mirror of
https://github.com/ZDoom/raze-gles.git
synced 2024-11-10 23:02:03 +00:00
- cleaned up the map drawer by using a real triangulator.
Immediate benefit: almost 200 lines of bona-fide Kencode go to the dumpster.
This commit is contained in:
parent
77cd7bffc5
commit
2f8d472d7d
5 changed files with 874 additions and 205 deletions
|
@ -8274,7 +8274,16 @@ static void renderFillPolygon(int32_t npoints)
|
|||
if ((unsigned)xb1[z] >= (unsigned)npoints)
|
||||
xb1[z] = 0;
|
||||
|
||||
polymost_fillpolygon(npoints);
|
||||
FVector2 xtex, ytex, otex;
|
||||
int x1 = mulscale16(globalx1, xyaspect);
|
||||
int y2 = mulscale16(globaly2, xyaspect);
|
||||
xtex.X = ((float)asm1) * (1.f / 4294967296.f);
|
||||
xtex.Y = ((float)asm2) * (1.f / 4294967296.f);
|
||||
ytex.X = ((float)x1) * (1.f / 4294967296.f);
|
||||
ytex.Y = ((float)y2) * (-1.f / 4294967296.f);
|
||||
otex.X = (fxdim * xtex.X + fydim * ytex.X) * -0.5f + fglobalposx * (1.f / 4294967296.f);
|
||||
otex.Y = (fxdim * xtex.Y + fydim * ytex.Y) * -0.5f - fglobalposy * (1.f / 4294967296.f);
|
||||
twod->FillPolygon(rx1, ry1, xb1, npoints, globalpicnum, globalpal, globalshade, globalorientation, xtex, ytex, otex);
|
||||
}
|
||||
|
||||
//
|
||||
|
|
|
@ -4719,194 +4719,6 @@ void polymost_dorotatespritemodel(int32_t sx, int32_t sy, int32_t z, int16_t a,
|
|||
polymost_identityrotmat();
|
||||
}
|
||||
|
||||
#include "v_2ddrawer.h"
|
||||
static void drawtrap(float x0, float x1, float y0, float x2, float x3, float y1, float *trapextx, F2DPolygons *poly)
|
||||
{
|
||||
if (y0 == y1) return;
|
||||
|
||||
float px[4], py[4];
|
||||
int n = 3;
|
||||
|
||||
px[0] = x0; py[0] = y0; py[2] = y1;
|
||||
if (x0 == x1) { px[1] = x3; py[1] = y1; px[2] = x2; }
|
||||
else if (x2 == x3) { px[1] = x1; py[1] = y0; px[2] = x3; }
|
||||
else { px[1] = x1; py[1] = y0; px[2] = x3; px[3] = x2; py[3] = y1; n = 4; }
|
||||
|
||||
auto vt = poly->AllocVertices(n);
|
||||
for (int i=0; i<n; i++)
|
||||
{
|
||||
px[i] = min(max(px[i],trapextx[0]),trapextx[1]);
|
||||
poly->vertices[vt++] = { px[i], py[i], float(px[i] * xtex.u + py[i] * ytex.u + otex.u), float(px[i] * xtex.v + py[i] * ytex.v + otex.v) };
|
||||
}
|
||||
}
|
||||
|
||||
static void tessectrap(const float *px, const float *py, const int32_t *point2, int32_t numpoints, F2DPolygons* poly)
|
||||
{
|
||||
float trapextx[2];
|
||||
float x0, x1, m0, m1;
|
||||
int32_t i, j, k, z, i0, i1, i2, i3, npoints, gap, numrst;
|
||||
|
||||
static int32_t allocpoints = 0, *slist = 0, *npoint2 = 0;
|
||||
typedef struct { float x, y, xi; int32_t i; } raster;
|
||||
static raster *rst = 0;
|
||||
if (numpoints+16 > allocpoints) //16 for safety
|
||||
{
|
||||
allocpoints = numpoints+16;
|
||||
rst = (raster *)Xrealloc(rst,allocpoints*sizeof(raster));
|
||||
slist = (int32_t *)Xrealloc(slist,allocpoints*sizeof(int32_t));
|
||||
npoint2 = (int32_t *)Xrealloc(npoint2,allocpoints*sizeof(int32_t));
|
||||
}
|
||||
|
||||
//Remove unnecessary collinear points:
|
||||
for (i=0; i<numpoints; i++) npoint2[i] = point2[i];
|
||||
npoints = numpoints; z = 0;
|
||||
for (i=0; i<numpoints; i++)
|
||||
{
|
||||
j = npoint2[i]; if ((i < numpoints-1) && (point2[i] < i)) z = 3;
|
||||
if (j < 0) continue;
|
||||
k = npoint2[j];
|
||||
m0 = (px[j]-px[i])*(py[k]-py[j]);
|
||||
m1 = (py[j]-py[i])*(px[k]-px[j]);
|
||||
if (m0 < m1) { z |= 1; continue; }
|
||||
if (m0 > m1) { z |= 2; continue; }
|
||||
npoint2[i] = k; npoint2[j] = -1; npoints--; i--; //collinear
|
||||
}
|
||||
if (!z) return;
|
||||
trapextx[0] = trapextx[1] = px[0];
|
||||
for (i=j=0; i<numpoints; i++)
|
||||
{
|
||||
if (npoint2[i] < 0) continue;
|
||||
if (px[i] < trapextx[0]) trapextx[0] = px[i];
|
||||
if (px[i] > trapextx[1]) trapextx[1] = px[i];
|
||||
slist[j++] = i;
|
||||
}
|
||||
if (z != 3) //Simple polygon... early out
|
||||
{
|
||||
auto vt = poly->AllocVertices(npoints);
|
||||
|
||||
for (i=0; i<npoints; i++)
|
||||
{
|
||||
j = slist[i];
|
||||
poly->vertices[vt++] = { px[j], py[j], float(px[j] * xtex.u + py[j] * ytex.u + otex.u), float(px[j] * xtex.v + py[j] * ytex.v + otex.v) };
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
//Sort points by y's
|
||||
for (gap=(npoints>>1); gap; gap>>=1)
|
||||
for (i=0; i<npoints-gap; i++)
|
||||
for (j=i; j>=0; j-=gap)
|
||||
{
|
||||
if (py[npoint2[slist[j]]] <= py[npoint2[slist[j+gap]]]) break;
|
||||
k = slist[j]; slist[j] = slist[j+gap]; slist[j+gap] = k;
|
||||
}
|
||||
|
||||
numrst = 0;
|
||||
for (z=0; z<npoints; z++)
|
||||
{
|
||||
i0 = slist[z]; i1 = npoint2[i0]; if (py[i0] == py[i1]) continue;
|
||||
i2 = i1; i3 = npoint2[i1];
|
||||
if (py[i1] == py[i3]) { i2 = i3; i3 = npoint2[i3]; }
|
||||
|
||||
//i0 i3
|
||||
// \ /
|
||||
// i1--i2
|
||||
// / \ ~
|
||||
//i0 i3
|
||||
|
||||
if ((py[i1] < py[i0]) && (py[i2] < py[i3])) //Insert raster
|
||||
{
|
||||
for (i=numrst; i>0; i--)
|
||||
{
|
||||
if (rst[i-1].xi*(py[i1]-rst[i-1].y) + rst[i-1].x < px[i1]) break;
|
||||
rst[i+1] = rst[i-1];
|
||||
}
|
||||
numrst += 2;
|
||||
|
||||
if (i&1) //split inside area
|
||||
{
|
||||
j = i-1;
|
||||
|
||||
x0 = (py[i1] - rst[j ].y)*rst[j ].xi + rst[j ].x;
|
||||
x1 = (py[i1] - rst[j+1].y)*rst[j+1].xi + rst[j+1].x;
|
||||
drawtrap(rst[j].x,rst[j+1].x,rst[j].y,x0,x1,py[i1], trapextx, poly);
|
||||
rst[j ].x = x0; rst[j ].y = py[i1];
|
||||
rst[j+3].x = x1; rst[j+3].y = py[i1];
|
||||
}
|
||||
|
||||
m0 = (px[i0]-px[i1]) / (py[i0]-py[i1]);
|
||||
m1 = (px[i3]-px[i2]) / (py[i3]-py[i2]);
|
||||
j = ((px[i1] > px[i2]) || ((i1 == i2) && (m0 >= m1))) + i;
|
||||
k = (i<<1)+1 - j;
|
||||
rst[j].i = i0; rst[j].xi = m0; rst[j].x = px[i1]; rst[j].y = py[i1];
|
||||
rst[k].i = i3; rst[k].xi = m1; rst[k].x = px[i2]; rst[k].y = py[i2];
|
||||
}
|
||||
else
|
||||
{
|
||||
//NOTE:don't count backwards!
|
||||
if (i1 == i2) { for (i=0; i<numrst; i++) if (rst[i].i == i1) break; }
|
||||
else { for (i=0; i<numrst; i++) if ((rst[i].i == i1) || (rst[i].i == i2)) break; }
|
||||
j = i&~1;
|
||||
|
||||
if ((py[i1] > py[i0]) && (py[i2] > py[i3])) //Delete raster
|
||||
{
|
||||
for (; j<=i+1; j+=2)
|
||||
{
|
||||
x0 = (py[i1] - rst[j ].y)*rst[j ].xi + rst[j ].x;
|
||||
if ((i == j) && (i1 == i2)) x1 = x0; else x1 = (py[i1] - rst[j+1].y)*rst[j+1].xi + rst[j+1].x;
|
||||
drawtrap(rst[j].x,rst[j+1].x,rst[j].y,x0,x1,py[i1], trapextx, poly);
|
||||
rst[j ].x = x0; rst[j ].y = py[i1];
|
||||
rst[j+1].x = x1; rst[j+1].y = py[i1];
|
||||
}
|
||||
numrst -= 2; for (; i<numrst; i++) rst[i] = rst[i+2];
|
||||
}
|
||||
else
|
||||
{
|
||||
x0 = (py[i1] - rst[j ].y)*rst[j ].xi + rst[j ].x;
|
||||
x1 = (py[i1] - rst[j+1].y)*rst[j+1].xi + rst[j+1].x;
|
||||
drawtrap(rst[j].x,rst[j+1].x,rst[j].y,x0,x1,py[i1], trapextx, poly);
|
||||
rst[j ].x = x0; rst[j ].y = py[i1];
|
||||
rst[j+1].x = x1; rst[j+1].y = py[i1];
|
||||
|
||||
if (py[i0] < py[i3]) { rst[i].x = px[i2]; rst[i].y = py[i2]; rst[i].i = i3; }
|
||||
else { rst[i].x = px[i1]; rst[i].y = py[i1]; rst[i].i = i0; }
|
||||
rst[i].xi = (px[rst[i].i] - rst[i].x) / (py[rst[i].i] - py[i1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static F2DPolygons poly;
|
||||
void polymost_fillpolygon(int32_t npoints)
|
||||
{
|
||||
poly.vertices.Clear();
|
||||
poly.indices.Clear();
|
||||
polymost_outputGLDebugMessage(3, "polymost_fillpolygon(npoints:%d)", npoints);
|
||||
|
||||
globvis2 = 0;
|
||||
|
||||
globalx1 = mulscale16(globalx1,xyaspect);
|
||||
globaly2 = mulscale16(globaly2,xyaspect);
|
||||
xtex.u = ((float)asm1) * (1.f / 4294967296.f);
|
||||
xtex.v = ((float)asm2) * (1.f / 4294967296.f);
|
||||
ytex.u = ((float)globalx1) * (1.f / 4294967296.f);
|
||||
ytex.v = ((float)globaly2) * (-1.f / 4294967296.f);
|
||||
otex.u = (fxdim * xtex.u + fydim * ytex.u) * -0.5f + fglobalposx * (1.f / 4294967296.f);
|
||||
otex.v = (fxdim * xtex.v + fydim * ytex.v) * -0.5f - fglobalposy * (1.f / 4294967296.f);
|
||||
|
||||
//Convert int32_t to float (in-place)
|
||||
for (bssize_t i=0; i<npoints; ++i)
|
||||
{
|
||||
((float *)rx1)[i] = ((float)rx1[i])*(1.0f/4096.f);
|
||||
((float *)ry1)[i] = ((float)ry1[i])*(1.0f/4096.f);
|
||||
}
|
||||
tessectrap((float*)rx1, (float*)ry1, xb1, npoints, &poly);
|
||||
|
||||
uint8_t const maskprops = (globalorientation>>7)&DAMETH_MASKPROPS;
|
||||
twod->AddPoly(TileFiles.tiles[globalpicnum], poly, globalpal, globalshade, maskprops);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void polymost_initosdfuncs(void)
|
||||
{
|
||||
|
|
|
@ -32,6 +32,7 @@
|
|||
#include "drawparms.h"
|
||||
#include "vectors.h"
|
||||
#include "gamecvars.h"
|
||||
#include "earcut.hpp"
|
||||
//#include "doomtype.h"
|
||||
#include "templates.h"
|
||||
//#include "r_utility.h"
|
||||
|
@ -706,7 +707,7 @@ void F2DDrawer::rotatesprite(int32_t sx, int32_t sy, int32_t z, int16_t a, int16
|
|||
//
|
||||
//==========================================================================
|
||||
|
||||
void F2DDrawer::AddPoly(FTexture* img, F2DPolygons& poly, int palette, int shade, int maskprops)
|
||||
void F2DDrawer::AddPoly(FTexture* img, FVector4* vt, size_t vtcount, unsigned int* ind, size_t idxcount, int palette, int shade, int maskprops)
|
||||
{
|
||||
RenderCommand dg = {};
|
||||
int method = 0;
|
||||
|
@ -731,32 +732,88 @@ void F2DDrawer::AddPoly(FTexture* img, F2DPolygons& poly, int palette, int shade
|
|||
}
|
||||
dg.mTexture = img;
|
||||
dg.mRemapIndex = palette | (shade << 16);
|
||||
dg.mVertCount = poly.vertices.Size();
|
||||
dg.mVertIndex = (int)mVertices.Reserve(dg.mVertCount);
|
||||
dg.mVertCount = vtcount;
|
||||
dg.mVertIndex = (int)mVertices.Reserve(vtcount);
|
||||
dg.mRenderStyle = LegacyRenderStyles[STYLE_Translucent];
|
||||
dg.mIndexIndex = mIndices.Size();
|
||||
dg.mFlags |= DTF_Wrap;
|
||||
auto ptr = &mVertices[dg.mVertIndex];
|
||||
|
||||
for (auto& sv : poly.vertices)
|
||||
for (size_t i=0;i<vtcount;i++)
|
||||
{
|
||||
ptr->Set(sv.X, sv.Y, 0.f, sv.Z, sv.W, p);
|
||||
ptr->Set(vt[i].X, vt[i].Y, 0.f, vt[i].Z, vt[i].W, p);
|
||||
ptr++;
|
||||
}
|
||||
|
||||
int start = dg.mVertIndex;
|
||||
|
||||
for (unsigned i = 0; i < poly.indices.Size(); i++)
|
||||
dg.mIndexIndex = mIndices.Size();
|
||||
mIndices.Reserve(idxcount);
|
||||
for (size_t i = 0; i < idxcount; i++)
|
||||
{
|
||||
for (int vv = 2; vv < poly.indices[i]; vv++)
|
||||
{
|
||||
AddIndices(start, 3, 0, vv - 1, vv);
|
||||
}
|
||||
start += poly.indices[i];
|
||||
mIndices[dg.mIndexIndex + i] = ind[i] + dg.mVertIndex;
|
||||
}
|
||||
|
||||
dg.mIndexCount = mIndices.Size() - dg.mIndexIndex;
|
||||
dg.mIndexCount = idxcount;
|
||||
AddCommand(&dg);
|
||||
}
|
||||
|
||||
//==========================================================================
|
||||
//
|
||||
//
|
||||
//
|
||||
//==========================================================================
|
||||
|
||||
void F2DDrawer::FillPolygon(int *rx1, int *ry1, int *xb1, int32_t npoints, int picnum, int palette, int shade, int props, const FVector2& xtex, const FVector2& ytex, const FVector2 &otex)
|
||||
{
|
||||
//Convert int32_t to float (in-place)
|
||||
TArray<FVector4> points(npoints, true);
|
||||
using Point = std::pair<float, float>;
|
||||
std::vector<std::vector<Point>> polygon;
|
||||
std::vector<Point>* curPoly;
|
||||
|
||||
polygon.resize(1);
|
||||
curPoly = &polygon.back();
|
||||
|
||||
for (bssize_t i = 0; i < npoints; ++i)
|
||||
{
|
||||
auto X = ((float)rx1[i]) * (1.0f / 4096.f);
|
||||
auto Y = ((float)ry1[i]) * (1.0f / 4096.f);
|
||||
curPoly->push_back(std::make_pair(X, Y));
|
||||
if (xb1[i] < i && i < npoints - 1)
|
||||
{
|
||||
polygon.resize(polygon.size() + 1);
|
||||
curPoly = &polygon.back();
|
||||
}
|
||||
}
|
||||
// Now make sure that the outer boundary is the first polygon by picking a point that's as much to the outside as possible.
|
||||
int outer = 0;
|
||||
float minx = FLT_MAX;
|
||||
float miny = FLT_MAX;
|
||||
for (size_t a = 0; a < polygon.size(); a++)
|
||||
{
|
||||
for (auto& pt : polygon[a])
|
||||
{
|
||||
if (pt.first < minx || pt.first == minx && pt.second < miny)
|
||||
{
|
||||
minx = pt.first;
|
||||
miny = pt.second;
|
||||
outer = a;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (outer != 0) std::swap(polygon[0], polygon[outer]);
|
||||
auto indices = mapbox::earcut(polygon);
|
||||
|
||||
int p = 0;
|
||||
for (size_t a = 0; a < polygon.size(); a++)
|
||||
{
|
||||
for (auto& pt : polygon[a])
|
||||
{
|
||||
FVector4 point = { pt.first, pt.second, float(pt.first * xtex.X + pt.second * ytex.X + otex.X), float(pt.first * xtex.Y + pt.second * ytex.Y + otex.Y) };
|
||||
points[p++] = point;
|
||||
}
|
||||
}
|
||||
|
||||
AddPoly(TileFiles.tiles[picnum], points.Data(), points.Size(), indices.data(), indices.size(), palette, shade, (props >> 7)& DAMETH_MASKPROPS);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -127,7 +127,8 @@ public:
|
|||
|
||||
public:
|
||||
void AddTexture(FTexture *img, DrawParms &parms);
|
||||
void AddPoly(FTexture* img, F2DPolygons& poly, int palette, int shade, int maskprops);
|
||||
void AddPoly(FTexture* img, FVector4 *vt, size_t vtcount, unsigned int *ind, size_t idxcount, int palette, int shade, int maskprops);
|
||||
void FillPolygon(int* rx1, int* ry1, int* xb1, int32_t npoints, int picnum, int palette, int shade, int props, const FVector2& xtex, const FVector2& ytex, const FVector2& otex);
|
||||
void AddFlatFill(int left, int top, int right, int bottom, FTexture *src, bool local_origin);
|
||||
|
||||
void AddColorOnlyQuad(int left, int top, int width, int height, PalEntry color, FRenderStyle *style = nullptr);
|
||||
|
|
790
source/thirdparty/include/earcut.hpp
vendored
Normal file
790
source/thirdparty/include/earcut.hpp
vendored
Normal file
|
@ -0,0 +1,790 @@
|
|||
/*
|
||||
ISC License
|
||||
|
||||
Copyright (c) 2015, Mapbox
|
||||
|
||||
Permission to use, copy, modify, and/or distribute this software for any purpose
|
||||
with or without fee is hereby granted, provided that the above copyright notice
|
||||
and this permission notice appear in all copies.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
|
||||
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
|
||||
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
|
||||
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
|
||||
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
|
||||
THIS SOFTWARE.
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
namespace mapbox {
|
||||
|
||||
namespace util {
|
||||
|
||||
template <std::size_t I, typename T> struct nth {
|
||||
inline static typename std::tuple_element<I, T>::type
|
||||
get(const T& t) { return std::get<I>(t); };
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
namespace detail {
|
||||
|
||||
template <typename N = uint32_t>
|
||||
class Earcut {
|
||||
public:
|
||||
std::vector<N> indices;
|
||||
std::size_t vertices = 0;
|
||||
|
||||
template <typename Polygon>
|
||||
void operator()(const Polygon& points);
|
||||
|
||||
private:
|
||||
struct Node {
|
||||
Node(N index, double x_, double y_) : i(index), x(x_), y(y_) {}
|
||||
Node(const Node&) = delete;
|
||||
Node& operator=(const Node&) = delete;
|
||||
Node(Node&&) = delete;
|
||||
Node& operator=(Node&&) = delete;
|
||||
|
||||
const N i;
|
||||
const double x;
|
||||
const double y;
|
||||
|
||||
// previous and next vertice nodes in a polygon ring
|
||||
Node* prev = nullptr;
|
||||
Node* next = nullptr;
|
||||
|
||||
// z-order curve value
|
||||
int32_t z = 0;
|
||||
|
||||
// previous and next nodes in z-order
|
||||
Node* prevZ = nullptr;
|
||||
Node* nextZ = nullptr;
|
||||
|
||||
// indicates whether this is a steiner point
|
||||
bool steiner = false;
|
||||
};
|
||||
|
||||
template <typename Ring> Node* linkedList(const Ring& points, const bool clockwise);
|
||||
Node* filterPoints(Node* start, Node* end = nullptr);
|
||||
void earcutLinked(Node* ear, int pass = 0);
|
||||
bool isEar(Node* ear);
|
||||
bool isEarHashed(Node* ear);
|
||||
Node* cureLocalIntersections(Node* start);
|
||||
void splitEarcut(Node* start);
|
||||
template <typename Polygon> Node* eliminateHoles(const Polygon& points, Node* outerNode);
|
||||
void eliminateHole(Node* hole, Node* outerNode);
|
||||
Node* findHoleBridge(Node* hole, Node* outerNode);
|
||||
void indexCurve(Node* start);
|
||||
Node* sortLinked(Node* list);
|
||||
int32_t zOrder(const double x_, const double y_);
|
||||
Node* getLeftmost(Node* start);
|
||||
bool pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const;
|
||||
bool isValidDiagonal(Node* a, Node* b);
|
||||
double area(const Node* p, const Node* q, const Node* r) const;
|
||||
bool equals(const Node* p1, const Node* p2);
|
||||
bool intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2);
|
||||
bool intersectsPolygon(const Node* a, const Node* b);
|
||||
bool locallyInside(const Node* a, const Node* b);
|
||||
bool middleInside(const Node* a, const Node* b);
|
||||
Node* splitPolygon(Node* a, Node* b);
|
||||
template <typename Point> Node* insertNode(std::size_t i, const Point& p, Node* last);
|
||||
void removeNode(Node* p);
|
||||
|
||||
bool hashing;
|
||||
double minX, maxX;
|
||||
double minY, maxY;
|
||||
double inv_size = 0;
|
||||
|
||||
template <typename T, typename Alloc = std::allocator<T>>
|
||||
class ObjectPool {
|
||||
public:
|
||||
ObjectPool() { }
|
||||
ObjectPool(std::size_t blockSize_) {
|
||||
reset(blockSize_);
|
||||
}
|
||||
~ObjectPool() {
|
||||
clear();
|
||||
}
|
||||
template <typename... Args>
|
||||
T* construct(Args&&... args) {
|
||||
if (currentIndex >= blockSize) {
|
||||
currentBlock = alloc.allocate(blockSize);
|
||||
allocations.emplace_back(currentBlock);
|
||||
currentIndex = 0;
|
||||
}
|
||||
T* object = ¤tBlock[currentIndex++];
|
||||
alloc.construct(object, std::forward<Args>(args)...);
|
||||
return object;
|
||||
}
|
||||
void reset(std::size_t newBlockSize) {
|
||||
for (auto allocation : allocations) alloc.deallocate(allocation, blockSize);
|
||||
allocations.clear();
|
||||
blockSize = std::max<std::size_t>(1, newBlockSize);
|
||||
currentBlock = nullptr;
|
||||
currentIndex = blockSize;
|
||||
}
|
||||
void clear() { reset(blockSize); }
|
||||
private:
|
||||
T* currentBlock = nullptr;
|
||||
std::size_t currentIndex = 1;
|
||||
std::size_t blockSize = 1;
|
||||
std::vector<T*> allocations;
|
||||
Alloc alloc;
|
||||
};
|
||||
ObjectPool<Node> nodes;
|
||||
};
|
||||
|
||||
template <typename N> template <typename Polygon>
|
||||
void Earcut<N>::operator()(const Polygon& points) {
|
||||
// reset
|
||||
indices.clear();
|
||||
vertices = 0;
|
||||
|
||||
if (points.empty()) return;
|
||||
|
||||
double x;
|
||||
double y;
|
||||
int threshold = 80;
|
||||
std::size_t len = 0;
|
||||
|
||||
for (size_t i = 0; threshold >= 0 && i < points.size(); i++) {
|
||||
threshold -= static_cast<int>(points[i].size());
|
||||
len += points[i].size();
|
||||
}
|
||||
|
||||
//estimate size of nodes and indices
|
||||
nodes.reset(len * 3 / 2);
|
||||
indices.reserve(len + points[0].size());
|
||||
|
||||
Node* outerNode = linkedList(points[0], true);
|
||||
if (!outerNode) return;
|
||||
|
||||
if (points.size() > 1) outerNode = eliminateHoles(points, outerNode);
|
||||
|
||||
// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
|
||||
hashing = threshold < 0;
|
||||
if (hashing) {
|
||||
Node* p = outerNode->next;
|
||||
minX = maxX = outerNode->x;
|
||||
minY = maxY = outerNode->y;
|
||||
do {
|
||||
x = p->x;
|
||||
y = p->y;
|
||||
minX = std::min<double>(minX, x);
|
||||
minY = std::min<double>(minY, y);
|
||||
maxX = std::max<double>(maxX, x);
|
||||
maxY = std::max<double>(maxY, y);
|
||||
p = p->next;
|
||||
} while (p != outerNode);
|
||||
|
||||
// minX, minY and size are later used to transform coords into integers for z-order calculation
|
||||
inv_size = std::max<double>(maxX - minX, maxY - minY);
|
||||
inv_size = inv_size != .0 ? (1. / inv_size) : .0;
|
||||
}
|
||||
|
||||
earcutLinked(outerNode);
|
||||
|
||||
nodes.clear();
|
||||
}
|
||||
|
||||
// create a circular doubly linked list from polygon points in the specified winding order
|
||||
template <typename N> template <typename Ring>
|
||||
typename Earcut<N>::Node*
|
||||
Earcut<N>::linkedList(const Ring& points, const bool clockwise) {
|
||||
using Point = typename Ring::value_type;
|
||||
double sum = 0;
|
||||
const std::size_t len = points.size();
|
||||
std::size_t i, j;
|
||||
Node* last = nullptr;
|
||||
|
||||
// calculate original winding order of a polygon ring
|
||||
for (i = 0, j = len > 0 ? len - 1 : 0; i < len; j = i++) {
|
||||
const auto& p1 = points[i];
|
||||
const auto& p2 = points[j];
|
||||
const double p20 = util::nth<0, Point>::get(p2);
|
||||
const double p10 = util::nth<0, Point>::get(p1);
|
||||
const double p11 = util::nth<1, Point>::get(p1);
|
||||
const double p21 = util::nth<1, Point>::get(p2);
|
||||
sum += (p20 - p10) * (p11 + p21);
|
||||
}
|
||||
|
||||
// link points into circular doubly-linked list in the specified winding order
|
||||
if (clockwise == (sum > 0)) {
|
||||
for (i = 0; i < len; i++) last = insertNode(vertices + i, points[i], last);
|
||||
} else {
|
||||
for (i = len; i-- > 0;) last = insertNode(vertices + i, points[i], last);
|
||||
}
|
||||
|
||||
if (last && equals(last, last->next)) {
|
||||
removeNode(last);
|
||||
last = last->next;
|
||||
}
|
||||
|
||||
vertices += len;
|
||||
|
||||
return last;
|
||||
}
|
||||
|
||||
// eliminate colinear or duplicate points
|
||||
template <typename N>
|
||||
typename Earcut<N>::Node*
|
||||
Earcut<N>::filterPoints(Node* start, Node* end) {
|
||||
if (!end) end = start;
|
||||
|
||||
Node* p = start;
|
||||
bool again;
|
||||
do {
|
||||
again = false;
|
||||
|
||||
if (!p->steiner && (equals(p, p->next) /*|| area(p->prev, p, p->next) == 0*/))
|
||||
{
|
||||
removeNode(p);
|
||||
p = end = p->prev;
|
||||
|
||||
if (p == p->next) break;
|
||||
again = true;
|
||||
|
||||
} else {
|
||||
p = p->next;
|
||||
}
|
||||
} while (again || p != end);
|
||||
|
||||
return end;
|
||||
}
|
||||
|
||||
// main ear slicing loop which triangulates a polygon (given as a linked list)
|
||||
template <typename N>
|
||||
void Earcut<N>::earcutLinked(Node* ear, int pass) {
|
||||
if (!ear) return;
|
||||
|
||||
// interlink polygon nodes in z-order
|
||||
if (!pass && hashing) indexCurve(ear);
|
||||
|
||||
Node* stop = ear;
|
||||
Node* prev;
|
||||
Node* next;
|
||||
|
||||
int iterations = 0;
|
||||
|
||||
// iterate through ears, slicing them one by one
|
||||
while (ear->prev != ear->next) {
|
||||
iterations++;
|
||||
prev = ear->prev;
|
||||
next = ear->next;
|
||||
|
||||
if (hashing ? isEarHashed(ear) : isEar(ear)) {
|
||||
// cut off the triangle
|
||||
indices.emplace_back(prev->i);
|
||||
indices.emplace_back(ear->i);
|
||||
indices.emplace_back(next->i);
|
||||
|
||||
removeNode(ear);
|
||||
|
||||
// skipping the next vertice leads to less sliver triangles
|
||||
ear = next->next;
|
||||
stop = next->next;
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
ear = next;
|
||||
|
||||
// if we looped through the whole remaining polygon and can't find any more ears
|
||||
if (ear == stop) {
|
||||
// try filtering points and slicing again
|
||||
if (!pass) earcutLinked(filterPoints(ear), 1);
|
||||
|
||||
// if this didn't work, try curing all small self-intersections locally
|
||||
else if (pass == 1) {
|
||||
ear = cureLocalIntersections(ear);
|
||||
earcutLinked(ear, 2);
|
||||
|
||||
// as a last resort, try splitting the remaining polygon into two
|
||||
} else if (pass == 2) splitEarcut(ear);
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// check whether a polygon node forms a valid ear with adjacent nodes
|
||||
template <typename N>
|
||||
bool Earcut<N>::isEar(Node* ear) {
|
||||
const Node* a = ear->prev;
|
||||
const Node* b = ear;
|
||||
const Node* c = ear->next;
|
||||
|
||||
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
|
||||
|
||||
// now make sure we don't have other points inside the potential ear
|
||||
Node* p = ear->next->next;
|
||||
|
||||
while (p != ear->prev) {
|
||||
if (pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
|
||||
area(p->prev, p, p->next) >= 0) return false;
|
||||
p = p->next;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename N>
|
||||
bool Earcut<N>::isEarHashed(Node* ear) {
|
||||
const Node* a = ear->prev;
|
||||
const Node* b = ear;
|
||||
const Node* c = ear->next;
|
||||
|
||||
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
|
||||
|
||||
// triangle bbox; min & max are calculated like this for speed
|
||||
const double minTX = std::min<double>(a->x, std::min<double>(b->x, c->x));
|
||||
const double minTY = std::min<double>(a->y, std::min<double>(b->y, c->y));
|
||||
const double maxTX = std::max<double>(a->x, std::max<double>(b->x, c->x));
|
||||
const double maxTY = std::max<double>(a->y, std::max<double>(b->y, c->y));
|
||||
|
||||
// z-order range for the current triangle bbox;
|
||||
const int32_t minZ = zOrder(minTX, minTY);
|
||||
const int32_t maxZ = zOrder(maxTX, maxTY);
|
||||
|
||||
// first look for points inside the triangle in increasing z-order
|
||||
Node* p = ear->nextZ;
|
||||
|
||||
while (p && p->z <= maxZ) {
|
||||
if (p != ear->prev && p != ear->next &&
|
||||
pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
|
||||
area(p->prev, p, p->next) >= 0) return false;
|
||||
p = p->nextZ;
|
||||
}
|
||||
|
||||
// then look for points in decreasing z-order
|
||||
p = ear->prevZ;
|
||||
|
||||
while (p && p->z >= minZ) {
|
||||
if (p != ear->prev && p != ear->next &&
|
||||
pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
|
||||
area(p->prev, p, p->next) >= 0) return false;
|
||||
p = p->prevZ;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// go through all polygon nodes and cure small local self-intersections
|
||||
template <typename N>
|
||||
typename Earcut<N>::Node*
|
||||
Earcut<N>::cureLocalIntersections(Node* start) {
|
||||
Node* p = start;
|
||||
do {
|
||||
Node* a = p->prev;
|
||||
Node* b = p->next->next;
|
||||
|
||||
// a self-intersection where edge (v[i-1],v[i]) intersects (v[i+1],v[i+2])
|
||||
if (!equals(a, b) && intersects(a, p, p->next, b) && locallyInside(a, b) && locallyInside(b, a)) {
|
||||
indices.emplace_back(a->i);
|
||||
indices.emplace_back(p->i);
|
||||
indices.emplace_back(b->i);
|
||||
|
||||
// remove two nodes involved
|
||||
removeNode(p);
|
||||
removeNode(p->next);
|
||||
|
||||
p = start = b;
|
||||
}
|
||||
p = p->next;
|
||||
} while (p != start);
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
// try splitting polygon into two and triangulate them independently
|
||||
template <typename N>
|
||||
void Earcut<N>::splitEarcut(Node* start) {
|
||||
// look for a valid diagonal that divides the polygon into two
|
||||
Node* a = start;
|
||||
do {
|
||||
Node* b = a->next->next;
|
||||
while (b != a->prev) {
|
||||
if (a->i != b->i && isValidDiagonal(a, b)) {
|
||||
// split the polygon in two by the diagonal
|
||||
Node* c = splitPolygon(a, b);
|
||||
|
||||
// filter colinear points around the cuts
|
||||
a = filterPoints(a, a->next);
|
||||
c = filterPoints(c, c->next);
|
||||
|
||||
// run earcut on each half
|
||||
earcutLinked(a);
|
||||
earcutLinked(c);
|
||||
return;
|
||||
}
|
||||
b = b->next;
|
||||
}
|
||||
a = a->next;
|
||||
} while (a != start);
|
||||
}
|
||||
|
||||
// link every hole into the outer loop, producing a single-ring polygon without holes
|
||||
template <typename N> template <typename Polygon>
|
||||
typename Earcut<N>::Node*
|
||||
Earcut<N>::eliminateHoles(const Polygon& points, Node* outerNode) {
|
||||
const size_t len = points.size();
|
||||
|
||||
std::vector<Node*> queue;
|
||||
for (size_t i = 1; i < len; i++) {
|
||||
Node* list = linkedList(points[i], false);
|
||||
if (list) {
|
||||
if (list == list->next) list->steiner = true;
|
||||
queue.push_back(getLeftmost(list));
|
||||
}
|
||||
}
|
||||
std::sort(queue.begin(), queue.end(), [](const Node* a, const Node* b) {
|
||||
return a->x < b->x;
|
||||
});
|
||||
|
||||
// process holes from left to right
|
||||
for (size_t i = 0; i < queue.size(); i++) {
|
||||
eliminateHole(queue[i], outerNode);
|
||||
outerNode = filterPoints(outerNode, outerNode->next);
|
||||
}
|
||||
|
||||
return outerNode;
|
||||
}
|
||||
|
||||
// find a bridge between vertices that connects hole with an outer ring and and link it
|
||||
template <typename N>
|
||||
void Earcut<N>::eliminateHole(Node* hole, Node* outerNode) {
|
||||
outerNode = findHoleBridge(hole, outerNode);
|
||||
if (outerNode) {
|
||||
Node* b = splitPolygon(outerNode, hole);
|
||||
filterPoints(b, b->next);
|
||||
}
|
||||
}
|
||||
|
||||
// David Eberly's algorithm for finding a bridge between hole and outer polygon
|
||||
template <typename N>
|
||||
typename Earcut<N>::Node*
|
||||
Earcut<N>::findHoleBridge(Node* hole, Node* outerNode) {
|
||||
Node* p = outerNode;
|
||||
double hx = hole->x;
|
||||
double hy = hole->y;
|
||||
double qx = -std::numeric_limits<double>::infinity();
|
||||
Node* m = nullptr;
|
||||
|
||||
// find a segment intersected by a ray from the hole's leftmost Vertex to the left;
|
||||
// segment's endpoint with lesser x will be potential connection Vertex
|
||||
do {
|
||||
if (hy <= p->y && hy >= p->next->y && p->next->y != p->y) {
|
||||
double x = p->x + (hy - p->y) * (p->next->x - p->x) / (p->next->y - p->y);
|
||||
if (x <= hx && x > qx) {
|
||||
qx = x;
|
||||
if (x == hx) {
|
||||
if (hy == p->y) return p;
|
||||
if (hy == p->next->y) return p->next;
|
||||
}
|
||||
m = p->x < p->next->x ? p : p->next;
|
||||
}
|
||||
}
|
||||
p = p->next;
|
||||
} while (p != outerNode);
|
||||
|
||||
if (!m) return 0;
|
||||
|
||||
if (hx == qx) return m->prev;
|
||||
|
||||
// look for points inside the triangle of hole Vertex, segment intersection and endpoint;
|
||||
// if there are no points found, we have a valid connection;
|
||||
// otherwise choose the Vertex of the minimum angle with the ray as connection Vertex
|
||||
|
||||
const Node* stop = m;
|
||||
double tanMin = std::numeric_limits<double>::infinity();
|
||||
double tanCur = 0;
|
||||
|
||||
p = m->next;
|
||||
double mx = m->x;
|
||||
double my = m->y;
|
||||
|
||||
while (p != stop) {
|
||||
if (hx >= p->x && p->x >= mx && hx != p->x &&
|
||||
pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p->x, p->y)) {
|
||||
|
||||
tanCur = std::abs(hy - p->y) / (hx - p->x); // tangential
|
||||
|
||||
if ((tanCur < tanMin || (tanCur == tanMin && p->x > m->x)) && locallyInside(p, hole)) {
|
||||
m = p;
|
||||
tanMin = tanCur;
|
||||
}
|
||||
}
|
||||
|
||||
p = p->next;
|
||||
}
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
// interlink polygon nodes in z-order
|
||||
template <typename N>
|
||||
void Earcut<N>::indexCurve(Node* start) {
|
||||
assert(start);
|
||||
Node* p = start;
|
||||
|
||||
do {
|
||||
p->z = p->z ? p->z : zOrder(p->x, p->y);
|
||||
p->prevZ = p->prev;
|
||||
p->nextZ = p->next;
|
||||
p = p->next;
|
||||
} while (p != start);
|
||||
|
||||
p->prevZ->nextZ = nullptr;
|
||||
p->prevZ = nullptr;
|
||||
|
||||
sortLinked(p);
|
||||
}
|
||||
|
||||
// Simon Tatham's linked list merge sort algorithm
|
||||
// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
|
||||
template <typename N>
|
||||
typename Earcut<N>::Node*
|
||||
Earcut<N>::sortLinked(Node* list) {
|
||||
assert(list);
|
||||
Node* p;
|
||||
Node* q;
|
||||
Node* e;
|
||||
Node* tail;
|
||||
int i, numMerges, pSize, qSize;
|
||||
int inSize = 1;
|
||||
|
||||
for (;;) {
|
||||
p = list;
|
||||
list = nullptr;
|
||||
tail = nullptr;
|
||||
numMerges = 0;
|
||||
|
||||
while (p) {
|
||||
numMerges++;
|
||||
q = p;
|
||||
pSize = 0;
|
||||
for (i = 0; i < inSize; i++) {
|
||||
pSize++;
|
||||
q = q->nextZ;
|
||||
if (!q) break;
|
||||
}
|
||||
|
||||
qSize = inSize;
|
||||
|
||||
while (pSize > 0 || (qSize > 0 && q)) {
|
||||
|
||||
if (pSize == 0) {
|
||||
e = q;
|
||||
q = q->nextZ;
|
||||
qSize--;
|
||||
} else if (qSize == 0 || !q) {
|
||||
e = p;
|
||||
p = p->nextZ;
|
||||
pSize--;
|
||||
} else if (p->z <= q->z) {
|
||||
e = p;
|
||||
p = p->nextZ;
|
||||
pSize--;
|
||||
} else {
|
||||
e = q;
|
||||
q = q->nextZ;
|
||||
qSize--;
|
||||
}
|
||||
|
||||
if (tail) tail->nextZ = e;
|
||||
else list = e;
|
||||
|
||||
e->prevZ = tail;
|
||||
tail = e;
|
||||
}
|
||||
|
||||
p = q;
|
||||
}
|
||||
|
||||
tail->nextZ = nullptr;
|
||||
|
||||
if (numMerges <= 1) return list;
|
||||
|
||||
inSize *= 2;
|
||||
}
|
||||
}
|
||||
|
||||
// z-order of a Vertex given coords and size of the data bounding box
|
||||
template <typename N>
|
||||
int32_t Earcut<N>::zOrder(const double x_, const double y_) {
|
||||
// coords are transformed into non-negative 15-bit integer range
|
||||
int32_t x = static_cast<int32_t>(32767.0 * (x_ - minX) * inv_size);
|
||||
int32_t y = static_cast<int32_t>(32767.0 * (y_ - minY) * inv_size);
|
||||
|
||||
x = (x | (x << 8)) & 0x00FF00FF;
|
||||
x = (x | (x << 4)) & 0x0F0F0F0F;
|
||||
x = (x | (x << 2)) & 0x33333333;
|
||||
x = (x | (x << 1)) & 0x55555555;
|
||||
|
||||
y = (y | (y << 8)) & 0x00FF00FF;
|
||||
y = (y | (y << 4)) & 0x0F0F0F0F;
|
||||
y = (y | (y << 2)) & 0x33333333;
|
||||
y = (y | (y << 1)) & 0x55555555;
|
||||
|
||||
return x | (y << 1);
|
||||
}
|
||||
|
||||
// find the leftmost node of a polygon ring
|
||||
template <typename N>
|
||||
typename Earcut<N>::Node*
|
||||
Earcut<N>::getLeftmost(Node* start) {
|
||||
Node* p = start;
|
||||
Node* leftmost = start;
|
||||
do {
|
||||
if (p->x < leftmost->x) leftmost = p;
|
||||
p = p->next;
|
||||
} while (p != start);
|
||||
|
||||
return leftmost;
|
||||
}
|
||||
|
||||
// check if a point lies within a convex triangle
|
||||
template <typename N>
|
||||
bool Earcut<N>::pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const {
|
||||
return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 &&
|
||||
(ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 &&
|
||||
(bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
|
||||
}
|
||||
|
||||
// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
|
||||
template <typename N>
|
||||
bool Earcut<N>::isValidDiagonal(Node* a, Node* b) {
|
||||
return a->next->i != b->i && a->prev->i != b->i && !intersectsPolygon(a, b) &&
|
||||
locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b);
|
||||
}
|
||||
|
||||
// signed area of a triangle
|
||||
template <typename N>
|
||||
double Earcut<N>::area(const Node* p, const Node* q, const Node* r) const {
|
||||
return (q->y - p->y) * (r->x - q->x) - (q->x - p->x) * (r->y - q->y);
|
||||
}
|
||||
|
||||
// check if two points are equal
|
||||
template <typename N>
|
||||
bool Earcut<N>::equals(const Node* p1, const Node* p2) {
|
||||
return p1->x == p2->x && p1->y == p2->y;
|
||||
}
|
||||
|
||||
// check if two segments intersect
|
||||
template <typename N>
|
||||
bool Earcut<N>::intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2) {
|
||||
if ((equals(p1, q1) && equals(p2, q2)) ||
|
||||
(equals(p1, q2) && equals(p2, q1))) return true;
|
||||
return (area(p1, q1, p2) > 0) != (area(p1, q1, q2) > 0) &&
|
||||
(area(p2, q2, p1) > 0) != (area(p2, q2, q1) > 0);
|
||||
}
|
||||
|
||||
// check if a polygon diagonal intersects any polygon segments
|
||||
template <typename N>
|
||||
bool Earcut<N>::intersectsPolygon(const Node* a, const Node* b) {
|
||||
const Node* p = a;
|
||||
do {
|
||||
if (p->i != a->i && p->next->i != a->i && p->i != b->i && p->next->i != b->i &&
|
||||
intersects(p, p->next, a, b)) return true;
|
||||
p = p->next;
|
||||
} while (p != a);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// check if a polygon diagonal is locally inside the polygon
|
||||
template <typename N>
|
||||
bool Earcut<N>::locallyInside(const Node* a, const Node* b) {
|
||||
return area(a->prev, a, a->next) < 0 ?
|
||||
area(a, b, a->next) >= 0 && area(a, a->prev, b) >= 0 :
|
||||
area(a, b, a->prev) < 0 || area(a, a->next, b) < 0;
|
||||
}
|
||||
|
||||
// check if the middle Vertex of a polygon diagonal is inside the polygon
|
||||
template <typename N>
|
||||
bool Earcut<N>::middleInside(const Node* a, const Node* b) {
|
||||
const Node* p = a;
|
||||
bool inside = false;
|
||||
double px = (a->x + b->x) / 2;
|
||||
double py = (a->y + b->y) / 2;
|
||||
do {
|
||||
if (((p->y > py) != (p->next->y > py)) && p->next->y != p->y &&
|
||||
(px < (p->next->x - p->x) * (py - p->y) / (p->next->y - p->y) + p->x))
|
||||
inside = !inside;
|
||||
p = p->next;
|
||||
} while (p != a);
|
||||
|
||||
return inside;
|
||||
}
|
||||
|
||||
// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits
|
||||
// polygon into two; if one belongs to the outer ring and another to a hole, it merges it into a
|
||||
// single ring
|
||||
template <typename N>
|
||||
typename Earcut<N>::Node*
|
||||
Earcut<N>::splitPolygon(Node* a, Node* b) {
|
||||
Node* a2 = nodes.construct(a->i, a->x, a->y);
|
||||
Node* b2 = nodes.construct(b->i, b->x, b->y);
|
||||
Node* an = a->next;
|
||||
Node* bp = b->prev;
|
||||
|
||||
a->next = b;
|
||||
b->prev = a;
|
||||
|
||||
a2->next = an;
|
||||
an->prev = a2;
|
||||
|
||||
b2->next = a2;
|
||||
a2->prev = b2;
|
||||
|
||||
bp->next = b2;
|
||||
b2->prev = bp;
|
||||
|
||||
return b2;
|
||||
}
|
||||
|
||||
// create a node and util::optionally link it with previous one (in a circular doubly linked list)
|
||||
template <typename N> template <typename Point>
|
||||
typename Earcut<N>::Node*
|
||||
Earcut<N>::insertNode(std::size_t i, const Point& pt, Node* last) {
|
||||
Node* p = nodes.construct(static_cast<N>(i), util::nth<0, Point>::get(pt), util::nth<1, Point>::get(pt));
|
||||
|
||||
if (!last) {
|
||||
p->prev = p;
|
||||
p->next = p;
|
||||
|
||||
} else {
|
||||
assert(last);
|
||||
p->next = last->next;
|
||||
p->prev = last;
|
||||
last->next->prev = p;
|
||||
last->next = p;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
template <typename N>
|
||||
void Earcut<N>::removeNode(Node* p) {
|
||||
p->next->prev = p->prev;
|
||||
p->prev->next = p->next;
|
||||
|
||||
if (p->prevZ) p->prevZ->nextZ = p->nextZ;
|
||||
if (p->nextZ) p->nextZ->prevZ = p->prevZ;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename N = uint32_t, typename Polygon>
|
||||
std::vector<N> earcut(const Polygon& poly) {
|
||||
mapbox::detail::Earcut<N> earcut;
|
||||
earcut(poly);
|
||||
return std::move(earcut.indices);
|
||||
}
|
||||
}
|
Loading…
Reference in a new issue