- backend update from GZDoom.

This commit is contained in:
Christoph Oelckers 2021-03-13 01:21:38 +01:00
parent f4b27bbd27
commit 8ae5d0b30e
9 changed files with 906 additions and 8 deletions

View file

@ -1085,6 +1085,7 @@ set (PCH_SOURCES
common/2d/v_2ddrawer.cpp
common/2d/v_drawtext.cpp
common/2d/v_draw.cpp
common/thirdparty/gain_analysis.cpp
common/thirdparty/sfmt/SFMT.cpp
common/fonts/singlelumpfont.cpp
common/fonts/singlepicfont.cpp

View file

@ -56,4 +56,14 @@ EXTERN_CVAR(Bool, mus_enabled)
EXTERN_CVAR(Float, snd_musicvolume)
inline float AmplitudeTodB(float amplitude)
{
return 20.0f * log10(amplitude);
}
inline float dBToAmplitude(float dB)
{
return pow(10.0f, dB / 20.0f);
}
#endif //__I_MUSIC_H__

View file

@ -49,6 +49,10 @@
#include "s_music.h"
#include "filereadermusicinterface.h"
#include <zmusic.h>
#include "md5.h"
#include "gain_analysis.h"
#include "gameconfigfile.h"
#include "i_specialpaths.h"
// EXTERNAL FUNCTION PROTOTYPES --------------------------------------------
@ -77,6 +81,15 @@ static MusicCallbacks mus_cb = { nullptr, DefaultOpenMusic };
// PUBLIC DATA DEFINITIONS -------------------------------------------------
EXTERN_CVAR(Int, snd_mididevice)
CVAR(Bool, mus_calcgain, false, CVAR_ARCHIVE | CVAR_GLOBALCONFIG) // changing this will only take effect for the next song.
CVAR(Bool, mus_usereplaygain, false, CVAR_ARCHIVE | CVAR_GLOBALCONFIG) // changing this will only take effect for the next song.
CUSTOM_CVAR(Float, mus_gainoffset, 0.f, CVAR_ARCHIVE | CVAR_GLOBALCONFIG) // for customizing the base volume
{
if (self > 10.f) self = 10.f;
mus_playing.replayGainFactor = dBToAmplitude(mus_playing.replayGain + mus_gainoffset);
}
// CODE --------------------------------------------------------------------
@ -115,9 +128,33 @@ void S_StopCustomStream(SoundStream *stream)
}
static TArray<int16_t> convert;
static bool FillStream(SoundStream* stream, void* buff, int len, void* userdata)
{
bool written = ZMusic_FillStream(mus_playing.handle, buff, len);
bool written;
if (mus_playing.isfloat)
{
written = ZMusic_FillStream(mus_playing.handle, buff, len);
if (mus_playing.replayGainFactor != 1.f)
{
float* fbuf = (float*)buff;
for (int i = 0; i < len / 4; i++)
{
fbuf[i] *= mus_playing.replayGainFactor;
}
}
}
else
{
// To apply replay gain we need floating point streaming data, so 16 bit input needs to be converted here.
convert.Resize(len / 2);
written = ZMusic_FillStream(mus_playing.handle, convert.Data(), len/2);
float* fbuf = (float*)buff;
for (int i = 0; i < len / 4; i++)
{
fbuf[i] = convert[i] * mus_playing.replayGainFactor * (1.f/32768.f);
}
}
if (!written)
{
@ -133,9 +170,12 @@ void S_CreateStream()
if (!mus_playing.handle) return;
SoundStreamInfo fmt;
ZMusic_GetStreamInfo(mus_playing.handle, &fmt);
// always create a floating point streaming buffer so we can apply replay gain without risk of integer overflows.
mus_playing.isfloat = fmt.mNumChannels > 0;
if (!mus_playing.isfloat) fmt.mBufferSize *= 2;
if (fmt.mBufferSize > 0) // if buffer size is 0 the library will play the song itself (e.g. Windows system synth.)
{
int flags = fmt.mNumChannels < 0 ? 0 : SoundStream::Float;
int flags = SoundStream::Float;
if (abs(fmt.mNumChannels) < 2) flags |= SoundStream::Mono;
musicStream.reset(GSnd->CreateStream(FillStream, fmt.mBufferSize, flags, fmt.mSampleRate, nullptr));
@ -167,7 +207,7 @@ void S_StopStream()
static bool S_StartMusicPlaying(ZMusic_MusicStream song, bool loop, float rel_vol, int subsong)
{
if (rel_vol > 0.f)
if (rel_vol > 0.f && !mus_usereplaygain)
{
float factor = relative_volume / saved_relative_volume;
saved_relative_volume = rel_vol;
@ -312,6 +352,255 @@ bool S_StartMusic (const char *m_id)
// initiates playback of a song
//
//==========================================================================
static TMap<FString, float> gainMap;
EXTERN_CVAR(String, fluid_patchset)
EXTERN_CVAR(String, timidity_config)
EXTERN_CVAR(String, midi_config)
EXTERN_CVAR(String, wildmidi_config)
EXTERN_CVAR(String, adl_custom_bank)
EXTERN_CVAR(Int, adl_bank)
EXTERN_CVAR(Bool, adl_use_custom_bank)
EXTERN_CVAR(String, opn_custom_bank)
EXTERN_CVAR(Bool, opn_use_custom_bank)
EXTERN_CVAR(Int, opl_core)
static FString ReplayGainHash(ZMusicCustomReader* reader, int flength, int playertype, const char* _playparam)
{
std::string playparam = _playparam;
uint8_t buffer[50000]; // for performance reasons only hash the start of the file. If we wanted to do this to large waveform songs it'd cause noticable lag.
uint8_t digest[16];
char digestout[33];
auto length = reader->read(reader, buffer, 50000);
reader->seek(reader, 0, SEEK_SET);
MD5Context md5;
md5.Init();
md5.Update(buffer, (int)length);
md5.Final(digest);
for (size_t j = 0; j < sizeof(digest); ++j)
{
sprintf(digestout + (j * 2), "%02X", digest[j]);
}
digestout[32] = 0;
auto type = ZMusic_IdentifyMIDIType((uint32_t*)buffer, 32);
if (type == MIDI_NOTMIDI) return FStringf("%d:%s", flength, digestout);
// get the default for MIDI synth
if (playertype == -1)
{
switch (snd_mididevice)
{
case -1: playertype = MDEV_FLUIDSYNTH; break;
case -2: playertype = MDEV_TIMIDITY; break;
case -3: playertype = MDEV_OPL; break;
case -4: playertype = MDEV_GUS; break;
case -5: playertype = MDEV_FLUIDSYNTH; break;
case -6: playertype = MDEV_WILDMIDI; break;
case -7: playertype = MDEV_ADL; break;
case -8: playertype = MDEV_OPN; break;
default: return "";
}
}
else if (playertype == MDEV_SNDSYS) return "";
// get the default for used sound font.
if (playparam.empty())
{
switch (playertype)
{
case MDEV_FLUIDSYNTH: playparam = fluid_patchset; break;
case MDEV_TIMIDITY: playparam = timidity_config; break;
case MDEV_GUS: playparam = midi_config; break;
case MDEV_WILDMIDI: playparam = wildmidi_config; break;
case MDEV_ADL: playparam = adl_use_custom_bank ? *adl_custom_bank : std::to_string(adl_bank); break;
case MDEV_OPN: playparam = opn_use_custom_bank ? *opn_custom_bank : ""; break;
case MDEV_OPL: playparam = std::to_string(opl_core); break;
}
}
return FStringf("%d:%s:%d:%s", flength, digestout, playertype, playparam.c_str()).MakeUpper();
}
static void SaveGains()
{
auto path = M_GetAppDataPath(true);
path << "/replaygain.ini";
FConfigFile gains(path);
TMap<FString, float>::Iterator it(gainMap);
TMap<FString, float>::Pair* pair;
if (gains.SetSection("Gains", true))
{
while (it.NextPair(pair))
{
gains.SetValueForKey(pair->Key, std::to_string(pair->Value).c_str());
}
}
gains.WriteConfigFile();
}
static void ReadGains()
{
static bool done = false;
if (done) return;
done = true;
auto path = M_GetAppDataPath(true);
path << "/replaygain.ini";
FConfigFile gains(path);
if (gains.SetSection("Gains"))
{
const char* key;
const char* value;
while (gains.NextInSection(key, value))
{
gainMap.Insert(key, (float)strtod(value, nullptr));
}
}
}
CCMD(setreplaygain)
{
// sets replay gain for current song to a fixed value
if (!mus_playing.handle || mus_playing.hash.IsEmpty())
{
Printf("setreplaygain needs some music playing\n");
return;
}
if (argv.argc() < 2)
{
Printf("Usage: setreplaygain {dB}\n");
Printf("Current replay gain is %f dB\n", mus_playing.replayGain);
return;
}
float dB = (float)strtod(argv[1], nullptr);
if (dB > 10) dB = 10; // don't blast the speakers. Values above 2 or 3 are very rare.
gainMap.Insert(mus_playing.hash, dB);
SaveGains();
mus_playing.replayGain = dB;
mus_playing.replayGainFactor = (float)dBToAmplitude(mus_playing.replayGain + mus_gainoffset);
}
static void CheckReplayGain(const char *musicname, EMidiDevice playertype, const char *playparam)
{
mus_playing.replayGain = 0.f;
mus_playing.replayGainFactor = dBToAmplitude(mus_gainoffset);
if (!mus_usereplaygain) return;
FileReader reader = mus_cb.OpenMusic(musicname);
if (!reader.isOpen()) return;
int flength = (int)reader.GetLength();
auto mreader = GetMusicReader(reader); // this passes the file reader to the newly created wrapper.
ReadGains();
auto hash = ReplayGainHash(mreader, flength, playertype, playparam);
if (hash.IsEmpty()) return; // got nothing to measure.
mus_playing.hash = hash;
auto entry = gainMap.CheckKey(hash);
if (entry)
{
mus_playing.replayGain = *entry;
mus_playing.replayGainFactor = dBToAmplitude(mus_playing.replayGain + mus_gainoffset);
return;
}
if (!mus_calcgain) return;
auto handle = ZMusic_OpenSong(mreader, playertype, playparam);
if (handle == nullptr) return; // not a music file
if (!ZMusic_Start(handle, 0, false))
{
ZMusic_Close(handle);
return; // unable to open
}
SoundStreamInfo fmt;
ZMusic_GetStreamInfo(handle, &fmt);
if (fmt.mBufferSize == 0)
{
ZMusic_Close(handle);
return; // external player.
}
int flags = SoundStream::Float;
if (abs(fmt.mNumChannels) < 2) flags |= SoundStream::Mono;
TArray<uint8_t> readbuffer(fmt.mBufferSize, true);
TArray<float> lbuffer;
TArray<float> rbuffer;
while (ZMusic_FillStream(handle, readbuffer.Data(), fmt.mBufferSize))
{
unsigned index;
// 4 cases, all with different preparation needs.
if (fmt.mNumChannels == -2) // 16 bit stereo
{
int16_t* sbuf = (int16_t*)readbuffer.Data();
int numsamples = fmt.mBufferSize / 4;
index = lbuffer.Reserve(numsamples);
rbuffer.Reserve(numsamples);
for (int i = 0; i < numsamples; i++)
{
lbuffer[index + i] = sbuf[i * 2];
rbuffer[index + i] = sbuf[i * 2 + 1];
}
}
else if (fmt.mNumChannels == -1) // 16 bit mono
{
int16_t* sbuf = (int16_t*)readbuffer.Data();
int numsamples = fmt.mBufferSize / 2;
index = lbuffer.Reserve(numsamples);
for (int i = 0; i < numsamples; i++)
{
lbuffer[index + i] = sbuf[i];
}
}
else if (fmt.mNumChannels == 1) // float mono
{
float* sbuf = (float*)readbuffer.Data();
int numsamples = fmt.mBufferSize / 4;
index = lbuffer.Reserve(numsamples);
for (int i = 0; i < numsamples; i++)
{
lbuffer[index + i] = sbuf[i] * 32768.f;
}
}
else if (fmt.mNumChannels == 2) // float stereo
{
float* sbuf = (float*)readbuffer.Data();
int numsamples = fmt.mBufferSize / 8;
auto index = lbuffer.Reserve(numsamples);
rbuffer.Reserve(numsamples);
for (int i = 0; i < numsamples; i++)
{
lbuffer[index + i] = sbuf[i * 2] * 32768.f;
rbuffer[index + i] = sbuf[i * 2 + 1] * 32768.f;
}
}
float accTime = lbuffer.Size() / (float)fmt.mSampleRate;
if (accTime > 8 * 60) break; // do at most 8 minutes, if the song forces a loop.
}
ZMusic_Close(handle);
GainAnalyzer analyzer;
analyzer.InitGainAnalysis(fmt.mSampleRate);
int result = analyzer.AnalyzeSamples(lbuffer.Data(), rbuffer.Size() == 0 ? nullptr : rbuffer.Data(), lbuffer.Size(), rbuffer.Size() == 0? 1: 2);
if (result == GAIN_ANALYSIS_OK)
{
auto gain = analyzer.GetTitleGain();
Printf("Calculated replay gain for %s at %f dB\n", hash.GetChars(), gain);
gainMap.Insert(hash, gain);
mus_playing.replayGain = gain;
mus_playing.replayGainFactor = dBToAmplitude(mus_playing.replayGain + mus_gainoffset);
SaveGains();
}
}
bool S_ChangeMusic(const char* musicname, int order, bool looping, bool force)
{
@ -397,6 +686,8 @@ bool S_ChangeMusic(const char* musicname, int order, bool looping, bool force)
}
else
{
CheckReplayGain(musicname, devp ? (EMidiDevice)devp->device : MDEV_DEFAULT, devp ? devp->args.GetChars() : "");
auto mreader = GetMusicReader(reader); // this passes the file reader to the newly created wrapper.
mus_playing.handle = ZMusic_OpenSong(mreader, devp ? (EMidiDevice)devp->device : MDEV_DEFAULT, devp ? devp->args.GetChars() : "");
if (mus_playing.handle == nullptr)

View file

@ -453,6 +453,11 @@ CUSTOM_CVAR(Int, snd_streambuffersize, 64, CVAR_ARCHIVE | CVAR_GLOBALCONFIG | CV
CUSTOM_CVAR(Int, mod_samplerate, 0, CVAR_ARCHIVE | CVAR_GLOBALCONFIG | CVAR_VIRTUAL)
{
if (self != 0 && self != 11025 && self != 22050 && self != 44100 && self != 48000)
{
self = 0;
return;
}
FORWARD_CVAR(mod_samplerate);
}

View file

@ -73,8 +73,12 @@ struct MusPlayingInfo
FString name;
ZMusic_MusicStream handle;
int baseorder;
float replayGain;
float replayGainFactor;
bool loop;
bool isfloat;
FString LastSong; // last music that was played
FString hash; // for setting replay gain while playing.
};
extern MusPlayingInfo mus_playing;

View file

@ -51,11 +51,18 @@
EXTERN_CVAR (Float, snd_sfxvolume)
EXTERN_CVAR(Float, snd_musicvolume)
CVAR (Int, snd_samplerate, 0, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
CVAR (Int, snd_buffersize, 0, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
CVAR (Int, snd_hrtf, -1, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
CUSTOM_CVAR(Int, snd_samplerate, 0, CVAR_ARCHIVE | CVAR_GLOBALCONFIG)
{
if (self != 0 && self != 8000 && self != 11025 && self != 22050 && self != 32000 && self != 44100 && self != 48000)
{
self = 0;
return;
}
}
CVAR(Int, snd_buffersize, 0, CVAR_ARCHIVE | CVAR_GLOBALCONFIG)
CVAR(Int, snd_hrtf, -1, CVAR_ARCHIVE | CVAR_GLOBALCONFIG)
#if !defined(NO_OPENAL)
#if !defined(NO_OPENAL)
#define DEF_BACKEND "openal"
#else
#define DEF_BACKEND "null"

View file

@ -389,6 +389,8 @@ static void RestartWithParameters(const WadStuff& wad, NSString* parameters)
@try
{
NSString* executablePath = [NSString stringWithUTF8String:Args->GetArg(0)];
NSString* escapedParameters = [parameters stringByReplacingOccurrencesOfString:@"\"" withString:@"\\\""];
NSString* cvarArgument = [NSString stringWithFormat:@"+osx_additional_parameters \"%@\"", escapedParameters];
NSMutableArray* const arguments = [[NSMutableArray alloc] init];
[arguments addObject:@"-arch"];
@ -398,7 +400,7 @@ static void RestartWithParameters(const WadStuff& wad, NSString* parameters)
[arguments addObject:[NSString stringWithUTF8String:wad.Path]];
[arguments addObject:@"+defaultiwad"];
[arguments addObject:[NSString stringWithUTF8String:wad.Name]];
[arguments addObject:[NSString stringWithFormat:@"+osx_additional_parameters \"%@\"", parameters]];
[arguments addObject:cvarArgument];
for (int i = 1, count = Args->NumArgs(); i < count; ++i)
{

View file

@ -0,0 +1,486 @@
/*
* ReplayGainAnalysis - analyzes input samples and give the recommended dB change
* Copyright (C) 2001-2009 David Robinson and Glen Sawyer
* Improvements and optimizations added by Frank Klemm, and by Marcel M<EFBFBD>ller
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* concept and filter values by David Robinson (David@Robinson.org)
* -- blame him if you think the idea is flawed
* original coding by Glen Sawyer (mp3gain@hotmail.com)
* -- blame him if you think this runs too slowly, or the coding is otherwise flawed
*
* lots of code improvements by Frank Klemm ( http://www.uni-jena.de/~pfk/mpp/ )
* -- credit him for all the _good_ programming ;)
*
*
* For an explanation of the concepts and the basic algorithms involved, go to:
* http://www.replaygain.org/
*/
/*
* Here's the deal. Call
*
* InitGainAnalysis ( long samplefreq );
*
* to initialize everything. Call
*
* AnalyzeSamples ( const Float_t* left_samples,
* const Float_t* right_samples,
* size_t num_samples,
* int num_channels );
*
* as many times as you want, with as many or as few samples as you want.
* If mono, pass the sample buffer in through left_samples, leave
* right_samples NULL, and make sure num_channels = 1.
*
* GetTitleGain()
*
* will return the recommended dB level change for all samples analyzed
* SINCE THE LAST TIME you called GetTitleGain() OR InitGainAnalysis().
*
* GetAlbumGain()
*
* will return the recommended dB level change for all samples analyzed
* since InitGainAnalysis() was called and finalized with GetTitleGain().
*
* Pseudo-code to process an album:
*
* Float_t l_samples [4096];
* Float_t r_samples [4096];
* size_t num_samples;
* unsigned int num_songs;
* unsigned int i;
*
* InitGainAnalysis ( 44100 );
* for ( i = 1; i <= num_songs; i++ ) {
* while ( ( num_samples = getSongSamples ( song[i], left_samples, right_samples ) ) > 0 )
* AnalyzeSamples ( left_samples, right_samples, num_samples, 2 );
* fprintf ("Recommended dB change for song %2d: %+6.2f dB\n", i, GetTitleGain() );
* }
* fprintf ("Recommended dB change for whole album: %+6.2f dB\n", GetAlbumGain() );
*/
/*
* So here's the main source of potential code confusion:
*
* The filters applied to the incoming samples are IIR filters,
* meaning they rely on up to <filter order> number of previous samples
* AND up to <filter order> number of previous filtered samples.
*
* I set up the AnalyzeSamples routine to minimize memory usage and interface
* complexity. The speed isn't compromised too much (I don't think), but the
* internal complexity is higher than it should be for such a relatively
* simple routine.
*
* Optimization/clarity suggestions are welcome.
*/
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <math.h>
#include "gain_analysis.h"
#define RMS_PERCENTILE 0.95 // percentile which is louder than the proposed level
#define PINK_REF 64.82 //298640883795 // calibration value
// for each filter:
// [0] 48 kHz, [1] 44.1 kHz, [2] 32 kHz, [3] 24 kHz, [4] 22050 Hz, [5] 16 kHz, [6] 12 kHz, [7] is 11025 Hz, [8] 8 kHz
#ifdef WIN32
#ifndef __GNUC__
#pragma warning ( disable : 4305 )
#pragma warning ( disable : 4244 )
#endif
#endif
static const Float_t ABYule[][2 * YULE_ORDER + 1] = {
{(const Float_t) 0.006471345933032, (const Float_t) -7.22103125152679, (const Float_t) -0.02567678242161, (const Float_t) 24.7034187975904, (const Float_t) 0.049805860704367, (const Float_t) -52.6825833623896, (const Float_t) -0.05823001743528, (const Float_t) 77.4825736677539, (const Float_t) 0.040611847441914, (const Float_t) -82.0074753444205, (const Float_t) -0.010912036887501, (const Float_t) 63.1566097101925, (const Float_t) -0.00901635868667, (const Float_t) -34.889569769245, (const Float_t) 0.012448886238123, (const Float_t) 13.2126852760198, (const Float_t) -0.007206683749426, (const Float_t) -3.09445623301669, (const Float_t) 0.002167156433951, (const Float_t) 0.340344741393305, (const Float_t) -0.000261819276949},
{(const Float_t) 0.015415414474287, (const Float_t) -7.19001570087017, (const Float_t) -0.07691359399407, (const Float_t) 24.4109412087159, (const Float_t) 0.196677418516518, (const Float_t) -51.6306373580801, (const Float_t) -0.338855114128061, (const Float_t) 75.3978476863163, (const Float_t) 0.430094579594561, (const Float_t) -79.4164552507386, (const Float_t) -0.415015413747894, (const Float_t) 61.0373661948115, (const Float_t) 0.304942508151101, (const Float_t) -33.7446462547014, (const Float_t) -0.166191795926663, (const Float_t) 12.8168791146274, (const Float_t) 0.063198189938739, (const Float_t) -3.01332198541437, (const Float_t) -0.015003978694525, (const Float_t) 0.223619893831468, (const Float_t) 0.001748085184539},
{(const Float_t) 0.021776466467053, (const Float_t) -5.74819833657784, (const Float_t) -0.062376961003801, (const Float_t) 16.246507961894, (const Float_t) 0.107731165328514, (const Float_t) -29.9691822642542, (const Float_t) -0.150994515142316, (const Float_t) 40.027597579378, (const Float_t) 0.170334807313632, (const Float_t) -40.3209196052655, (const Float_t) -0.157984942890531, (const Float_t) 30.8542077487718, (const Float_t) 0.121639833268721, (const Float_t) -17.5965138737281, (const Float_t) -0.074094040816409, (const Float_t) 7.10690214103873, (const Float_t) 0.031282852041061, (const Float_t) -1.82175564515191, (const Float_t) -0.00755421235941, (const Float_t) 0.223619893831468, (const Float_t) 0.00117925454213},
{(const Float_t) 0.03857599435200, (const Float_t) -3.84664617118067, (const Float_t) -0.02160367184185, (const Float_t) 7.81501653005538, (const Float_t) -0.00123395316851, (const Float_t) -11.34170355132042, (const Float_t) -0.00009291677959, (const Float_t) 13.05504219327545, (const Float_t) -0.01655260341619, (const Float_t) -12.28759895145294, (const Float_t) 0.02161526843274, (const Float_t) 9.48293806319790, (const Float_t) -0.02074045215285, (const Float_t) -5.87257861775999, (const Float_t) 0.00594298065125, (const Float_t) 2.75465861874613, (const Float_t) 0.00306428023191, (const Float_t) -0.86984376593551, (const Float_t) 0.00012025322027, (const Float_t) 0.13919314567432, (const Float_t) 0.00288463683916},
{(const Float_t) 0.05418656406430, (const Float_t) -3.47845948550071, (const Float_t) -0.02911007808948, (const Float_t) 6.36317777566148, (const Float_t) -0.00848709379851, (const Float_t) -8.54751527471874, (const Float_t) -0.00851165645469, (const Float_t) 9.47693607801280, (const Float_t) -0.00834990904936, (const Float_t) -8.81498681370155, (const Float_t) 0.02245293253339, (const Float_t) 6.85401540936998, (const Float_t) -0.02596338512915, (const Float_t) -4.39470996079559, (const Float_t) 0.01624864962975, (const Float_t) 2.19611684890774, (const Float_t) -0.00240879051584, (const Float_t) -0.75104302451432, (const Float_t) 0.00674613682247, (const Float_t) 0.13149317958808, (const Float_t) -0.00187763777362},
{(const Float_t) 0.15457299681924, (const Float_t) -2.37898834973084, (const Float_t) -0.09331049056315, (const Float_t) 2.84868151156327, (const Float_t) -0.06247880153653, (const Float_t) -2.64577170229825, (const Float_t) 0.02163541888798, (const Float_t) 2.23697657451713, (const Float_t) -0.05588393329856, (const Float_t) -1.67148153367602, (const Float_t) 0.04781476674921, (const Float_t) 1.00595954808547, (const Float_t) 0.00222312597743, (const Float_t) -0.45953458054983, (const Float_t) 0.03174092540049, (const Float_t) 0.16378164858596, (const Float_t) -0.01390589421898, (const Float_t) -0.05032077717131, (const Float_t) 0.00651420667831, (const Float_t) 0.02347897407020, (const Float_t) -0.00881362733839},
{(const Float_t) 0.30296907319327, (const Float_t) -1.61273165137247, (const Float_t) -0.22613988682123, (const Float_t) 1.07977492259970, (const Float_t) -0.08587323730772, (const Float_t) -0.25656257754070, (const Float_t) 0.03282930172664, (const Float_t) -0.16276719120440, (const Float_t) -0.00915702933434, (const Float_t) -0.22638893773906, (const Float_t) -0.02364141202522, (const Float_t) 0.39120800788284, (const Float_t) -0.00584456039913, (const Float_t) -0.22138138954925, (const Float_t) 0.06276101321749, (const Float_t) 0.04500235387352, (const Float_t) -0.00000828086748, (const Float_t) 0.02005851806501, (const Float_t) 0.00205861885564, (const Float_t) 0.00302439095741, (const Float_t) -0.02950134983287},
{(const Float_t) 0.33642304856132, (const Float_t) -1.49858979367799, (const Float_t) -0.25572241425570, (const Float_t) 0.87350271418188, (const Float_t) -0.11828570177555, (const Float_t) 0.12205022308084, (const Float_t) 0.11921148675203, (const Float_t) -0.80774944671438, (const Float_t) -0.07834489609479, (const Float_t) 0.47854794562326, (const Float_t) -0.00469977914380, (const Float_t) -0.12453458140019, (const Float_t) -0.00589500224440, (const Float_t) -0.04067510197014, (const Float_t) 0.05724228140351, (const Float_t) 0.08333755284107, (const Float_t) 0.00832043980773, (const Float_t) -0.04237348025746, (const Float_t) -0.01635381384540, (const Float_t) 0.02977207319925, (const Float_t) -0.01760176568150},
{(const Float_t) 0.44915256608450, (const Float_t) -0.62820619233671, (const Float_t) -0.14351757464547, (const Float_t) 0.29661783706366, (const Float_t) -0.22784394429749, (const Float_t) -0.37256372942400, (const Float_t) -0.01419140100551, (const Float_t) 0.00213767857124, (const Float_t) 0.04078262797139, (const Float_t) -0.42029820170918, (const Float_t) -0.12398163381748, (const Float_t) 0.22199650564824, (const Float_t) 0.04097565135648, (const Float_t) 0.00613424350682, (const Float_t) 0.10478503600251, (const Float_t) 0.06747620744683, (const Float_t) -0.01863887810927, (const Float_t) 0.05784820375801, (const Float_t) -0.03193428438915, (const Float_t) 0.03222754072173, (const Float_t) 0.00541907748707},
{(const Float_t) 0.56619470757641, (const Float_t) -1.04800335126349, (const Float_t) -0.75464456939302, (const Float_t) 0.29156311971249, (const Float_t) 0.16242137742230, (const Float_t) -0.26806001042947, (const Float_t) 0.16744243493672, (const Float_t) 0.00819999645858, (const Float_t) -0.18901604199609, (const Float_t) 0.45054734505008, (const Float_t) 0.30931782841830, (const Float_t) -0.33032403314006, (const Float_t) -0.27562961986224, (const Float_t) 0.06739368333110, (const Float_t) 0.00647310677246, (const Float_t) -0.04784254229033, (const Float_t) 0.08647503780351, (const Float_t) 0.01639907836189, (const Float_t) -0.03788984554840, (const Float_t) 0.01807364323573, (const Float_t) -0.00588215443421},
{(const Float_t) 0.58100494960553, (const Float_t) -0.51035327095184, (const Float_t) -0.53174909058578, (const Float_t) -0.31863563325245, (const Float_t) -0.14289799034253, (const Float_t) -0.20256413484477, (const Float_t) 0.17520704835522, (const Float_t) 0.14728154134330, (const Float_t) 0.02377945217615, (const Float_t) 0.38952639978999, (const Float_t) 0.15558449135573, (const Float_t) -0.23313271880868, (const Float_t) -0.25344790059353, (const Float_t) -0.05246019024463, (const Float_t) 0.01628462406333, (const Float_t) -0.02505961724053, (const Float_t) 0.06920467763959, (const Float_t) 0.02442357316099, (const Float_t) -0.03721611395801, (const Float_t) 0.01818801111503, (const Float_t) -0.00749618797172},
{(const Float_t) 0.53648789255105, (const Float_t) -0.25049871956020, (const Float_t) -0.42163034350696, (const Float_t) -0.43193942311114, (const Float_t) -0.00275953611929, (const Float_t) -0.03424681017675, (const Float_t) 0.04267842219415, (const Float_t) -0.04678328784242, (const Float_t) -0.10214864179676, (const Float_t) 0.26408300200955, (const Float_t) 0.14590772289388, (const Float_t) 0.15113130533216, (const Float_t) -0.02459864859345, (const Float_t) -0.17556493366449, (const Float_t) -0.11202315195388, (const Float_t) -0.18823009262115, (const Float_t) -0.04060034127000, (const Float_t) 0.05477720428674, (const Float_t) 0.04788665548180, (const Float_t) 0.04704409688120, (const Float_t) -0.02217936801134},
{(const Float_t) 0.38524531015142, (const Float_t) -1.29708918404534, (const Float_t) -0.27682212062067, (const Float_t) 0.90399339674203, (const Float_t)-0.09980181488805, (const Float_t) -0.29613799017877, (const Float_t) 0.09951486755646, (const Float_t)-0.42326645916207, (const Float_t) -0.08934020156622, (const Float_t) 0.37934887402200, (const Float_t) -0.00322369330199, (const Float_t) -0.37919795944938, (const Float_t) -0.00110329090689, (const Float_t) 0.23410283284785, (const Float_t) 0.03784509844682, (const Float_t) -0.03892971758879, (const Float_t) 0.01683906213303, (const Float_t) 0.00403009552351, (const Float_t) -0.01147039862572, (const Float_t) 0.03640166626278, (const Float_t) -0.01941767987192 },
{(const Float_t)0.08717879977844, (const Float_t)-2.62816311472146, (const Float_t)-0.01000374016172, (const Float_t)3.53734535817992, (const Float_t)-0.06265852122368, (const Float_t)-3.81003448678921, (const Float_t)-0.01119328800950, (const Float_t)3.91291636730132, (const Float_t)-0.00114279372960, (const Float_t)-3.53518605896288, (const Float_t)0.02081333954769, (const Float_t)2.71356866157873, (const Float_t)-0.01603261863207, (const Float_t)-1.86723311846592, (const Float_t)0.01936763028546, (const Float_t)1.12075382367659, (const Float_t)0.00760044736442, (const Float_t)-0.48574086886890, (const Float_t)-0.00303979112271, (const Float_t)0.11330544663849, (const Float_t)-0.00075088605788 },
};
static const Float_t ABButter[][2 * BUTTER_ORDER + 1] = {
{(const Float_t) 0.99308203517541, (const Float_t) -1.98611621154089, (const Float_t) -1.98616407035082, (const Float_t) 0.986211929160751, (const Float_t) 0.99308203517541},
{(const Float_t) 0.992472550461293, (const Float_t) -1.98488843762334, (const Float_t) -1.98494510092258, (const Float_t) 0.979389350028798, (const Float_t) 0.992472550461293},
{(const Float_t) 0.989641019334721, (const Float_t) -1.97917472731008, (const Float_t) -1.97928203866944, (const Float_t) 0.979389350028798, (const Float_t) 0.989641019334721},
{(const Float_t) 0.98621192462708, (const Float_t) -1.97223372919527, (const Float_t) -1.97242384925416, (const Float_t) 0.97261396931306, (const Float_t) 0.98621192462708},
{(const Float_t) 0.98500175787242, (const Float_t) -1.96977855582618, (const Float_t) -1.97000351574484, (const Float_t) 0.97022847566350, (const Float_t) 0.98500175787242},
{(const Float_t) 0.97938932735214, (const Float_t) -1.95835380975398, (const Float_t) -1.95877865470428, (const Float_t) 0.95920349965459, (const Float_t) 0.97938932735214},
{(const Float_t) 0.97531843204928, (const Float_t) -1.95002759149878, (const Float_t) -1.95063686409857, (const Float_t) 0.95124613669835, (const Float_t) 0.97531843204928},
{(const Float_t) 0.97316523498161, (const Float_t) -1.94561023566527, (const Float_t) -1.94633046996323, (const Float_t) 0.94705070426118, (const Float_t) 0.97316523498161},
{(const Float_t) 0.96454515552826, (const Float_t) -1.92783286977036, (const Float_t) -1.92909031105652, (const Float_t) 0.93034775234268, (const Float_t) 0.96454515552826},
{(const Float_t) 0.96009142950541, (const Float_t) -1.91858953033784, (const Float_t) -1.92018285901082, (const Float_t) 0.92177618768381, (const Float_t) 0.96009142950541},
{(const Float_t) 0.95856916599601, (const Float_t) -1.91542108074780, (const Float_t) -1.91713833199203, (const Float_t) 0.91885558323625, (const Float_t) 0.95856916599601},
{(const Float_t) 0.94597685600279, (const Float_t) -1.88903307939452, (const Float_t) -1.89195371200558, (const Float_t) 0.89487434461664, (const Float_t) 0.94597685600279},
{(const Float_t)0.96535326815829, (const Float_t)-1.92950577983524, (const Float_t)-1.93070653631658, (const Float_t)0.93190729279793, (const Float_t)0.96535326815829 },
{(const Float_t)0.98252400815195, (const Float_t)-1.96474258269041, (const Float_t)-1.96504801630391, (const Float_t)0.96535344991740, (const Float_t)0.98252400815195 },
};
#ifdef WIN32
#ifndef __GNUC__
#pragma warning ( default : 4305 )
#endif
#endif
// When calling these filter procedures, make sure that ip[-order] and op[-order] point to real data!
// If your compiler complains that "'operation on 'output' may be undefined", you can
// either ignore the warnings or uncomment the three "y" lines (and comment out the indicated line)
void
GainAnalyzer::filterYule(const Float_t *input, Float_t *output, size_t nSamples, const Float_t *kernel)
{
while (nSamples--) {
*output = 1e-10f /* 1e-10 is a hack to avoid slowdown because of denormals */
+ input[0] * kernel[0]
- output[-1] * kernel[1]
+ input[-1] * kernel[2]
- output[-2] * kernel[3]
+ input[-2] * kernel[4]
- output[-3] * kernel[5]
+ input[-3] * kernel[6]
- output[-4] * kernel[7]
+ input[-4] * kernel[8]
- output[-5] * kernel[9]
+ input[-5] * kernel[10]
- output[-6] * kernel[11]
+ input[-6] * kernel[12]
- output[-7] * kernel[13]
+ input[-7] * kernel[14]
- output[-8] * kernel[15]
+ input[-8] * kernel[16]
- output[-9] * kernel[17]
+ input[-9] * kernel[18]
- output[-10] * kernel[19]
+ input[-10] * kernel[20];
++output;
++input;
}
}
void
GainAnalyzer::filterButter(const Float_t *input, Float_t *output, size_t nSamples, const Float_t *kernel) {
while (nSamples--) {
*output =
input[0] * kernel[0]
- output[-1] * kernel[1]
+ input[-1] * kernel[2]
- output[-2] * kernel[3]
+ input[-2] * kernel[4];
++output;
++input;
}
}
// returns a INIT_GAIN_ANALYSIS_OK if successful, INIT_GAIN_ANALYSIS_ERROR if not
int
GainAnalyzer::ResetSampleFrequency(int samplefreq) {
int i;
// zero out initial values
for (i = 0; i < MAX_ORDER; i++)
linprebuf[i] = lstepbuf[i] = loutbuf[i] = rinprebuf[i] = rstepbuf[i] = routbuf[i] = (Float_t) 0.;
switch ((int) (samplefreq)) {
case 96000:
freqindex = 0;
break;
case 88200:
freqindex = 1;
break;
case 64000:
freqindex = 2;
break;
case 49716: // I could not find a table for this but we need to be able to handle this frequency for OPL, even if this means not getting the proper level.
case 48000:
freqindex = 3;
break;
case 44100:
freqindex = 4;
break;
case 32000:
freqindex = 5;
break;
case 24000:
freqindex = 6;
break;
case 22050:
freqindex = 7;
break;
case 16000:
freqindex = 8;
break;
case 12000:
freqindex = 9;
break;
case 11025:
freqindex = 10;
break;
case 8000:
freqindex = 11;
break;
// These two were added for XA support.
case 18900:
freqindex = 12;
break;
case 37800:
freqindex = 13;
break;
default:
return INIT_GAIN_ANALYSIS_ERROR;
}
sampleWindow = (int) ceil(samplefreq * RMS_WINDOW_TIME);
lsum = 0.;
rsum = 0.;
totsamp = 0;
memset(A, 0, sizeof(A));
return INIT_GAIN_ANALYSIS_OK;
}
int
GainAnalyzer::InitGainAnalysis(int samplefreq) {
*this = {};
if (ResetSampleFrequency(samplefreq) != INIT_GAIN_ANALYSIS_OK) {
return INIT_GAIN_ANALYSIS_ERROR;
}
linpre = linprebuf + MAX_ORDER;
rinpre = rinprebuf + MAX_ORDER;
lstep = lstepbuf + MAX_ORDER;
rstep = rstepbuf + MAX_ORDER;
lout = loutbuf + MAX_ORDER;
rout = routbuf + MAX_ORDER;
memset(B, 0, sizeof(B));
return INIT_GAIN_ANALYSIS_OK;
}
// returns GAIN_ANALYSIS_OK if successful, GAIN_ANALYSIS_ERROR if not
static __inline double fsqr(const double d) {
return d * d;
}
int
GainAnalyzer::AnalyzeSamples(const Float_t *left_samples, const Float_t *right_samples, size_t num_samples, int num_channels) {
const Float_t *curleft;
const Float_t *curright;
int64_t batchsamples;
int64_t cursamples;
int64_t cursamplepos;
int i;
if (num_samples == 0)
return GAIN_ANALYSIS_OK;
cursamplepos = 0;
batchsamples = (int64_t) num_samples;
switch (num_channels) {
case 1:
right_samples = left_samples;
case 2:
break;
default:
return GAIN_ANALYSIS_ERROR;
}
if (num_samples < MAX_ORDER) {
memcpy(linprebuf + MAX_ORDER, left_samples, num_samples * sizeof(Float_t));
memcpy(rinprebuf + MAX_ORDER, right_samples, num_samples * sizeof(Float_t));
} else {
memcpy(linprebuf + MAX_ORDER, left_samples, MAX_ORDER * sizeof(Float_t));
memcpy(rinprebuf + MAX_ORDER, right_samples, MAX_ORDER * sizeof(Float_t));
}
while (batchsamples > 0) {
cursamples = batchsamples > sampleWindow - totsamp ? sampleWindow - totsamp : batchsamples;
if (cursamplepos < MAX_ORDER) {
curleft = linpre + cursamplepos;
curright = rinpre + cursamplepos;
if (cursamples > MAX_ORDER - cursamplepos)
cursamples = MAX_ORDER - cursamplepos;
} else {
curleft = left_samples + cursamplepos;
curright = right_samples + cursamplepos;
}
filterYule(curleft, lstep + totsamp, cursamples, ABYule[freqindex]);
filterYule(curright, rstep + totsamp, cursamples, ABYule[freqindex]);
filterButter(lstep + totsamp, lout + totsamp, cursamples, ABButter[freqindex]);
filterButter(rstep + totsamp, rout + totsamp, cursamples, ABButter[freqindex]);
curleft = lout + totsamp; // Get the squared values
curright = rout + totsamp;
i = cursamples % 16;
while (i--) {
lsum += fsqr(*curleft++);
rsum += fsqr(*curright++);
}
i = cursamples / 16;
while (i--) {
lsum += fsqr(curleft[0])
+ fsqr(curleft[1])
+ fsqr(curleft[2])
+ fsqr(curleft[3])
+ fsqr(curleft[4])
+ fsqr(curleft[5])
+ fsqr(curleft[6])
+ fsqr(curleft[7])
+ fsqr(curleft[8])
+ fsqr(curleft[9])
+ fsqr(curleft[10])
+ fsqr(curleft[11])
+ fsqr(curleft[12])
+ fsqr(curleft[13])
+ fsqr(curleft[14])
+ fsqr(curleft[15]);
curleft += 16;
rsum += fsqr(curright[0])
+ fsqr(curright[1])
+ fsqr(curright[2])
+ fsqr(curright[3])
+ fsqr(curright[4])
+ fsqr(curright[5])
+ fsqr(curright[6])
+ fsqr(curright[7])
+ fsqr(curright[8])
+ fsqr(curright[9])
+ fsqr(curright[10])
+ fsqr(curright[11])
+ fsqr(curright[12])
+ fsqr(curright[13])
+ fsqr(curright[14])
+ fsqr(curright[15]);
curright += 16;
}
batchsamples -= cursamples;
cursamplepos += cursamples;
totsamp += cursamples;
if (totsamp == sampleWindow) { // Get the Root Mean Square (RMS) for this set of samples
double val = STEPS_per_dB * 10. * log10((lsum + rsum) / totsamp * 0.5 + 1.e-37);
int ival = (int) val;
if (ival < 0) ival = 0;
if (ival >= (int) (sizeof(A) / sizeof(*A))) ival = sizeof(A) / sizeof(*A) - 1;
A[ival]++;
lsum = rsum = 0.;
memmove(loutbuf, loutbuf + totsamp, MAX_ORDER * sizeof(Float_t));
memmove(routbuf, routbuf + totsamp, MAX_ORDER * sizeof(Float_t));
memmove(lstepbuf, lstepbuf + totsamp, MAX_ORDER * sizeof(Float_t));
memmove(rstepbuf, rstepbuf + totsamp, MAX_ORDER * sizeof(Float_t));
totsamp = 0;
}
if (totsamp >
sampleWindow) // somehow I really screwed up: Error in programming! Contact author about totsamp > sampleWindow
return GAIN_ANALYSIS_ERROR;
}
if (num_samples < MAX_ORDER) {
memmove(linprebuf, linprebuf + num_samples, (MAX_ORDER - num_samples) * sizeof(Float_t));
memmove(rinprebuf, rinprebuf + num_samples, (MAX_ORDER - num_samples) * sizeof(Float_t));
memcpy(linprebuf + MAX_ORDER - num_samples, left_samples, num_samples * sizeof(Float_t));
memcpy(rinprebuf + MAX_ORDER - num_samples, right_samples, num_samples * sizeof(Float_t));
} else {
memcpy(linprebuf, left_samples + num_samples - MAX_ORDER, MAX_ORDER * sizeof(Float_t));
memcpy(rinprebuf, right_samples + num_samples - MAX_ORDER, MAX_ORDER * sizeof(Float_t));
}
return GAIN_ANALYSIS_OK;
}
Float_t
GainAnalyzer::analyzeResult(const unsigned int *Array, size_t len) {
unsigned int elems;
signed int upper;
size_t i;
elems = 0;
for (i = 0; i < len; i++)
elems += Array[i];
if (elems == 0)
return GAIN_NOT_ENOUGH_SAMPLES;
upper = (signed int) ceil(elems * (1. - RMS_PERCENTILE));
for (i = len; i-- > 0;) {
if ((upper -= Array[i]) <= 0)
break;
}
return (Float_t) ((Float_t) PINK_REF - (Float_t) i / (Float_t) STEPS_per_dB);
}
Float_t
GainAnalyzer::GetTitleGain(void) {
Float_t retval;
int i;
retval = analyzeResult(A, sizeof(A) / sizeof(*A));
for (i = 0; i < (int) (sizeof(A) / sizeof(*A)); i++) {
B[i] += A[i];
A[i] = 0;
}
for (i = 0; i < MAX_ORDER; i++)
linprebuf[i] = lstepbuf[i] = loutbuf[i] = rinprebuf[i] = rstepbuf[i] = routbuf[i] = 0.f;
totsamp = 0;
lsum = rsum = 0.;
return retval;
}
Float_t
GainAnalyzer::GetAlbumGain(void) {
return analyzeResult(B, sizeof(B) / sizeof(*B));
}
/* end of gain_analysis.c */

View file

@ -0,0 +1,92 @@
/*
* ReplayGainAnalysis - analyzes input samples and give the recommended dB change
* Copyright (C) 2001-2009 David Robinson and Glen Sawyer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* concept and filter values by David Robinson (David@Robinson.org)
* -- blame him if you think the idea is flawed
* coding by Glen Sawyer (mp3gain@hotmail.com) 735 W 255 N, Orem, UT 84057-4505 USA
* -- blame him if you think this runs too slowly, or the coding is otherwise flawed
*
* For an explanation of the concepts and the basic algorithms involved, go to:
* http://www.replaygain.org/
*/
#ifndef GAIN_ANALYSIS_H
#define GAIN_ANALYSIS_H
#include <stddef.h>
#include <stdint.h>
#define GAIN_NOT_ENOUGH_SAMPLES (-24601)
#define GAIN_ANALYSIS_ERROR 0
#define GAIN_ANALYSIS_OK 1
#define INIT_GAIN_ANALYSIS_ERROR 0
#define INIT_GAIN_ANALYSIS_OK 1
#define STEPS_per_dB 100. // Table entries per dB
#define MAX_dB 120. // Table entries for 0...MAX_dB (normal max. values are 70...80 dB)
#define MAX_SAMP_FREQ 96000. // maximum allowed sample frequency [Hz]
#define RMS_WINDOW_TIME 0.050 // Time slice size [s]
#define YULE_ORDER 10
#define BUTTER_ORDER 2
#define MAX_ORDER (BUTTER_ORDER > YULE_ORDER ? BUTTER_ORDER : YULE_ORDER)
#define MAX_SAMPLES_PER_WINDOW (size_t) (MAX_SAMP_FREQ * RMS_WINDOW_TIME + 1) // max. Samples per Time slice
typedef float Float_t; // Type used for filtering
struct GainAnalyzer
{
int InitGainAnalysis(int samplefreq);
int AnalyzeSamples(const Float_t *left_samples, const Float_t *right_samples, size_t num_samples, int num_channels);
int ResetSampleFrequency(int samplefreq);
Float_t GetTitleGain(void);
Float_t GetAlbumGain(void);
private:
Float_t linprebuf[MAX_ORDER * 2];
Float_t *linpre; // left input samples, with pre-buffer
Float_t lstepbuf[MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
Float_t *lstep; // left "first step" (i.e. post first filter) samples
Float_t loutbuf[MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
Float_t *lout; // left "out" (i.e. post second filter) samples
Float_t rinprebuf[MAX_ORDER * 2];
Float_t *rinpre; // right input samples ...
Float_t rstepbuf[MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
Float_t *rstep;
Float_t routbuf[MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
Float_t *rout;
long sampleWindow; // number of samples required to reach number of milliseconds required for RMS window
long totsamp;
double lsum;
double rsum;
int freqindex;
unsigned int A[(size_t) (STEPS_per_dB * MAX_dB)];
unsigned int B[(size_t) (STEPS_per_dB * MAX_dB)];
void filterYule(const Float_t* input, Float_t* output, size_t nSamples, const Float_t* kernel);
void filterButter(const Float_t* input, Float_t* output, size_t nSamples, const Float_t* kernel);
Float_t analyzeResult(const unsigned int* Array, size_t len);
};
#endif /* GAIN_ANALYSIS_H */