_t*)floorHit, nDist, nMask); *floorZ -= sprite[nLink].z - sprite[nSprite].z; } } if (((*ceilHit) & 0xc000) == 0x4000) { int nSector = (*ceilHit) & 0x3fff; if ((nClipParallax & PARALLAXCLIP_CEILING) == 0 && (sector[nSector].ceilingstat & 1)) *ceilZ = 0x80000000; if (gLowerLink[nSector] >= 0) { int nSprite = gLowerLink[nSector]; int nLink = sprite[nSprite].owner & 0xfff; getzrange_old(x+sprite[nLink].x-sprite[nSprite].x, y+sprite[nLink].y-sprite[nSprite].y, z+sprite[nLink].z-sprite[nSprite].z, sprite[nLink].sectnum, (int32_t*)ceilZ, (int32_t*)ceilHit, &nTemp1, &nTemp2, nDist, nMask); *ceilZ -= sprite[nLink].z - sprite[nSprite].z; } } } int GetDistToLine(int x1, int y1, int x2, int y2, int x3, int y3) { int check = (y1-y3)*(x3-x2); int check2 = (x1-x2)*(y3-y2); if (check2 > check) return -1; int v8 = dmulscale(x1-x2,x3-x2,y1-y3,y3-y2,4); int vv = dmulscale(x3-x2,x3-x2,y3-y2,y3-y2,4); int t1, t2; if (v8 <= 0) { t1 = x2; t2 = y2; } else if (vv > v8) { t1 = x2+scale(x3-x2,v8,vv); t2 = y2+scale(y3-y2,v8,vv); } else { t1 = x3; t2 = y3; } return approxDist(t1-x1, t2-y1); } unsigned int ClipMove(int *x, int *y, int *z, int *nSector, int xv, int yv, int wd, int cd, int fd, unsigned int nMask) { int bakX = *x; int bakY = *y; int bakZ = *z; short bakSect = *nSector; unsigned int nRes = clipmove_old((int32_t*)x, (int32_t*)y, (int32_t*)z, &bakSect, xv<<14, yv<<14, wd, cd, fd, nMask); if (bakSect == -1) { *x = bakX; *y = bakY; *z = bakZ; } else { *nSector = bakSect; } return nRes; } int GetClosestSectors(int nSector, int x, int y, int nDist, short *pSectors, char *pSectBit) { char sectbits[(kMaxSectors+7)>>3]; dassert(pSectors != NULL); memset(sectbits, 0, sizeof(sectbits)); pSectors[0] = nSector; SetBitString(sectbits, nSector); int n = 1; int i = 0; if (pSectBit) { memset(pSectBit, 0, (kMaxSectors+7)>>3); SetBitString(pSectBit, nSector); } while (i < n) { int nCurSector = pSectors[i]; int nStartWall = sector[nCurSector].wallptr; int nEndWall = nStartWall + sector[nCurSector].wallnum; walltype *pWall = &wall[nStartWall]; for (int j = nStartWall; j < nEndWall; j++, pWall++) { int nNextSector = pWall->nextsector; if (nNextSector < 0) continue; if (TestBitString(sectbits, nNextSector)) continue; SetBitString(sectbits, nNextSector); int dx = klabs(wall[pWall->point2].x - x)>>4; int dy = klabs(wall[pWall->point2].y - y)>>4; if (dx < nDist && dy < nDist) { if (approxDist(dx, dy) < nDist) { if (pSectBit) SetBitString(pSectBit, nNextSector); pSectors[n++] = nNextSector; } } } i++; } pSectors[n] = -1; return n; } int GetClosestSpriteSectors(int nSector, int x, int y, int nDist, short *pSectors, char *pSectBit, short *a8) { char sectbits[(kMaxSectors+7)>>3]; dassert(pSectors != NULL); memset(sectbits, 0, sizeof(sectbits)); pSectors[0] = nSector; SetBitString(sectbits, nSector); int n = 1, m = 0; int i = 0; if (pSectBit) { memset(pSectBit, 0, (kMaxSectors+7)>>3); SetBitString(pSectBit, nSector); } while (i < n) { int nCurSector = pSectors[i]; int nStartWall = sector[nCurSector].wallptr; int nEndWall = nStartWall + sector[nCurSector].wallnum; walltype *pWall = &wall[nStartWall]; for (int j = nStartWall; j < nEndWall; j++, pWall++) { int nNextSector = pWall->nextsector; if (nNextSector < 0) continue; if (TestBitString(sectbits, nNextSector)) continue; SetBitString(sectbits, nNextSector); if (CheckProximityWall(wall[j].point2, x, y, nDist)) { if (pSectBit) SetBitString(pSectBit, nNextSector); pSectors[n++] = nNextSector; if (a8 && pWall->extra > 0) { XWALL *pXWall = &xwall[pWall->extra]; if (pXWall->triggerVector && !pXWall->isTriggered && !pXWall->state) a8[m++] = j; } } } i++; } pSectors[n] = -1; if (a8) { a8[m] = -1; } return n; } int picWidth(short nPic, short repeat) { return ClipLow((tilesiz[nPic].y * repeat) >> 2, 0); } int picHeight(short nPic, short repeat) { return ClipLow((tilesiz[nPic].y * repeat) << 2, 0); } bool xspriData2Array(int nXSprite, int* rData) { if (xspriRangeIsFine(nXSprite) && rData) { rData[0] = xsprite[nXSprite].data1; rData[2] = xsprite[nXSprite].data3; rData[1] = xsprite[nXSprite].data2; rData[3] = xsprite[nXSprite].data4; return true; } return false; } // by NoOne: used for better randomness in single player int STD_Random(int a, int b) { std::default_random_engine rng; rng.seed(std::random_device()()); std::uniform_int_distribution dist_a_b(a, b); return dist_a_b(rng); } END_BLD_NS